Smad4/TGF-β Signaling Pathways in Pancreatic Cancer Pathogenesis

  • Alixanna Norris
  • Murray Korc
Reference work entry


Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with dismal survival statistics. Extensive research efforts have focused on the elucidation of the specific molecular alterations behind pancreatic cancer, with the goals of understanding PDAC pathobiology and devising new and effective targeted therapies. These studies have yielded surprisingly consistent results, indicating that key genetic alterations include a high frequency of mutations in the K-ras, p53, p16 and Smad4 genes. In addition, there is excessive activation of mitogenic pathways, overexpression of TGF-β isoforms, and an intense desmoplastic reaction that is driven, in part, by the proliferation of pancreatic stellate cells, and marked apoptosis resistance. This chapter focuses on the potential role of the TGF-β signaling pathway in PDAC progression and metastasis while highlighting the importance of Smad4 in TGF-β signal transduction.


Pancreatic Cancer Acute Pancreatitis Connective Tissue Growth Factor Pancreatic Ductal Adenocarcinoma PDAC Patient 


  1. 1.
    Gudjonsson B: Cancer of the pancreas. 50 years of surgery. Cancer 1987;60(9):2284–2303.PubMedGoogle Scholar
  2. 2.
    DiMagno EP, Reber HA, Tempero MA: AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. American Gastroenterological Association. Gastroenterology 1999;117(6):1464–1484.PubMedGoogle Scholar
  3. 3.
    Ho CK, Kleeff J, Friess H, Buchler MW: Complications of pancreatic surgery. HPB (Oxford) 2005;7(2):99–108.Google Scholar
  4. 4.
    Buchler MW, Kleeff J, Friess H: Surgical treatment of pancreatic cancer. J Am Coll Surg 2007;205(4 Suppl):S81–86.PubMedGoogle Scholar
  5. 5.
    Hansel DE, Kern SE, Hruban RH: Molecular pathogenesis of pancreatic cancer. Annu Rev Genomics Hum Genet 2003;4:237–256.PubMedGoogle Scholar
  6. 6.
    Jiao L, Zhu J, Hassan MM, Evans DB, Abbruzzese JL, Li D: K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas 2007;34(1):55–62.PubMedGoogle Scholar
  7. 7.
    Summy JM, Trevino JG, Baker CH, Gallick GE: c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK. Pancreas 2005;31(3):263–274.PubMedGoogle Scholar
  8. 8.
    Greten FR, Weber CK, Greten TF, Schneider G, Wagner M, Adler G, et al.: Stat3 and NF-kappab activation prevents apoptosis in pancreatic carcinogenesis. Gastroenterology 2002;123(6):2052–2063.PubMedGoogle Scholar
  9. 9.
    Guo X, Friess H, Graber HU, Kashiwagi M, Zimmermann A, Korc M, et al.: KAI1 expression is up-regulated in early pancreatic cancer and decreased in the presence of metastases. Cancer Res 1996;56(21):4876–4880.PubMedGoogle Scholar
  10. 10.
    Korc M: Pathways for aberrant angiogenesis in pancreatic cancer. Mol Cancer 2003;2:8.PubMedGoogle Scholar
  11. 11.
    Truty MJ, Urrutia R: Basics of TGF-beta and pancreatic cancer. Pancreatology 2007;7(5–6):423–435.PubMedGoogle Scholar
  12. 12.
    Korc M: Role of growth factors in pancreatic cancer. Surg Oncol Clin N Am 1998;7(1):25–41.PubMedGoogle Scholar
  13. 13.
    Anzano MA, Roberts AB, Smith JM, Sporn MB, De Larco JE: Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors. Proc Natl Acad Sci USA 1983;80(20):6264–6268.PubMedGoogle Scholar
  14. 14.
    Hogan BL: Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996;10(13):1580–1594.PubMedGoogle Scholar
  15. 15.
    Massague J: TGF-beta signal transduction. Annu Rev Biochem 1998;67:753–791.PubMedGoogle Scholar
  16. 16.
    Raftery LA, Sutherland DJ: TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev Biol 1999;210(2):251–268.PubMedGoogle Scholar
  17. 17.
    Padgett RW, Das P, Krishna S: TGF-beta signaling, Smads, and tumor suppressors. Bioessays 1998;20(5):382–390.PubMedGoogle Scholar
  18. 18.
    Massague J, Blain SW, Lo RS: tgfbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103(2):295–309.PubMedGoogle Scholar
  19. 19.
    Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113(6):685–700.PubMedGoogle Scholar
  20. 20.
    Derynck R, Akhurst RJ, Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001;29(2):117–129.PubMedGoogle Scholar
  21. 21.
    Kingsley DM: The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8(2):133–146.PubMedGoogle Scholar
  22. 22.
    Siegel PM, Massague J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003;3(11):807–821.PubMedGoogle Scholar
  23. 23.
    Derynck R, Feng XH: TGF-beta receptor signaling. Biochim Biophys Acta 1997;1333(2):F105–150.PubMedGoogle Scholar
  24. 24.
    Attisano L, Wrana JL: Signal transduction by the TGF-beta superfamily. Science 2002;296(5573):1646–1647.PubMedGoogle Scholar
  25. 25.
    Massague J, Seoane J, Wotton D: Smad transcription factors. Genes Dev 2005;19(23):2783–2810.PubMedGoogle Scholar
  26. 26.
    Heldin CH, Miyazono K, ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997;390(6659):465–471.PubMedGoogle Scholar
  27. 27.
    Derynck R, Zhang Y, Feng XH: Smads: transcriptional activators of TGF-beta responses. Cell 1998;95(6):737–740.PubMedGoogle Scholar
  28. 28.
    Derynck R, Gelbart WM, Harland RM, Heldin CH, Kern SE, Massague J, et al.: Nomenclature: vertebrate mediators of tgfbeta family signals. Cell 1996;87(2):173.PubMedGoogle Scholar
  29. 29.
    Xu L, Chen YG, Massague J: The nuclear import function of Smad2 is masked by SARA and unmasked by tgfbeta-dependent phosphorylation. Nat Cell Biol 2000;2(8):559–562.PubMedGoogle Scholar
  30. 30.
    Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the tgfbeta receptor. Cell 1998;95(6):779–791.PubMedGoogle Scholar
  31. 31.
    Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP: Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 1998;94(5):585–594.PubMedGoogle Scholar
  32. 32.
    Massague J, Wotton D: Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000;19(8):1745–1754.PubMedGoogle Scholar
  33. 33.
    Murakami M, Nagai E, Mizumoto K, Saimura M, Ohuchida K, Inadome N, et al.: Suppression of metastasis of human pancreatic cancer to the liver by transportal injection of recombinant adenoviral NK4 in nude mice. Int J Cancer 2005;117(1):160–165.PubMedGoogle Scholar
  34. 34.
    Gold LI: The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 1999;10(4):303–360.PubMedGoogle Scholar
  35. 35.
    Xu L, Kang Y, Col S, Massague J: Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds tgfbeta signaling complexes in the cytoplasm and nucleus. Mol Cell 2002;10(2):271–282.PubMedGoogle Scholar
  36. 36.
    Feng XH, Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–693.PubMedGoogle Scholar
  37. 37.
    Roberts AB, Wakefield LM: The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 2003;100(15):8621–8623.PubMedGoogle Scholar
  38. 38.
    ten Dijke P, Miyazono K, Heldin CH: Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci 2000;25(2):64–70.PubMedGoogle Scholar
  39. 39.
    Datta PK, Moses HL: STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling. Mol Cell Biol 2000;20(9):3157–3167.PubMedGoogle Scholar
  40. 40.
    Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, et al.: Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 2002;21(32):4879–4884.PubMedGoogle Scholar
  41. 41.
    Monteleone G, Del Vecchio Blanco G, Monteleone I, Fina D, Caruso R, Gioia V, et al.: Post-transcriptional regulation of Smad7 in the gut of patients with inflammatory bowel disease. Gastroenterology 2005;129(5):1420–1429.PubMedGoogle Scholar
  42. 42.
    Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P, et al.: Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 2005;19(3):297–308.PubMedGoogle Scholar
  43. 43.
    Shi W, Sun C, He B, Xiong W, Shi X, Yao D, et al.: GADD34-PP1c recruited by Smad7 dephosphorylates tgfbeta type I receptor. J Cell Biol 2004;164(2):291–300.PubMedGoogle Scholar
  44. 44.
    Watanabe M, Masuyama N, Fukuda M, Nishida E: Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep 2000;1(2):176–182.PubMedGoogle Scholar
  45. 45.
    Shi Y, Hata A, Lo RS, Massague J, Pavletich NP: A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 1997;388(6637):87–93.PubMedGoogle Scholar
  46. 46.
    Roberts AB: Molecular and cell biology of TGF-beta. Miner Electrolyte Metab 1998;24(2–3):111–119.PubMedGoogle Scholar
  47. 47.
    Boyer Arnold N, Korc M: Smad7 abrogates transforming growth factor-beta1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein. J Biol Chem 2005;280(23):21858–21866.PubMedGoogle Scholar
  48. 48.
    Ravitz MJ, Wenner CE: Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-beta. Adv Cancer Res 1997;71:165–207.PubMedGoogle Scholar
  49. 49.
    Kleeff J, Korc M: Up-regulation of transforming growth factor (TGF)-beta receptors by TGF-beta1 in COLO-357 cells. J Biol Chem 1998;273(13):7495–7500.PubMedGoogle Scholar
  50. 50.
    Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massague J: Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 1990;62(1):175–185.PubMedGoogle Scholar
  51. 51.
    Herrera RE, Makela TP, Weinberg RA: TGF beta-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. Mol Biol Cell 1996;7(9):1335–1342.PubMedGoogle Scholar
  52. 52.
    Iavarone A, Massague J: Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature 1997;387(6631):417–422.PubMedGoogle Scholar
  53. 53.
    Iavarone A, Massague J: E2F and histone deacetylase mediate transforming growth factor beta repression of cdc25a during keratinocyte cell cycle arrest. Mol Cell Biol 1999;19(1):916–922.PubMedGoogle Scholar
  54. 54.
    Geng Y, Weinberg RA: Transforming growth factor beta effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc Natl Acad Sci U S A 1993;90(21):10315–10319.PubMedGoogle Scholar
  55. 55.
    Reddy KB, Hocevar BA, Howe PH: Inhibition of G1 phase cyclin dependent kinases by transforming growth factor beta 1. J Cell Biochem 1994;56(3):418–425.PubMedGoogle Scholar
  56. 56.
    Ralph D, McClelland M, Welsh J: RNA fingerprinting using arbitrarily primed PCR identifies differentially regulated rnas in mink lung (Mv1Lu) cells growth arrested by transforming growth factor beta 1. Proc Natl Acad Sci USA 1993;90(22):10710–10714.PubMedGoogle Scholar
  57. 57.
    Satterwhite DJ, Aakre ME, Gorska AE, Moses HL: Inhibition of cell growth by TGF beta 1 is associated with inhibition of B-myb and cyclin A in both BALB/MK and Mv1Lu cells. Cell Growth Differ 1994;5(8):789–799.PubMedGoogle Scholar
  58. 58.
    Feng XH, Filvaroff EH, Derynck R: Transforming growth factor-beta (TGF-beta)-induced down-regulation of cyclin A expression requires a functional TGF-beta receptor complex. Characterization of chimeric and truncated type I and type II receptors. J Biol Chem 1995;270(41):24237–24245.PubMedGoogle Scholar
  59. 59.
    Landesman Y, Pagano M, Draetta G, Rotter V, Fusenig NE, Kimchi A: Modifications of cell cycle controlling nuclear proteins by transforming growth factor beta in the hacat keratinocyte cell line. Oncogene 1992;7(8):1661–1665.PubMedGoogle Scholar
  60. 60.
    Eblen ST, Fautsch MP, Burnette RJ, Joshi P, Leof EB: Cell cycle-dependent inhibition of p34cdc2 synthesis by transforming growth factor beta 1 in cycling epithelial cells. Cell Growth Differ 1994;5(2):109–16.PubMedGoogle Scholar
  61. 61.
    Ewen ME, Sluss HK, Whitehouse LL, Livingston DM: TGF beta inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 1993;74(6):1009–1020.PubMedGoogle Scholar
  62. 62.
    Koff A, Ohtsuki M, Polyak K, Roberts JM, Massague J: Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-beta. Science 1993;260(5107):536–539.PubMedGoogle Scholar
  63. 63.
    Senderowicz AM: Inhibitors of cyclin-dependent kinase modulators for cancer therapy. Prog Drug Res 2005;63:183–206.PubMedGoogle Scholar
  64. 64.
    Kornmann M, Tangvoranuntakul P, Korc M: TGF-beta-1 up-regulates cyclin D1 expression in COLO-357 cells, whereas suppression of cyclin D1 levels is associated with down-regulation of the type I TGF-beta receptor. Int J Cancer 1999;83(2):247–254.PubMedGoogle Scholar
  65. 65.
    Ellenrieder V, Fernandez Zapico ME, Urrutia R: tgfbeta-mediated signaling and transcriptional regulation in pancreatic development and cancer. Curr Opin Gastroenterol 2001;17(5):434–440.PubMedGoogle Scholar
  66. 66.
    Crisera CA, Maldonado TS, Kadison AS, Li M, Alkasab SL, Longaker MT, et al.: Transforming growth factor-beta 1 in the developing mouse pancreas: a potential regulator of exocrine differentiation. Differentiation 2000;65(5):255–259.PubMedGoogle Scholar
  67. 67.
    Bottinger EP, Jakubczak JL, Roberts IS, Mumy M, Hemmati P, Bagnall K, et al.: Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO J 1997;16(10):2621–2633.PubMedGoogle Scholar
  68. 68.
    Ritvos O, Tuuri T, Eramaa M, Sainio K, Hilden K, Saxen L, et al.: Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 1995;50(2–3):229–245.PubMedGoogle Scholar
  69. 69.
    Sanvito F, Herrera PL, Huarte J, Nichols A, Montesano R, Orci L, et al.: TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 1994;120(12):3451–3462.PubMedGoogle Scholar
  70. 70.
    Yamanaka Y, Friess H, Buchler M, Beger HG, Gold LI, Korc M: Synthesis and expression of transforming growth factor beta-1, beta-2, and beta-3 in the endocrine and exocrine pancreas. Diabetes 1993;42(5):746–756.PubMedGoogle Scholar
  71. 71.
    Engel ME, McDonnell MA, Law BK, Moses HL: Interdependent SMAD and JNK Signaling in Transforming Growth Factor-beta -mediated Transcription. J. Biol. Chem 1999;274(52):37413–37420.PubMedGoogle Scholar
  72. 72.
    Yu L, Hebert MC, Zhang YE: TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 2002;21(14):3749–3759.PubMedGoogle Scholar
  73. 73.
    Massague J: How cells read TGF-[beta] signals. Nat Rev Mol Cell Biol 2000;1(3):169–178.PubMedGoogle Scholar
  74. 74.
    Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425(6958):577–584.PubMedGoogle Scholar
  75. 75.
    Kretzschmar M, Doody J, Timokhina I, Massague J: A mechanism of repression of tgfbeta/Smad signaling by oncogenic Ras. Genes Dev 1999;13(7):804–816.PubMedGoogle Scholar
  76. 76.
    Yue J, Mulder KM: Activation of the Mitogen-Activated Protein Kinase Pathway by Transforming Growth Factor-β, in Transforming Growth Factor-Beta Protocols. 2000. p. 125–131.Google Scholar
  77. 77.
    Itoh S, Itoh F, Goumans MJ, Ten Dijke P: Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem 2000;267(24):6954–6967.PubMedGoogle Scholar
  78. 78.
    Kimura N, Matsuo R, Shibuya H, Nakashima K, Taga T: BMP2-induced Apoptosis Is Mediated by Activation of the TAK1-p38 Kinase Pathway That Is Negatively Regulated by Smad6. J. Biol. Chem 2000;275(23):17647–17652.PubMedGoogle Scholar
  79. 79.
    Mazars A, Lallemand F, Prunier C, Marais J, Ferrand N, Pessah M, et al.: Evidence for a Role of the JNK Cascade in Smad7-mediated Apoptosis. J. Biol. Chem 2001;276(39):36797–36803.PubMedGoogle Scholar
  80. 80.
    Pessah M, Marais J, Prunier C, Ferrand N, Lallemand F, Mauviel A, et al.: c-Jun Associates with the Oncoprotein Ski and Suppresses Smad2 Transcriptional Activity. J. Biol. Chem 2002;277(32):29094–29100.PubMedGoogle Scholar
  81. 81.
    Beauchamp RD, Lyons RM, Yang EY, Coffey RJ, Jr., Moses HL: Expression of and response to growth regulatory peptides by two human pancreatic carcinoma cell lines. Pancreas 1990;5(4):369–380.PubMedGoogle Scholar
  82. 82.
    Baldwin RL, Korc M: Growth inhibition of human pancreatic carcinoma cells by transforming growth factor beta-1. Growth Factors 1993;8(1):23–34.PubMedGoogle Scholar
  83. 83.
    Friess H, Kleeff J, Korc M, Buchler MW: Molecular aspects of pancreatic cancer and future perspectives. Dig Surg 1999;16(4):281–290.PubMedGoogle Scholar
  84. 84.
    Wagner M, Kleeff J, Lopez ME, Bockman I, Massaque J, Korc M: Transfection of the type I TGF-beta receptor restores TGF-beta responsiveness in pancreatic cancer. Int J Cancer 1998;78(2):255–260.PubMedGoogle Scholar
  85. 85.
    Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, et al.: Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 1985;316(6030):701–705.PubMedGoogle Scholar
  86. 86.
    Glynne-Jones E, Harper ME, Goddard L, Eaton CL, Matthews PN, Griffiths K: Transforming growth factor beta 1 expression in benign and malignant prostatic tumors. Prostate 1994;25(4):210–218.PubMedGoogle Scholar
  87. 87.
    Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI, et al.: Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993;105(6):1846–1856.PubMedGoogle Scholar
  88. 88.
    Bellone G, Smirne C, Mauri FA, Tonel E, Carbone A, Buffolino A, et al.: Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother 2006;55(6):684–698.PubMedGoogle Scholar
  89. 89.
    Lu Z, Friess H, Graber HU, Guo X, Schilling M, Zimmermann A, et al.: Presence of two signaling TGF-beta receptors in human pancreatic cancer correlates with advanced tumor stage. Dig Dis Sci 1997;42(10):2054–2063.PubMedGoogle Scholar
  90. 90.
    Wagner M, Kleeff J, Friess H, Buchler MW, Korc M: Enhanced expression of the type II transforming growth factor-beta receptor is associated with decreased survival in human pancreatic cancer. Pancreas 1999;19(4):370–376.PubMedGoogle Scholar
  91. 91.
    Kleeff J, Friess H, Simon P, Susmallian S, Buchler P, Zimmermann A, et al.: Overexpression of Smad2 and colocalization with TGF-beta1 in human pancreatic cancer. Dig Dis Sci 1999;44(9):1793–1802.PubMedGoogle Scholar
  92. 92.
    Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, et al.: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271(5247):350–353.PubMedGoogle Scholar
  93. 93.
    Baldwin RL, Friess H, Yokoyama M, Lopez ME, Kobrin MS, Buchler MW, et al.: Attenuated ALK5 receptor expression in human pancreatic cancer: correlation with resistance to growth inhibition. Int J Cancer 1996;67(2):283–288.PubMedGoogle Scholar
  94. 94.
    Kleeff J, Maruyama H, Friess H, Buchler MW, Falb D, Korc M: Smad6 suppresses TGF-beta-induced growth inhibition in COLO-357 pancreatic cancer cells and is overexpressed in pancreatic cancer. Biochem Biophys Res Commun 1999;255(2):268–273.PubMedGoogle Scholar
  95. 95.
    Arnold NB, Ketterer K, Kleeff J, Friess H, Buchler MW, Korc M: Thioredoxin is downstream of Smad7 in a pathway that promotes growth and suppresses cisplatin-induced apoptosis in pancreatic cancer. Cancer Res 2004;64(10):3599–3606.PubMedGoogle Scholar
  96. 96.
    Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE: Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 1998;58(23):5329–5332.PubMedGoogle Scholar
  97. 97.
    Hahn SA, Hoque AT, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E, et al.: Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res 1996;56(3):490–494.PubMedGoogle Scholar
  98. 98.
    Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, et al.: Mad-related genes in the human. Nat Genet 1996;13(3):347–349.PubMedGoogle Scholar
  99. 99.
    Jaffee EM, Hruban RH, Canto M, Kern SE: Focus on pancreas cancer. Cancer Cell 2002;2(1):25–28.PubMedGoogle Scholar
  100. 100.
    Wilentz RE, Hruban RH: Pathology of cancer of the pancreas. Surg Oncol Clin N Am 1998;7(1):43–65.PubMedGoogle Scholar
  101. 101.
    Furukawa T, Sunamura M, Horii A: Molecular mechanisms of pancreatic carcinogenesis. Cancer Sci 2006;97(1):1–7.PubMedGoogle Scholar
  102. 102.
    Xu J, Attisano L: Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 2000;97(9):4820–4825.PubMedGoogle Scholar
  103. 103.
    Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P, et al.: Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 1998;280(5366):1086–1088.PubMedGoogle Scholar
  104. 104.
    Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, et al.: Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 1999;59(2):320–324.PubMedGoogle Scholar
  105. 105.
    Cao D, Ashfaq R, Goggins M, Hruban RH, Kern SE, Iacobuzio-Donahue CA: Differential Expression of Multiple Genes in Association with MADH4/DPC4/SMAD4 Inactivation in Pancreatic Cancer. Int J Clin Exp Pathol 2008;1(6):510–517.PubMedGoogle Scholar
  106. 106.
    Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, et al.: The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 1998;12(1):107–119.PubMedGoogle Scholar
  107. 107.
    Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, et al.: Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 2000;19(15):1868–1874.PubMedGoogle Scholar
  108. 108.
    Yasutome M, Gunn J, Korc M: Restoration of Smad4 in bxpc3 pancreatic cancer cells attenuates proliferation without altering angiogenesis. Clin Exp Metastasis 2005;22(6):461–473.PubMedGoogle Scholar
  109. 109.
    Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, et al.: Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 2000;97(17):9624–9629.PubMedGoogle Scholar
  110. 110.
    Klein-Scory S, Zapatka M, Eilert-Micus C, Hoppe S, Schwarz E, Schmiegel W, et al.: High-level inducible Smad4-reexpression in the cervical cancer cell line C4-II is associated with a gene expression profile that predicts a preferential role of Smad4 in extracellular matrix composition. BMC Cancer 2007;7:209.PubMedGoogle Scholar
  111. 111.
    Friess H, Lu Z, Riesle E, Uhl W, Brundler AM, Horvath L, et al.: Enhanced expression of TGF-betas and their receptors in human acute pancreatitis. Ann Surg 1998;227(1):95–104.PubMedGoogle Scholar
  112. 112.
    Riesle E, Friess H, Zhao L, Wagner M, Uhl W, Baczako K, et al.: Increased expression of transforming growth factor beta s after acute oedematous pancreatitis in rats suggests a role in pancreatic repair. Gut 1997;40(1):73–79.PubMedGoogle Scholar
  113. 113.
    Wildi S, Kleeff J, Mayerle J, Zimmermann A, Bottinger EP, Wakefield L, et al.: Suppression of transforming growth factor beta signalling aborts caerulein induced pancreatitis and eliminates restricted stimulation at high caerulein concentrations. Gut 2007;56(5):685–692.PubMedGoogle Scholar
  114. 114.
    Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, et al.: Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 1993;328(20):1433–1437.PubMedGoogle Scholar
  115. 115.
    Farrow B, Sugiyama Y, Chen A, Uffort E, Nealon W, Mark Evers B: Inflammatory mechanisms contributing to pancreatic cancer development. Ann Surg 2004;239(6):763–769; discussion 9–71.PubMedGoogle Scholar
  116. 116.
    Whitcomb DC: Inflammation and Cancer V. Chronic pancreatitis and pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2004;287(2):G315–319.PubMedGoogle Scholar
  117. 117.
    Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, et al.: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007;11(3):291–302.PubMedGoogle Scholar
  118. 118.
    Lardon J, Rooman I, Bouwens L: Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochemistry and Cell Biology 2002;117(6):535–540.PubMedGoogle Scholar
  119. 119.
    Kruse C, Kajahn J, Petschnik AE, Maaß A, Klink E, Rapoport DH, et al.: Adult pancreatic stem/progenitor cells spontaneously differentiate in vitro into multiple cell lineages and form teratoma-like structures. Annals of Anatomy - Anatomischer Anzeiger 2006;188(6):503–517.Google Scholar
  120. 120.
    Shek FW, Benyon RC, Walker FM, McCrudden PR, Pender SL, Williams EJ, et al.: Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol 2002;160(5):1787–1798.PubMedGoogle Scholar
  121. 121.
    Ohnishi H, Miyata T, Yasuda H, Satoh Y, Hanatsuka K, Kita H, et al.: Distinct roles of Smad2-, Smad3-, and ERK-dependent pathways in transforming growth factor-beta1 regulation of pancreatic stellate cellular functions. J Biol Chem 2004;279(10):8873–8878.PubMedGoogle Scholar
  122. 122.
    Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, et al.: Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 1999;18(4):1073–1080.PubMedGoogle Scholar
  123. 123.
    Gao R, Brigstock DR: Connective Tissue Growth Factor (CCN2) in Rat Pancreatic Stellate Cell Function: Integrin [alpha]5[beta]1 as a Novel CCN2 Receptor. Gastroenterology 2005;129(3):1019–1030.PubMedGoogle Scholar
  124. 124.
    Crane C, Janjan N, Evans D, Wolff R, Ballo M, Milas L, et al.: Toxicity and Efficacy of Concurrent Gemcitabine and Radiotherapy for Locally Advanced Pancreatic Cancer. Int J Gastrointest Cancer 2001;29(1):9–18.PubMedGoogle Scholar
  125. 125.
    Moore MJ: Brief communication: a new combination in the treatment of advanced pancreatic cancer. Semin Oncol 2005;32(6 Suppl 8):5–6.PubMedGoogle Scholar
  126. 126.
    Fitzpatrick DR, Bielefeldt-Ohmann H, Himbeck RP, Jarnicki AG, Marzo AL, Robinson BW: Transforming growth factor-beta: antisense RNA-mediated inhibition affects anchorage-independent growth, tumorigenicity and tumor-infiltrating T-cells in malignant mesothelioma. Growth Factors 1994;11(1):29–44.PubMedGoogle Scholar
  127. 127.
    Marzo AL, Fitzpatrick DR, Robinson BW, Scott B: Antisense oligonucleotides specific for transforming growth factor beta2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Res 1997;57(15):3200–3207.PubMedGoogle Scholar
  128. 128.
    Hoefer M, Anderer FA: Anti-(transforming growth factor beta) antibodies with predefined specificity inhibit metastasis of highly tumorigenic human xenotransplants in nu/nu mice. Cancer Immunol Immunother 1995;41(5):302–308.PubMedGoogle Scholar
  129. 129.
    Lopez AR, Cook J, Deininger PL, Derynck R: Dominant negative mutants of transforming growth factor-beta 1 inhibit the secretion of different transforming growth factor-beta isoforms. Mol Cell Biol 1992;12(4):1674–1679.PubMedGoogle Scholar
  130. 130.
    Halder SK, Beauchamp RD, Datta PK: A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia 2005;7(5):509–521.PubMedGoogle Scholar
  131. 131.
    Won J, Kim H, Park EJ, Hong Y, Kim SJ, Yun Y: Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor beta receptor therapy. Cancer Res 1999;59(6):1273–1277.PubMedGoogle Scholar
  132. 132.
    Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L: A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res 1999;59(19):5041–5046.PubMedGoogle Scholar
  133. 133.
    Rowland-Goldsmith MA, Maruyama H, Kusama T, Ralli S, Korc M: Soluble type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. Clin Cancer Res 2001;7(9):2931–2940.PubMedGoogle Scholar
  134. 134.
    Rowland-Goldsmith MA, Maruyama H, Matsuda K, Idezawa T, Ralli M, Ralli S, et al.: Soluble type II transforming growth factor-beta receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther 2002;1(3):161–167.PubMedGoogle Scholar
  135. 135.
    Hartel M, Di Mola FF, Gardini A, Zimmermann A, Di Sebastiano P, Guweidhi A, et al.: Desmoplastic reaction influences pancreatic cancer growth behavior. World J Surg 2004;28(8):818–825.PubMedGoogle Scholar
  136. 136.
    Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M: Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 2006;5(5):1108–1116.PubMedGoogle Scholar
  137. 137.
    Akhurst RJ, Derynck R: TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol 2001;11(11):S44–51.PubMedGoogle Scholar
  138. 138.
    Marten A, Buchler MW: Immunotherapy of pancreatic carcinoma. Curr Opin Investig Drugs 2008;9(6):565–569.PubMedGoogle Scholar
  139. 139.
    Yingling JM, Blanchard KL, Sawyer JS: Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3(12):1011–1022.PubMedGoogle Scholar
  140. 140.
    Wojtowicz-Praga S, Verma UN, Wakefield L, Esteban JM, Hartmann D, Mazumder A: Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2. J Immunother Emphasis Tumor Immunol 1996;19(3):169–175.PubMedGoogle Scholar
  141. 141.
    Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT: Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 1993;92(6):2569–2576.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alixanna Norris
    • 1
  • Murray Korc
    • 2
  1. 1.Norris Cotton Cancer CenterLebanonUSA
  2. 2.Dartmouth-Hitchcock Medical CenterLebanonUSA

Personalised recommendations