Pancreatic Cancer Stem Cells

Reference work entry


The concept of cancer stem cells was first proposed 150 years ago and recent studies have demonstrated the existence of cancer stem cells that have the exclusive capacity for tumor initiation and propagation. Emerging data has been provided to support the existence of cancer stem cells in human blood cell-derived cancers and solid organ tumors of the breast, prostate, brain, pancreas, head and neck, skin, and colon. Furthermore, pathways that regulate self-renewal, such as Bmi-1, Wnt, PTEN, Notch and Hedgehog which are known to regulate self-renewal of normal stem cells, have been implicated in the regulation of cancer stem cell self-renewal in a number of different tumor types. The study of human pancreatic cancers has revealed a unique subpopulation of cancer cells that possess the all characteristics of cancer stem cells. The pancreatic cancer stem cells express the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA), and represent 0.5–1.0% of the total pancreatic cancer cell population. Along with the characteristics of self-renewal and multilineage differentiation, pancreatic cancer stem cells display upregulation of Sonic hedgehog (SHH) and Bmi-1. Aberrant activation of these pathways in cancer stem cells are believed to be responsible for uncontrolled self-renewal of cancer stem cells which generate tumors that are resistant to radiation and chemotherapy. Conventional cancer therapeutics eliminate differentiated tumor cells, but do not target the cancer stem cells. The cancer stem cell concept points to a new direction of cancer therapeutics, which targets cancer stem cells. Pancreatic cancer stem cell research will aid our understanding of the molecular and cellular events leading to the development of pancreatic cancer and may change the therapeutic approach to the treatment of pancreatic cancer.


Pancreatic Cancer Cancer Stem Cell Pancreatic Cancer Cell Hedgehog Signaling Normal Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Julius Cohnheim: (1839–1884) Experimental pathologist. JAMA 1968;206:1561–1562.CrossRefGoogle Scholar
  2. 2.
    Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–111.CrossRefPubMedGoogle Scholar
  3. 3.
    Jordan CT: Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol 2004;16:708–712.CrossRefPubMedGoogle Scholar
  4. 4.
    Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737.CrossRefPubMedGoogle Scholar
  5. 5.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–3988.CrossRefPubMedGoogle Scholar
  6. 6.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature 2004;432:396–401.CrossRefPubMedGoogle Scholar
  7. 7.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821–5828.PubMedGoogle Scholar
  8. 8.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003;100:15178–15183.CrossRefPubMedGoogle Scholar
  9. 9.
    Galli R, Binda E, Orfanelli U, et al.: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–7021.CrossRefPubMedGoogle Scholar
  10. 10.
    Matsui W, Huff CA, Wang Q, et al.: Characterization of clonogenic multiple myeloma cells. Blood 2004;103:2332–2336.CrossRefPubMedGoogle Scholar
  11. 11.
    Patrawala L, Calhoun T, Schneider-Broussard R, et al.: Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25:1696–1708.CrossRefPubMedGoogle Scholar
  12. 12.
    Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al.: Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 2006;103:11154–11159.CrossRefPubMedGoogle Scholar
  13. 13.
    O’Brien CA, Pollett A, Gallinger S, et al.: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106–110.CrossRefPubMedGoogle Scholar
  14. 14.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al.: Identification and expansion of human-colon-cancer-initiating cells. Nature 2007;445:111–115.CrossRefPubMedGoogle Scholar
  15. 15.
    Ma S, Chan KW, Hu L, et al.: Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132:2542–2556.CrossRefPubMedGoogle Scholar
  16. 16.
    Prince ME, Sivanandan R, Kaczorowski A, et al.: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007;104:973–978.CrossRefPubMedGoogle Scholar
  17. 17.
    Li C, Heidt DG, Dalerba P, et al.: Identification of pancreatic cancer stem cells. Cancer Res 2007;67:1030–1037.CrossRefPubMedGoogle Scholar
  18. 18.
    Hoyert DL, Heron MP, Murphy SL, Kung HC: Deaths: final data for 2003. Natl Vital Stat Rep 2006;19:1–120.Google Scholar
  19. 19.
    Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y: CD44 in cancer. Crit Rev Clin Lab Sci 2002;39:527–579.CrossRefPubMedGoogle Scholar
  20. 20.
    Aigner S, Ruppert M, Hubbe M, Sammar M, Sthoeger Z, Butcher EC, Vestweber D, Altevogt P: Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin. Int Immunol 1995;7(10):1557–1565.CrossRefPubMedGoogle Scholar
  21. 21.
    Kristiansen G, Sammar M, Altevogt P: Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 2004;35(3):255–262.CrossRefPubMedGoogle Scholar
  22. 22.
    Hermann PC, Huber SL, Herrler T, et al.: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007;1:313–323.CrossRefPubMedGoogle Scholar
  23. 23.
    Wright MH, Calcagno AM, Salcido CD, et al.: BRCA1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008;10:R10.CrossRefPubMedGoogle Scholar
  24. 24.
    Yilmaz OH, Valdez R, Theisen BK, et al.: Pten dependence distinguishes hematopoietic stem cells from leukemia-initiating cells. Nature 2006;441:475–482.CrossRefPubMedGoogle Scholar
  25. 25.
    Ayyanan A, Civenni G, Ciarloni L, et al.: Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch dependent mechanism. Proc Natl Acad Sci USA 2006;103:3799–3804.CrossRefPubMedGoogle Scholar
  26. 26.
    Huntly BJ, Shigematsu H, Deguchi K, et al.: MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004;6:587–596.CrossRefPubMedGoogle Scholar
  27. 27.
    Jamieson CH, Ailles LE, Dylla SJ, et al.: Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351:657–667.CrossRefPubMedGoogle Scholar
  28. 28.
    Guerra C, Schuhmacher AJ, Canamero M, et al.: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007;11:291–302.CrossRefPubMedGoogle Scholar
  29. 29.
    Gu D, Sarvetnick N: Atransgenic model for studying islet development. Recent Prog Horm Res 1994;49:161–165.PubMedGoogle Scholar
  30. 30.
    Madsen OD, Jensen J, Blume N, Petersen HV, Lund K, Karlsen C, Andersen FG, Jensen PB, Larsson LI, Serup P: Pancreatic development and maturation of the islet B cell. Studies of pluripotent islet cultures. Eur JBiochem 1996;242:435–45.CrossRefGoogle Scholar
  31. 31.
    Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O'Neil JJ: In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000;97:7999–8004.CrossRefPubMedGoogle Scholar
  32. 32.
    Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T: Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 2003;52:2007–2015.CrossRefPubMedGoogle Scholar
  33. 33.
    Ogata T, Park KY, Seno M, Kojima I: Reversal of streptozotocin- induced hyperglycemia by transplantation of pseudoislets consisting of β cells derived from ductal cells. Endocr J. 2004;51:381–386.CrossRefPubMedGoogle Scholar
  34. 34.
    Guz Y, Nasir I, Teitelman G: Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 2001;142:4956–4968.CrossRefPubMedGoogle Scholar
  35. 35.
    Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF: Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001;50:521–533.CrossRefPubMedGoogle Scholar
  36. 36.
    Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF: Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002;143:3152–3161.CrossRefPubMedGoogle Scholar
  37. 37.
    Suzuki A, Nakauchi H, Taniguchi H: Prospective isolation of multipotent pancreatic progenitors using flowcytometric cell sorting. Diabetes 2004;53:2143–2152.CrossRefPubMedGoogle Scholar
  38. 38.
    Berman DM, Karhadkar SS, Maitra A, et al.: Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425:846–851.CrossRefPubMedGoogle Scholar
  39. 39.
    Thayer SP, di Magliano MP, Heiser PW, et al.: Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003;425:851–856.CrossRefPubMedGoogle Scholar
  40. 40.
    Pasca di Magliano M, Hebrok M: Hedgehog signaling in cancer formation and maintenance. Nat Rev Cancer 2003;3:903–911.CrossRefPubMedGoogle Scholar
  41. 41.
    Narducci MG, Scala E, Bresin A, et al.: Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood 2006;107:1108–1115.CrossRefPubMedGoogle Scholar
  42. 42.
    Doitsidou M, Reichman-Fried M, Stebler J, et al.: Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 2002;111:647–659.CrossRefPubMedGoogle Scholar
  43. 43.
    Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, Olive D: Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000;60:4403–4411.PubMedGoogle Scholar
  44. 44.
    Bao S, Wu Q, McLendon RE, et al.: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756–760.CrossRefPubMedGoogle Scholar
  45. 45.
    Todaro M, Alea Mp, Stefano AB, et al.: Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007;1:389–402.CrossRefPubMedGoogle Scholar
  46. 46.
    Shah AN, Summy JM, Zhang J, et al.: Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007;14:3629–3637.CrossRefPubMedGoogle Scholar
  47. 47.
    Asanuma K, Moriai R, Yajima T, et al.: Survivin as a radioresistance factor in pancreatic cancer. Jpn J Cancer Res 2000;91:1204–1209.PubMedGoogle Scholar
  48. 48.
    Phillips TM, McBride WH, Pajonk F: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006;98:1777–1785.CrossRefPubMedGoogle Scholar
  49. 49.
    Mungamuri SK, Yang X, Thor AD, et al.: Survival signaling by notch1: Mammalian target of reapamycin (mtor)-dependent inhibition of p53. Cancer Res 2006;66:4715–4724.CrossRefPubMedGoogle Scholar
  50. 50.
    Jin L, Hope KJ, Zhai Q, et al.: Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Med 2006;12:1167–1174.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of Surgery and Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations