Skip to main content

Electrochemomechanics of Ionic Polymer–Metal Composites

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

The ionomeric polymer–metal composites (IPMCs) consist of polyelectrolyte membranes, with metal electrodes plated on both faces and neutralized with an amount of counterions, balancing the charge of anions covalently fixed to the membrane. IPMCs in the solvated state form soft actuators and sensors; they are sometimes referred to as artificial muscles. Here, we examine the nanoscale chemoelectromechanical mechanisms that underpin the macroscale actuation and sensing of IPMCs, as well as some of their electromechanical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DC:

direct current

EW:

equivalent weight

IEC:

ion exchange capacity

IPMC:

ionomeric polymer–metal composite

TEM:

transmission electron microscopy

References

  1. P. Millet: Noble metal-membrane composites for electrochemical applications, J. Chem. Ed. 76(1), 47–49 (1999)

    Article  Google Scholar 

  2. Y. Bar-Cohen, T. Xue, M. Shahinpoor, J.O. Simpson, J. Smith: Low-mass muscle actuators using electroactive polymers (EAP), Proc. SPIE. 3324, 218–223 (1998)

    Article  Google Scholar 

  3. Y. Bar-Cohen, S. Leary, M. Shahinpoor, J.O. Harrison, J. Smith: Electro-active polymer (EAP) actuators for planetary applications, SPIE Conference on Electroactive Polymer Actuators, Proc. SPIE. 3669, 57–63 (1999)

    Article  Google Scholar 

  4. R. Liu, W.H. Her, P.S. Fedkiw: In situ electrode formation on a Nafion membrane by chemical platinization, J. Electrochem. Soc. 139(1), 15–23 (1992)

    Article  Google Scholar 

  5. M. Homma, Y. Nakano: Development of electro-driven polymer gel/platinum composite membranes, Kagaku Kogaku Ronbunshu 25(6), 1010–1014 (1999)

    Google Scholar 

  6. T. Rashid, M. Shahinpoor: Force optimization of ionic polymeric platinum composite artificial muscles by means of an orthogonal array manufacturing method, Proc. SPIE 3669, 289–298 (1999)

    Article  Google Scholar 

  7. M. Bennett, D.J. Leo: Manufacture and characterization of ionic polymer transducers with non-precious metal electrodes, Smart Mater. Struct. 12(3), 424–436 (2003)

    Article  Google Scholar 

  8. C. Heitner-Wirguin: Recent advances in perfluorinated ionomer membranes – structure, properties and applications, J. Membr. Sci. 120(1), 1–33 (1996)

    Article  Google Scholar 

  9. R.E. Fernandez: Perfluorinated ionomers. In: Polymer Data Handbook, ed. by J.E. Mark (Oxford Univ. Press, New York 1999) pp. 233–238

    Google Scholar 

  10. T.D. Gierke, C.E. Munn, P.N. Walmsley: The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies, J. Polym. Sci. Polym. Phys. Ed. 19, 1687–1704 (1981)

    Article  Google Scholar 

  11. J.Y. Li, S. Nemat-Nasser: Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane, Mech. Mater. 32(5), 303–314 (2000)

    Article  Google Scholar 

  12. W.A. Forsman: Statistical mechanics of ion-pair association in ionomers, Proc. NATO Adv. Workshop Struct. Properties Ionomers (1986) pp. 39–50

    Google Scholar 

  13. L.R.G. Treolar: Physics of Rubber Elasticity (Oxford Univ. Press, Oxford 1958)

    Google Scholar 

  14. R.J. Atkin, N. Fox: An Introduction to the Theory of Elasticity (Longman, London 1980)

    MATH  Google Scholar 

  15. S. Nemat-Nasser, M. Hori: Micromechanics: Overall Properties of Heterogeneous Materials, 1st edn. (North-Holland, Amsterdam 1993)

    MATH  Google Scholar 

  16. S. Nemat-Nasser: Micromechanics of actuation of ionic polymer-metal composites, J. Appl. Phys. 92(5), 2899–2915 (2002)

    Article  Google Scholar 

  17. J. OʼM Bockris, A.K.N. Reddy: Modern Electrochemistry 1: Ionics, Vol. 1 (Plenum, New York 1998)

    Google Scholar 

  18. P. Shewmon: Diffusion in Solids, 2nd edn. (The Minerals Metals & Materials Society, Warrendale 1989)

    Google Scholar 

  19. M. Eikerling, Y.I. Kharkats, A.A. Kornyshev, Y.M. Volfkovich: Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes, J. Electrochem. Soc. 145(8), 2684–2699 (1998)

    Article  Google Scholar 

  20. J.D. Jackson: Classical Electrodynamics (Wiley, New York 1962)

    Google Scholar 

  21. W.B. Cheston: Elementary Theory of Electric and Magnetic Fields (Wiley, New York 1964)

    Google Scholar 

  22. S. Nemat-Nasser, J.Y. Li: Electromechanical response of ionic polymer-metal composites, J. Appl. Phys. 87(7), 3321–3331 (2000)

    Article  Google Scholar 

  23. S. Nemat-Nasser, S. Zamani: Modeling of electro-chemo-mechanical response of ionic-polymer-metal composites with various solvents, J. Appl. Phys. 38, 203–219 (2006)

    Google Scholar 

  24. S. Nemat-Nasser, S. Zamani, Y. Tor: Effect of solvents on the chemical and physical properties of ionic polymer-metal composites, J. Appl. Phys. 99, 104902 (2006)

    Article  Google Scholar 

  25. S. Nemat-Nasser, C. Thomas: Ionomeric polymer-metal composites. In: Electroactive Polymer (EAP) Actuators as Artificial Muscles, ed. by Y. Bar-Cohen (SPIE, Bellingham 2001) pp. 139–191

    Google Scholar 

  26. S. Nemat-Nasser, C. Thomas: Ionomeric polymer-metal composites. In: Electroactive Polymer (EAP) Actuators as Artificial Muscles 2nd edn, ed. by Y. Bar-Cohen (SPIE, Bellingham 2004) pp. 171–230

    Chapter  Google Scholar 

  27. S. Nemat-Nasser, Y. Wu: Comparative experimental study of Nafion-and-Flemion-based ionic polymer-metal composites (IPMC), J. Appl. Phys. 93(9), 5255–5267 (2003)

    Article  Google Scholar 

  28. S. Sewa, K. Onishi, K. Asaka, N. Fujiwara, K. Oguro: Polymer actuator driven by ion current at low voltage, applied to catheter system, Proc. IEEE Ann. Int. Workshop Micro Electro Mech. Syst. 11th (1998) pp. 148–153

    Google Scholar 

  29. K. Oguro, N. Fujiwara, K. Asaka, K. Onishi, S. Sewa: Polymer electrolyte actuator with gold electrodes, Proc. SPIE 3669, 64–71 (1999)

    Article  Google Scholar 

  30. S. Tadokoro, T. Murakami, S. Fuji, R. Kanno, M. Hattori, T. Takamori, K. Oguro: An elliptic friction drive element using an ICPF actuator, IEEE Contr. Syst. Mag. 17(3), 60–68 (1997)

    Article  Google Scholar 

  31. Y. Osada, H. Okuzaki, H. Hori: A polymer gel with electrically driven motility, Nature 355(6357), 242–244 (1992)

    Article  Google Scholar 

  32. D.G. Caldwell: Pseudomuscular actuator for use in dextrous manipulation, Med. Biol. Eng. Comp. 28(6), 595 (1990)

    Article  Google Scholar 

  33. D.G. Caldwell, N. Tsagarakis: Soft grasping using a dextrous hand, Ind. Robot. 27(3), 194–199 (2000)

    Article  Google Scholar 

  34. D.J. Segalman, W.R. Witkowski, D.B. Adolf, M. Shahinpoor: Theory and application of electrically controlled polymeric gels, Smart Mater. Struct. 1(1), 95–100 (1992)

    Article  Google Scholar 

  35. M. Shahinpoor: Ionic polymeric gels as artificial muscles for robotic and medical applications, Iran. J. Sci. Technol. 20(1), 89–136 (1996)

    Google Scholar 

  36. M. Shahinpoor: Conceptual design, kinematics and dynamics of swimming robotic structures using active polymer gels, Act. Mater. Adapt. Struct. Proc. ADPA/AIAA/ASME/SPIE Conf. (1992) pp. 91–95

    Google Scholar 

  37. Y. Bar-Cohen, S. Leary, M. Shahinpoor, J.O. Harrison, J. Smith: Electro-active polymer (EAP) actuators for planetary applications, SPIE Conf. Electroactive Polymer Actuators Proc. SPIE 3669, 57–63 (1999)

    Google Scholar 

  38. D.W. DeWulf, A.J. Bard: Application of Nafion/platinum electrodes (solid polymer electrolyte structures) to voltammetric investigations of highly resistive solutions, J. Electrochem. Soc. 135(8), 1977–1985 (1988)

    Article  Google Scholar 

  39. J.M. Potente: Gas-phase Electrosynthesis by Proton Pumping Through a Metalized Nafion Membrane: Hydrogen Evolution and Oxidation, Reduction of Ethene, and Oxidation of Ethane and Ethene. Ph.D. Thesis (North Carolina State University, Raleigh 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sia Nemat-Nasser Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Nemat-Nasser, S. (2008). Electrochemomechanics of Ionic Polymer–Metal Composites. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_8

Download citation

Publish with us

Policies and ethics