Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The application of selected experimental stress analysis techniques for mechanical testing of composite materials is reviewed. Because of the anisotropic and heterogeneous nature of composites, novel methodologies are often adopted. This chapter reviews many of the more applicable experimental methods in specific research areas, including: composite-specific strain gage applications, material property characterization, micromechanics, interlaminar testing, textile composite testing, and residual stress measurements. It would be impossible to review all test methods associated with composites in this short chapter, but many prevalent ones are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFNOR:

Association Française de National

ASTM:

American Society for Testing and Materials

BSI:

British Standards Institute

CMTD:

composite materials technical division

CTE:

coefficient of thermal expansion

DCB:

double-cantilever beam

DCPD:

dicyclopentadiene

DIN:

Deutsches Institut für Normung

ENF:

end-notched flexure

JIS:

Japanese Industrial Standards

MEMS:

micro-electromechanical system

MITI:

Ministry of International Trade and Industry

PMMA:

polymethyl methacrylate

S-T-C:

self-temperature compensation

SEM:

Society for Experimental Mechanics

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

References

  1. I. M. Daniels: Experimentation and modeling of composite materials, J. Exp. Mech. 39(1) (1999)

    Google Scholar 

  2. R.F. Gibson: Principles of Composite Material Mechanics (McGraw-Hill, New York 1994)

    Google Scholar 

  3. M.W. Hyer: Stress Analysis of Fiber-Reinforced Composite Materials (WCB/McGraw-Hill, New York 1998)

    Google Scholar 

  4. R.M. Jones: Mechanics of Composite Materials (McGraw-Hill, New York 1975)

    Google Scholar 

  5. R.L. Pendelton, M.E. Tuttle (Eds.): Manual on Experimental Methods of Mechanical Testing of Composites (Society for Experimental Mechanics, Elsevier, Amsterdam 1989)

    Google Scholar 

  6. C.H. Jenkins (Ed.): Manual on Experimental Methods of Mechanical Testing of Composites (Society for Experimental Mechanics, Fairmont, Lilburn 1998)

    Google Scholar 

  7. J.M. Dally, W.F. Riley: Experimental Stress Analysis, 3rd edn. (College House, Knoxville 1991)

    Google Scholar 

  8. Measurements Group, Inc.: Errors Due to Transverse Sensitivity in Strain Gages, M-M Tech Note, TN-509, (Micro Measurements Div., Raleigh)

    Google Scholar 

  9. M.E. Tuttle: Fundamental Strain Gage Technology. In: Manual on Experimental Methods of Mechanical Testing of Composites, ed. by M.E. Tuttle (Society for Experimental Mechanics, Fairmont, Lilburn 1998) pp. 25–34

    Google Scholar 

  10. Measurements Group, Inc.: Temperature-Induced Apparent Strain and Gage Factor Variation, M-M Tech Note, TN-504 (Micro Measurements Div., Raleigh 1983)

    Google Scholar 

  11. R. Slaminko: Strain Gages on Composites-Gage-Selection Criteria and Temperature Compensation. In: Manual on Experimental Methods of Mechanical Testing of Composites, ed. by M.E. Tuttle (Society for Experimental Mechanics, Fairmont, Lilburn 1998) pp. 35–40

    Google Scholar 

  12. Measurements Group, Inc.: Optimizing Strain Gage Excitation Levels, M-M Tech Note, TN-502 (Micro Measurements Div., Raleigh 1979)

    Google Scholar 

  13. Measurements Group, Inc.: Strain Gage Selection-Criteria Procedures, Recomendations, M-M Tech Note, TN-505, (Micro Measurements Div., Raleigh 1983)

    Google Scholar 

  14. P.G. Ifju: The shear gage for reliable shear modulus measurements of composite materials, Exp. Mech. 34(4), 369–378 (1994)

    Article  Google Scholar 

  15. C.C. Perry: Strain Gage Reinforcement Effects on Orthotropic Materials. In: Manual on Experimental Methods of Mechanical Testing of Composites, ed. by M.E. Tuttle (Society for Experimental Mechanics, Fairmont, Lilburn 1998) pp. 49–54

    Google Scholar 

  16. C.C. Perry: Strain Gage Reindorcement Effets on Low Modulus Materials. In: Manual on Experimental Methods of Mechanical Testing of Composites, ed. by M.E. Tuttle (Society for Experimental Mechanics, Fairmont, Lilburn 1998) pp. 55–58

    Google Scholar 

  17. D.F. Adams: Mechanical Test Fixtures. In: Manual on Experimental Methods of Mechanical Testing of Composites, ed. by M.E. Tuttle (Society for Experimental Mechanics, Fairmont, Lilburn 1998) pp. 87–100

    Google Scholar 

  18. H. Czichos, T. Saito, L. Smith (Eds.): Springer Handbook of Materials Measurement Methods (Springer, Berlin, Heidelberg 2006), Part C

    Google Scholar 

  19. ASTM: Test Method for Tensile Properties of Polymer Composite Materials, ASTM Standard D 3039-95a (ASTM, Philadelphia 1996)

    Google Scholar 

  20. ASTM: Test Method for Tensile Properties of Plastics, ASTM Standard D 638-95 (ASTM, Philadelphia 1996)

    Google Scholar 

  21. ASTM: Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section and Shear Loading, ASTM Standard D 3410-95 (ASTM, Philadelphia 1996)

    Google Scholar 

  22. ASTM: Test Method for Compressive Properties of Rigid Plastics, ASTM Standard D 695-91 (ASTM, Philadelphia 1996)

    Google Scholar 

  23. ASTM: Test Method for Compressive Properties of Unidirectional Polymer Matrix Composites Using a Sandwich Beam, ASTM Standard D 5467-93 (ASTM, Philadelphia 1996)

    Google Scholar 

  24. I.K. Park: Tensile and compressive test methods for high modulus graphite fiber reinforced composites, Int. Conf. on Carbon Fibers, Their Composites and Applications (The Plastics Institute, London 1971)

    Google Scholar 

  25. K.E. Hofer Jr., P.N. Rao: A new static compression fixture for advanced composite materials, J. Test. Eval. 5, 278–283 (1977)

    Article  Google Scholar 

  26. M.N. Irion, D.F. Adams: Compression creep testing of unidirectional composite materials, Composites 2(2), 117–123 (1981)

    Article  Google Scholar 

  27. DIN Standard 65 380: Compression Test of Fiber Reinforced Aerospace Plastics: Testing of Unidirectional Laminates and Woven-Fabric Laminates (Deutsches Institut für Normung, Köln 1991)

    Google Scholar 

  28. D.F. Adams: A comparison of composite material compression test methods in current use, Proc. 34th SAMPE Symp. (SAMPE, Covina 1989)

    Google Scholar 

  29. D.F. Adams, J.S. Welsh: The Wyoming combined loading compression (CLC) test method, J. Comp. Technol. Res. 19(3), 123–133 (1997)

    Article  Google Scholar 

  30. ASTM: ASTM Standard D 6641-01 (2001), Test Method for Determining the Compressive Properties of Polymer Matrix Composite Laminates Using a Combined Loading Compression (CLC) Test Fixture (ASTM, West Conshohocken 2001)

    Google Scholar 

  31. ASTM: ASTM Standard D5379-98 (1998), Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method (ASTM, West Conshohocken 1993) first published

    Google Scholar 

  32. N. Iosipescu: New accurate procedure for single shear testing of metals, J. Mater. 2(3), 537–566 (1967)

    Google Scholar 

  33. D.E. Walrath, D.F. Adams: The Iosipescu shear test as applied to composite materials, Exp. Mech. 23(1), 105–110 (1983)

    Article  Google Scholar 

  34. J. Morton, H. Ho, M.Y. Tsai, G.L. Farley: An evaluation of the Iosipescu specimen for composite materials shear property measurements, J. Comp. Mater. 26, 708–750 (1992)

    Article  Google Scholar 

  35. M. Grediac, F. Pierron, Y. Surrel: Novel procedure for complete in-plane composite characterization using a single T-shaped specimen, J. Exp. Mech. 39(2), 142–149 (1999)

    Article  Google Scholar 

  36. J. Molimard, R. Le Riche, A. Vautrin, J.R. Lee: Identification of the four orthotropic plate stiffnesses using a single open-hole tensile, Test J. Exp. Mech. 45, 404–411 (2005)

    Article  Google Scholar 

  37. J.W. Dally, D.T. Read: Electron beam moiré, Exp. Mech. 33, 270–277 (1993)

    Article  Google Scholar 

  38. J.W. Dally, D.T. Read: E-beam moiré, Proc. SEM Spring Conference (MI, Dearborn 1993) pp. 627–635

    Google Scholar 

  39. J.W. Dally, D.T. Read: Theory of E-beam moiré, Proc. SEM Spring Conference (MI, Dearborn 1993) pp. 636–645

    Google Scholar 

  40. D.T. Read, J.W. Dally: Electron beam moiré study of fracture of a GFRP composite, Proc. SEM Spring Conference (MI, Dearborn 1993) pp. 320–329

    Google Scholar 

  41. Y.M. Xing, S. Kishimoto, Y. Tanaka, N. Shinya: A novel method for determining interfacial residual stress in fiber reinforced composites, J. Compos. Mater. 38(2), 135–148 (2004)

    Article  Google Scholar 

  42. L.S. Schadler, M.S. Amer, B. Iskandarani: Experimental measurement of fiber/fiber interaction using micro raman spectroscopy, Mech. Mater. 23(3), 205–216 (1996)

    Article  Google Scholar 

  43. M.L. Mehan, L.S. Schadler: Micromechanical behavior of short fiber polymer composites, Comp. Sci. Tech. 60, 1013–1026 (2000)

    Article  Google Scholar 

  44. M.S. Amer, L.S. Schadler: Interphase toughness effect on fiber/fiber interaction in graphite/epoxy composites: experimental and modeling study, J. Raman Spectrosc. 30, 919 (1999)

    Article  Google Scholar 

  45. L. Zouhua, B. Xiaopeng, J. Lambrose, P.H. Geubelle: Dynamic fiber debonding and frictional push-out in model composite systems: experimental observations, Exp. Mech. 42(3), 417–425 (2002)

    Google Scholar 

  46. I.M. Daniel, H. Miyagawa, E.E. Gdoutos, J.J. Luo: Processing and characterization of epoxy/clay nanocomposites, Exp. Mech. 43(3), 348–354 (2003)

    Article  Google Scholar 

  47. Y. Zhu, H.D. Espinosa: An electromechanical material testing system for in situ electron microscopy and applications, Proc. Natl. Acad. Sci. 102(41), 14503–14508 (2005)

    Article  Google Scholar 

  48. M.R. Kessler, S.R. White: Self-activated healing of delamination damage in woven composites, Appl. Sci. Manuf. A 32(5), 683–699 (2001)

    Article  Google Scholar 

  49. M.K. Kessler, N.R. Sottos, S.R. White: Self-healing structural composite material, Appl. Sci. Manuf. A 34(8), 743–753 (2003)

    Article  Google Scholar 

  50. E.N. Brown, N.R. Sottos, S.R. White: Fracture testing of a self-healing polymer composite, Exp. Mech. 42(4), 372–379 (2002)

    Article  Google Scholar 

  51. E.N. Brown, S.R. White, N.R. Sottos: Microcapsule induced toughening in a self-healing polymer composite, J. Mater. Sci. 39, 1703–1710 (2004)

    Article  Google Scholar 

  52. K.E. Perry Jr., J. McKelvie: Measurement of energy release rates for delaminations in composite materials, Exp. Mech. 36(1), 55–63 (1996)

    Article  Google Scholar 

  53. Y.W. Mai: Cracking stability in tapered DCB test pieces, Int. J. Fract. 10(2), 292–295 (1974)

    Article  MathSciNet  Google Scholar 

  54. Z. Li, J. Zhou, M. Ding, T. He: A study of the effect of geometry on the mode I interlaminar fracture toughness; measured by width tapered double cantilever beam specimen, J. Mater. Sci. Lett. 15(17), 1489–1491 (1996)

    Article  Google Scholar 

  55. L. Chen, B.V. Sankar, P.G. Ifju: A novel double cantilever beam test for stitched composite laminates, J. Compos. Mater. 35(13), 1137–1149 (2001)

    Article  Google Scholar 

  56. L. Chen, B.V. Sankar, P.G. Ifju: A new mode I fracture test for composites with translaminar reinforcements, Comp. Sci. Technol. 62(10-11), 1407–1414 (2002)

    Article  Google Scholar 

  57. D. Post, B. Han, P.G. Ifju: High Sensitivity Moiré. In: Experimental Analysis for Mechanics and Materials, Mechanical Engineering Series, ed. by F.F. Ling (Springer, New York 1994)

    Google Scholar 

  58. Y. Guo, D. Post, B. Han: Thick composites in compression: an experimental study of mechanical behavior and smeared engineering properties, J. Compos. Mater. 26(13), 1930–1944 (1992)

    Article  Google Scholar 

  59. J.R. Lee, J. Molimard, A. Vautrin, Y. Surrel: Application of grating shearography and speckle pattern shearography to mechanical analysis of composite, Appl. Sci. Manuf. A 35, 965–976 (2004)

    Article  Google Scholar 

  60. P. Shrotriya, N.R. Sottos: Local time-temperature-dependent deformation of a woven composite, J. Exp. Mech. 44(4), 336–353 (2004)

    Google Scholar 

  61. S. Burr, P.G. Ifju, D. Morris: Optimizing strain gage size for textile composites, Exp. Tech. 19(5), 25–27 (1995)

    Article  Google Scholar 

  62. P.G. Ifju, J.E. Masters, W.C. Jackson: Using moiré interferometry to aid in standard test method development for textile composite materials, J. Comp. Sci. Technol. 53, 155–163 (1995)

    Article  Google Scholar 

  63. R.D. Hale, D.O. Adams: Influence of textile composite microstructure on moiré interferometry results, J. Compos. Mat. 31(24), 2444–2459 (1997)

    Google Scholar 

  64. M.A. Verhulst, R.D. Hale, A.C. West, D.O. Adams: Model materials for experimental/analytical correlations of textile composites, Proc. SEM Spring Conf. Experimental Mechanics (Bellevue 1997) pp. 182–183

    Google Scholar 

  65. NASA: Final Report of the X-33 Liquid Hydrogen Tank Test Investigation Team (NASA George C. Marshall Space Flight Center, Huntsville 2000)

    Google Scholar 

  66. D. Joh, K.Y. Byun, J. Ha: Thermal residual streses in thick graphite/epoxy composite laminates-uniaxial approach, Exp. Mech. 33(1), 70–76 (1993)

    Article  Google Scholar 

  67. H.E. Gascoigne: Residual surface stresses in laminated cross-ply fiber-epoxy composite materials, Exp. Mech. 34(1), 27–36 (1994)

    Article  Google Scholar 

  68. C.K.B. Bowman, D.H. Mollenhauer: Experimental investigation of residual stresses in layered materials using moiré interferometry, J. Electron. Packag. 124(4), 340–344 (2002)

    Article  Google Scholar 

  69. D.J. Lee, R. Czarnek: Measuring residual strains in composite panels using moiré interferometry, SEM Spring Conf. Experimental Mechanics, Milwaukee, (A93-16601 04-39) (1991) pp. 405–415

    Google Scholar 

  70. J. Mathar: Determination of initial stresses by measuring the deformation around drilled holes, Trans. ASME 56 4, 249–254 (1934)

    Google Scholar 

  71. G.S. Schajer, L. Yang: Residual stresses measurement in orthotropic materials using the hole-drilling method, Exp. Mech. 34(4), 324–333 (1994)

    Article  Google Scholar 

  72. ASTM: ASTM Designation: E837-01, Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain Gage Method (ASTM, Philadelphia 1999)

    Google Scholar 

  73. Z. Wu, X. Niu, J. Lu, P. Ifju: Study of Process-Induced Residual Stress in Orthotropic Composite Laminate – Carbon/Epoxy [02/902]2s, Proc. SEM Spring Conference (1998)

    Google Scholar 

  74. O. Sicot, X.L. Gong, A. Cherout, J. Lu: Determination of residual stress in composite laminates using the incremental hole-drilling method, J. Compos. Mat. 37(9), 831–844 (2003)

    Article  Google Scholar 

  75. F.L. Scalea: Measurement of thermal expansion coefficients of composites using strain gages, Exp. Mech. 38(4), 233–241 (1998)

    Google Scholar 

  76. I.M. Daniel, T. Wang: Determination of chemical cure shrinkage in composite laminates, J. Comp. Technol. Res. 12(3), 172–176 (1989)

    Google Scholar 

  77. P. G. Ifju, B. C. Kilday, X. Niu, S. C. Liu: A novel means to determine residual stress in laminated composites, J. Compos. Mat. 33(16), 1511–1524 (1999)

    Google Scholar 

  78. P.G. Ifju, X. Niu, B.C. Kilday, S.-C. Liu, S.M. Ettinger: Residual strain measurement in composites using the cure-referencing method, J. Exp. Mech. 40(1), 22–30 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Ifju Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Ifju, P.G. (2008). Composite Materials. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_4

Download citation

Publish with us

Policies and ethics