Skip to main content

Electronic Packaging Applications

  • Reference work entry
Book cover Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Electronic packaging is a field in rapid evolution due to strong and competing customer demands for increased functionality and performance, further miniaturization, heightened reliability, and lower costs. Such product drivers cause a myriad of reliability challenges for the engineer involved in the mechanical design of electronic systems, and several methods of experimental mechanics have become critical tools for the design and development of electronic products. In this chapter, we present an overview of important experimental mechanics applications to electronic packaging. Mechanics and reliability issues for modern electronic systems are reviewed, and the challenges facing the experimentalist in the packaging field are discussed. Finally, we review the state of the art in measurement technology, with the presentation of selected key applications of experimental solid mechanics to the electronic packaging field. These important applications are grouped by the goal of the measurement being made, including delamination detection, silicon stress characterization, evaluation of solder joint deformations and strains, warpage measurements, evaluation of behavior under transient loading, and material characterization. For each application, the important experimental techniques are discussed and sample results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALT:

accelerated lift testing

BGA:

ball grid array

CBGA:

ceramic ball grid array

CCD:

charge-coupled device

CGS:

coherent gradient sensing

CMP:

chemical–mechanical polishing

CTE:

coefficient of thermal expansion

DIC:

digital image correlation

DNP:

distance from the neutral point

EMI:

electromagnetic interference

HDI:

high-density interconnect

IC:

integrated circuits

MEMS:

micro-electromechanical system

MLF:

metal leadframe package

MOEMS:

microoptoelectromechanical systems

NDE:

nondestructive evaluation

NMR:

nuclear magnetic resonance

PCB:

printed circuit board

PE:

pulse-echo

QFP:

quad flat pack

SAM:

scanning acoustic microscopy

SAM:

self-assembled monolayer

SEM:

Society for Experimental Mechanics

SEM:

scanning electron microscopy

SPM:

scanning probe microscope

SQUID:

superconducting quantum interface device

TIM:

thermal interface materials

TS:

through scan

micro-CAT:

micro computerized axial tomography

References

  1. D.R. Seraphim, R. Lasky, C.Y. Li: Principles of Electronic Packaging (McGraw-Hill, New York 1989)

    Google Scholar 

  2. R.R. Tummala, E.J. Rymaszewski, A.G. Klopfenstein: Microelectronics Packaging Handbook, Parts 1–3 (Chapman Hall, New York 1997)

    Google Scholar 

  3. J.W. Dally, P. Lall, J.C. Suhling: Mechanical Design of Electronic Systems (College House Enterprises, Knoxville 2008)

    Google Scholar 

  4. S.H. Ong, S.H. Tan, K.T. Tan: Acoustic microscopy reveals IC packaging hidden defects, Proc. 1997 Electronic Packaging Technology Conference (IEEE, 1997) pp. 297–300

    Google Scholar 

  5. S. Canumalla: Resolution of broadband transducers in acoustic microscopy of encapsulated ICs: Transducer Selection, IEEE Trans. Compon. Packag. Technol. 22(4), 582–592 (1999)

    Article  Google Scholar 

  6. J.E. Semmens, S.R. Martell, L.W. Kessler: Analysis of BGA and other area array packaging using acoustic micro imaging, Proc. SMTA Pan Pacific Microelectronics Symposium (1996) pp. 285–290

    Google Scholar 

  7. Z.Q. Yu, G.Y. Li, Y.C. Chan: Detection of defects in ceramic substrate with embedded passive components by scanning acoustic microscopy, Proc. 49th IEEE Electronic Components and Technology Conference (IEEE, 1999) pp. 1025–1029

    Google Scholar 

  8. J.E. Semmens: Evaluation of stacked die packages using acoustic micro imaging, Proc. SMTA Pan Pacific Microelectronics Symposium (2005) pp. 1–6

    Google Scholar 

  9. J.E. Semmens, L.W. Kessler: Characterization of flip chip interconnect failure modes using high frequency acoustic micro imaging with correlative analysis, Proc. 35th International Reliability Physics Symposium (IEEE, 1997) pp. 141–148

    Google Scholar 

  10. M.K. Rahim, J.C. Suhling, R.C. Jaeger, P. Lall: Fundamentals of delamination initiation and growth in flip chip assemblies, Proc. 55th IEEE Electronic Components and Technology Conference (IEEE, 2005) pp. 1172–1186

    Google Scholar 

  11. J. Janting: Techniques in scanning acoustic microscopy for enhanced failure and material analysis of microsystems. In: MEMS/NEMS Handbook, ed. by C.T. Leondes (Springer, Berlin, Heidelberg 2006) pp. 905–921

    Chapter  Google Scholar 

  12. P.W. Bridgman: The effect of pressure on the electrical resistance of certain semiconductors, Proc. Am. Acad. Arts Sci. 79(3), 125–179 (1951)

    Article  Google Scholar 

  13. C.S. Smith: Piezoresistance effect in silicon and germanium, Phys. Rev. 94(1), 42–49 (1954)

    Article  Google Scholar 

  14. W.P. Mason, R.N. Thurston: Use of piezoresistive materials in the measurement of displacement, force, and torque, J. Acoust. Soc. Am. 29(10), 1096–1101 (1957)

    Article  Google Scholar 

  15. J.L. Spencer, W.H. Schroen, G.A. Bednarz, J.A. Bryan, T.D. Metzgar, R.D. Cleveland, D.R. Edwards: New quantitative measurements of IC stress introduced by plastic packages, Proc. 19th Annual Reliability Physics Symposium (IEEE, 1981) pp. 74–80

    Google Scholar 

  16. D.R. Edwards, G. Heinen, G.A. Bednarz, W.H. Schroen: Test structure methodology of IC package material characterization, Proc. 33rd Electronic Components Conference (IEEE, 1983) pp. 386–393

    Google Scholar 

  17. J.C. Suhling, R.C. Jaeger: Silicon piezoresistive stress sensors and their application in electronic packaging, IEEE Sens. J. 1(1), 14–30 (2001)

    Article  Google Scholar 

  18. J.N. Sweet: Die stress measurement using piezoresistive stress sensors. In: Thermal Stress and Strain in Microelectronics Packaging, ed. by J. Lau (Van Nostrand Reinhold, Amsterdam 1993) pp. 221–271

    Google Scholar 

  19. D.A. Bittle, J.C. Suhling, R.E. Beaty, R.C. Jaeger, R.W. Johnson: Piezoresistive stress sensors for structural analysis of electronic packages, J. Electron. Packag. 113(3), 203–215 (1991)

    Article  Google Scholar 

  20. R.C. Jaeger, J.C. Suhling, R. Ramani: Thermally induced errors in the application of silicon piezoresistive stress sensors, Proc. 1993 ASME International Electronic Packaging Conference (ASME, New York 1993) pp. 457–470

    Google Scholar 

  21. R.C. Jaeger, J.C. Suhling, R. Ramani: Errors associated with the design, calibration of piezoresistive stress sensors in (100) silicon, IEEE Trans. Compon. Packag. Technol. B 17(1), 97–107 (1994)

    Article  Google Scholar 

  22. M.K. Rahim, J.C. Suhling, D.S. Copeland, M.S. Islam, R.C. Jaeger, P. Lall, R.W. Johnson: Die stress characterization in flip-chip assemblies, IEEE Trans. Compon. Packag. Technol. 28(3), 415–429 (2005)

    Article  Google Scholar 

  23. I. De Wolf: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits, Semicond. Sci. Technol. 11, 139–154 (1996)

    Article  Google Scholar 

  24. J. Chen, I. De Wolf: Theoretical and experimental Raman spectroscopy study of mechanical stress induced by electronic packaging, IEEE Trans. Compon. Packag. Technol. 28(3), 484–492 (2005)

    Article  Google Scholar 

  25. P. Smeys, P.B. Griffin, Z.U. Rek, I. De Wolf, K.C. Saraswat: Influence of process-induced stress on device characteristics and its impact in scaled device performance, IEEE Trans. Electron. Dev. 46(6), 1245–1252 (1999)

    Article  Google Scholar 

  26. J. Chen, I. De Wolf: Study of damage and stress induced by backgrinding in Si wafers, Semicond. Sci. Technol. 18, 261–268 (2003)

    Article  Google Scholar 

  27. J. Kanatharana, J. Perez-J. Camacho, T. Buckley, P.J. McNally, T. Tuomi, J. Riikonen, A.N. Danilewsky, M. OʼHare, D. Lowney, W. Chen, R. Rantamaki, L. Knuuttila: Examination of mechanical stresses in silicon substrates due to lead-tin solder bumps via micro-Raman spectroscopy and finite element modelling, Semicond. Sci. Technol. 17, 1255–1260 (2002)

    Article  Google Scholar 

  28. J. He, M.C. Shaw, J.C. Mather, R.C. Addison: Direct measurement and analysis of the time-dependent evolution of stress in silicon devices and solder interconnections in power assemblies, Proc. IEEE Industry Applications Conference (1998) pp. 1038–1045

    Google Scholar 

  29. V.T. Srikar, A.K. Swan, M.S. Unlu, B.B. Goldberg, S.M. Spearing: Micro-Raman measurement of bending stresses in micromachined silicon flexures, J. Microelectromech. Syst. 12(6), 779–787 (2003)

    Article  Google Scholar 

  30. S.R. Lederhandler: Infrared studies of birefringence in silicon, J. Appl. Phys. 30(11), 1631–38 (1959)

    Article  Google Scholar 

  31. R.O. DeNicola, R.N. Tauber: Effect of growth parameters on residual stress and dislocation density of czochralsky-grown silicon crystals, J. Appl. Phys. 42(11), 4262–4270 (1971)

    Article  Google Scholar 

  32. E.M. Gamarts, P.A. Dobromyslov, V.A. Krylov, S.V. Prisenko, E.A. Jakushenko, V.I. Safarov: Characterization of stress in semiconductor wafers using birefringence measurements, J. Phys. III 3, 1033–1049 (1993)

    Google Scholar 

  33. Y. Niitsu, K. Gomi, T. Ono: Investigation on the photoelastic property of semiconductor wafers,. In: Applications of Experimental Mechanics to Electronic Packaging, ed. by J.C. Suhling (ASME, New York 1995) pp. 103–108

    Google Scholar 

  34. M. Fukuzawa, M. Yamada: Photoelastic characterization of Si wafers by scanning infrared polariscope, J. Cryst. Growth 229, 22–25 (2001)

    Article  Google Scholar 

  35. T. Zheng, S. Danyluk: Study of stresses in thin silicon wafers with near-infrared phase stepping photoelasticity, J. Mater. Res. 17(1), 36–42 (2002)

    Article  Google Scholar 

  36. S. He, T. Zheng, S. Danyluk: Analysis and determination of the stress-optic coefficients of thin single crystal silicon samples, J. Appl. Phys. 96(6), 3103–3109 (2004)

    Article  Google Scholar 

  37. S. He, S. Danyluk, S. Ostapenko: Residual stress characterization for solar cells by infrared polariscopy, Proc. NCPV and Solar Program Review Meeting (NREL 2003) pp. 761–764

    Google Scholar 

  38. S.P. Wong, W.Y. Cheung, N. Ke, M.R. Sajan, W.S. Guo, L. Huang, S. Zhao: IR photoelasticity study of stress distribution in silicon under thin film structures, Mater. Chem. Phys. 51, 157–162 (1997)

    Article  Google Scholar 

  39. A.A. Giardini: Piezobirefringence in silicon, Am. Mineral. 43, 249–263 (1958)

    Google Scholar 

  40. H. Liang, Y. Pan, S. Zhao, G. Qin, K.K. Chin: Two-dimensional state of stress in a silicon wafer, J. Appl. Phys. 71(6), 2863–2870 (1992)

    Article  Google Scholar 

  41. T.S. Park, S. Suresh, A.J. Rosakis, J. Ryu: Measurement of full-field curvature and geometrical instability of thin film-substrate systems through CGS interferometry, J. Mech. Phys. Solids 51, 2191–2211 (2003)

    Article  Google Scholar 

  42. H.V. Tippur: Coherent gradient sensing: a Fourier optics analysis and applications to fracture, Appl. Opt. 31(22), 4428–4439 (1992)

    Article  Google Scholar 

  43. A.J. Rosakis, R.P. Singh, Y. Tsuji, E. Kolawa, N.R. Moore: Full field measurements of curvature using coherent gradient sensing: application to thin film characterization, Thin Solid Films 325, 42–54 (1998)

    Article  Google Scholar 

  44. C. Boye, R. Carpio, J. Woodring: A new optical technique for monitoring wafer curvature and stress during copper damascene processing, Proc. 29th SPIE Symposium (2004) pp. 1–8

    Google Scholar 

  45. Y. Guo, W.T. Chen, C.K. Lim, C.G. Woychik: Solder ball connect (SBC) assemblies under thermal loading: I. Deformation measurement via moiré interferometry, and its interpretation, IBM J. Res. Dev. 37(5), 635–648 (1993)

    Article  Google Scholar 

  46. D. Post, B. Han, P. Ifju: High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

  47. B. Han: Characterization of stresses and strains in microelectronic and photonic devices using photomechanics methods. In: Micro- and Optoelectronic Materials and Structures: Physics, Mechanics, Design, Reliability, and Packaging, Vol. 1, ed. by E. Suhir, Y.C. Lee, C.P. Wong (Springer, Berlin, Heidelberg 2007) pp. 475–522

    Chapter  Google Scholar 

  48. Y. Guo, C.G. Woychik: Thermal strain measurements of solder joints in second level interconnections using moiré interferometry, J. Electron. Packag. 114(1), 88–92 (1992)

    Article  Google Scholar 

  49. A.F. Bastawros, A.S. Voloshin: Thermal strain measurements in electronic packages through fractional fringe moiré interferometry, J. Electron. Packag. 112(4), 303–308 (1990)

    Article  Google Scholar 

  50. A.S. Voloshin: Analysis of the thermal loading on electronics packages by enhanced moiré interferometry. In: Thermal Stress and Strain in Microelectronics Packaging, ed. by J.H. Lau (Van Nostrand Reinhold, Amsterdam 1994) pp. 272–304

    Google Scholar 

  51. B. Han: Thermal stresses in microelectronics subassemblies: quantitative characterization using photomechanics methods, J. Therm. Stress. 26, 583–613 (2003)

    Article  Google Scholar 

  52. B. Han, Y. Guo: Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry, J. Electron. Packag. 117(3), 185–191 (1995)

    Article  Google Scholar 

  53. B. Han: Recent advancement of moiré and microscopic moiré interferometry for thermal deformation analyses of microelectronics devices, Exp. Mech. 38(4), 278–288 (1998)

    Google Scholar 

  54. D. Vogel, A. Schubert, W. Faust, R. Dudek, B. Michel: MicroDAC - A novel approach to measure in situ deformation fields of microscopic scale, Microelectron. Reliab. 36(11,12), 1939–1942 (1996)

    Article  Google Scholar 

  55. S. Park, R. Dhakal, L. Lehman, E. Cotts: Grain formation and intergrain stresses in a Sn-Ag-Cu solder ball, Proc. InterPACK 2005 (ASME 2005) pp. 1–6, IPACK2005-73058

    Google Scholar 

  56. D. Vogel, V. Grosser, A. Schubert, B. Michel: MicroDAC strain measurement for electronic packaging structures, Opt. Lasers Eng. 36, 195–211 (2001)

    Article  Google Scholar 

  57. D. Vogel, B. Michel: Image correlation techniques for microsystems inspection. In: Optical Inspection of Microsystems, ed. by W. Osten (Taylor Francis, New York 2007) pp. 55–102

    Google Scholar 

  58. P.V. Kelly, L. Kehoe, V. Guenebaut, P. Lynch, J. Ahern, G. Crean, M. Mello, S. Cho: Systematic study of the digital image correlation technique through a paired one-to-one comparison with moiré interferometry, Proc. 38th International Symposium on Microelectronics (IMAPS 2005) pp. 1–14

    Google Scholar 

  59. G.C. Brown, R.J. Pryputniewicz: Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, Electro-Optic Holography, Opt. Eng. 37(5), 1398–1405 (1998)

    Article  Google Scholar 

  60. G. Coppola, M. Iodice, A. Finizio, S. De Nicola, G. Pierattini, P. Ferraro, C. Magro, G.E. Spoto: Digital holography microscope as tool for microelectromechanical systems characterization and design, J. Microlithogr. Microfabric. Microsyst. 4(1), 1–9 (2005)

    Google Scholar 

  61. R.J. Pryputniewicz: Advanced in optoelectronic methodology for MOEMS testing. In: Micro- and Optoelectronic Materials and Structures: Physics, Mechanics, Design, Reliability, and Packaging, Vol. 2, ed. by E. Suhir, Y.C. Lee, C.P. Wong (Springer, Berlin, Heidelberg 2007) pp. 323–340

    Chapter  Google Scholar 

  62. C. Furlong: Optoelectronic holography for testing electronic packaging and MEMS. In: Optical Inspection of Microsystems, ed. by W. Osten (Taylor Francis, New York 2007) pp. 351–425

    Google Scholar 

  63. W. Osten, P. Ferraro: Digital holography and its application in MEMS/MOEMS inspection. In: Optical Inspection of Microsystems, ed. by W. Osten (Taylor Francis, New York 2007) pp. 325–350

    Google Scholar 

  64. M. Variyam, B. Han: DMD module calibration using interferometry, TI Tech. J. 18, 1–8 (2001)

    Google Scholar 

  65. B. Han, Y. Guo, H.C. Choi: Out-of-plane displacement measurement of printed circuit board by shadow moiré with variable sensitivity, Proc. 1993 ASME International Electronics Packaging Conference, Vol. 4-1 (ASME 1993) pp. 179–185

    Google Scholar 

  66. M.R. Stiteler, I.C. Ume, B. Leutz: In-process board warpage measurement in a lab scale wave soldering oven, IEEE Trans. Compon. Packag. Technol. A 19(4), 562–569 (1996)

    Article  Google Scholar 

  67. G.J. Petriccione, I.C. Ume: Warpage studies of HDI test vehicles during various thermal profiling, IEEE Trans. Adv. Packag. 22(4), 624–637 (1999)

    Article  Google Scholar 

  68. B. Han: Optical measurement of flip-chip package warpage and its effect on thermal interfaces, Electron. Cool. 9(1), 10–16 (2003)

    Google Scholar 

  69. K. Verma, D. Columbus, B. Han: Development of real time/variable sensitivity warpage measurement technique and its application to plastic ball grid array package, IEEE Trans. Electron. Packag. Manuf. 22(1), 63–70 (1999)

    Article  Google Scholar 

  70. K. Verma, B. Han: Warpage measurement on dielectric rough surfaces of microelectronics devices by far infrared fizeau interferometry, J. Electron. Packag. 122(3), 227–232 (2000)

    Article  Google Scholar 

  71. P. Lall, D. Panchagade, Y. Liu, W. Johnson, J.C. Suhling: Models for reliability prediction of fine-pitch BGAs and CSPs in shock and drop-impact, IEEE Trans. Compon. Packag. Technol. 29(3), 464–474 (2006)

    Article  Google Scholar 

  72. P. Lall, S. Gupte, P. Choudhary, J. Suhling: Solder-joint reliability in electronics under shock and vibration using explicit finite element submodeling, IEEE Trans. Electron. Packag. Manuf. 30(1), 74–83 (2007)

    Article  Google Scholar 

  73. P. Lall, D. Panchagade, D. Iyengar, S. Shantaram, J. Suhling, H. Schrier: High speed digital image correlation for transient-shock reliability of electronics, Proc. 57th IEEE Electronic Components and Technology Conference (2007) pp. 924–939

    Google Scholar 

  74. S. Park, C. Shah, J. Kwak, C. Jang, J. Pitarresi, T. Park, S. Jang: Transient dynamic simulation and full-field test validation for a slim-PCB of mobile phone under drop/impact, Proc. 57th IEEE Electronic Components and Technology Conference (2007) pp. 914–923

    Google Scholar 

  75. H. Ma, J.C. Suhling, P. Lall, M.J. Bozack: Effects of aging on the stress-strain and creep behaviors of lead free solders, Proc. ITherm 2006 (IEEE 2006) pp. 961–976

    Google Scholar 

  76. M.S. Islam, J.C. Suhling, P. Lall: Measurement of the temperature dependent constitutive behavior of underfill encapsulants, IEEE Trans. Compon. Packag. Technol. 28(3), 467–476 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey C. Suhling Prof. or Pradeep Lall Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Suhling, J.C., Lall, P. (2008). Electronic Packaging Applications. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_36

Download citation

Publish with us

Policies and ethics