Skip to main content

Implantable Biomedical Devices and Biologically Inspired Materials

  • Reference work entry
Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Experimental mechanics is playing an important role in the development of new implantable biomedical devices through an advanced understanding of the microstructure/property relationship for biocompatible materials and their effect on the structure/performance of these devices. A similar understanding is also being applied to the development of new biologically inspired materials and systems that are analogs of biological counterparts. This chapter attempts to elucidate on the synergy between the research and development activities in these two areas through the application of experimental mechanics. Fundamental information is provided on the motivation for the science and technology required to develop these areas, and the associated contributions being made by the experimental mechanics community. The challenges that are encountered when investigating the unique mechanical behavior and properties of devices, materials, and systems are also presented. Specific examples are provided to illustrate these issues, and the application of experimental mechanics techniques, such as Photoelasticity, Digital Image Correlation, and Nanoindentation, to understand and characterize them at multiple length scales.

It is the purpose of this chapter to describe the application of experimental mechanics in understanding the mechanics of implantable biomedical devices, as well as biologically inspired materials and systems. In particular, the experimental techniques used to develop this understanding, and the fundamental scientific and technical insight that has been obtained into various aspects of processing/microstructure/property/structure/ performance relationships in these devices, materials, and systems will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMC:

ceramic matrix composite

CNT:

carbon nanotube

CP:

conductive polymer

CTOD:

crack-tip opening displacement

CVFE:

cohesive-volumetric finite elements

DC:

direct current

DIC:

digital image correlation

EAP:

electroactive polymer

ECO:

poly(ethylene carbon monoxide) copolymer

ESSP:

electrostatically stricted polymer

FBG:

fiber Bragg grating

FGM:

functionally graded material

IPG:

ionic polymer gel

IPMC:

ionomeric polymer–metal composite

LCE:

liquid crystal elastomer

LIGA:

lithography galvanoforming molding

MEMS:

micro-electromechanical system

PLA:

polylactic acid

PMMA:

polymethyl methacrylate

RIBS:

replamineform inspired bone structures

SIF:

stress intensity factor

SMA:

shape-memory alloy

TBC:

thermal barrier coatings

TWSME:

two-way shape memory effect

References

  1. H.A. Bruck, J.J. Evans, M. Peterson: The role of mechanics in biological and biologically inspired Materials, Exp. Mech. 42, 361–371 (2002)

    Google Scholar 

  2. I. Amato: Stuff: The Materials the World is Made of (Basic Books, New York 1997)

    Google Scholar 

  3. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan: Autonomic healing of polymer composites, Nature 409, 794–797 (2001)

    Google Scholar 

  4. C. Dry: Procedures developed for self-repair of polymer matrix composite materials, Compos. Struct. 35, 263–269 (1996)

    Google Scholar 

  5. H.R. Piehler: The future of medicine: biomaterials, MRS Bull. 25, 67–69 (2000)

    Google Scholar 

  6. S. Karmat, H. Kessler, R. Ballarini, M. Nassirou, A.H. Heuer: Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging, Acta Mater. 52, 2395–2406 (2004)

    Google Scholar 

  7. J.L. Katz, A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S.J. Eppell, M. Tabib-Azar: Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces, Mater. Sci. Eng. C 27, 450–468 (2007)

    Google Scholar 

  8. J.F.V. Vincent: Structural Biomaterials (Princeton Univ. Press, Princeton 1991)

    Google Scholar 

  9. H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl: Materials become insensitive to flaws at the nanoscale: lessons from nature, Proc. Natl. Acad. Sci., Vol. 100 (2003) pp. 5597–2600

    Google Scholar 

  10. E. Baer, A. Hiltner, A.R. Morgan: Biological and synthetic hierarchical composites, Phys. Today 45, 60–67 (1992)

    Google Scholar 

  11. A.V. Srinivasan, G.K. Haritos, F.L. Hedberg: Biomimetics: advancing man-made materials through guidance from nature, Appl. Mech. Rev. 44, 463–481 (1991)

    Google Scholar 

  12. G. Yang, J. Kabel, B. Van Rietbergen, A. Odgaard, R. Huiskes, S. Cowin: The anisotropic Hookeʼs law for cancellous bone and wood, J. Elast. 53, 125–146 (1999)

    MATH  Google Scholar 

  13. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32, 1005–1012 (1999)

    Google Scholar 

  14. C. Rubin, A.S. Turner, S. Bain, C. Mallinckrodt, K. McLeod: Low mechanical signals strengthen bones, Nature 412, 603–604 (2001)

    Google Scholar 

  15. P.K.D.V. Yarlagadda, M. Chandrasekharan, J.Y.M. Shyan: Recent advances and current developments in tissue scaffolding, Bio-med. Mater. Eng. 15, 159–177 (2005)

    Google Scholar 

  16. S. Saidpour: Assessment of carbon fibre composite fracture fixation plate using finite element analysis, J. Biomed. Eng. 34, 1157–1163 (2006)

    Google Scholar 

  17. J.S. Temenoff, A.G. Mikos: Injectable biodegradable materials for orthopaedic tissue engineering, Biomaterials 21, 2405–2412 (2000)

    Google Scholar 

  18. R. Pietrabissa, V. Qauglini, T. Villa: Experimental methods in testing of tissues and implants, Meccanica 37, 477–488 (2002)

    Google Scholar 

  19. G. Heimke, P. Griss: Ceramic implant materials, Med. Biol. Eng. Comput. 18, 503–510 (1980)

    Google Scholar 

  20. J.B. Park, R.S. Lakes: Biomaterials (Plenum, New York 1992)

    Google Scholar 

  21. E.N. Brown, M.L. Peterson, K.J. Grande-Allen: Biological systems and materials: a review of the field of biomechanics and the role of the society for experimental mechanics, Exp. Techn. 2, 21–29 (2006)

    Google Scholar 

  22. A.J. van der Pijl, W. Swieszkowski, H.E.N. Bersee: Design of a wear simulator for in vitro should prostheses testing, Exp. Techn. 5, 45–48 (2004)

    Google Scholar 

  23. A.J. Rapoff, W.M. Johnson, S. Venkataraman: Transverse plane shear test fixture for total knee system, Exp. Techn. 3, 37–39 (2003)

    Google Scholar 

  24. R. Oosterom, H.E.N. Bersee: Force controlled fatigue testing of shoulder prostheses, Exp. Techn. 5, 33–37 (2004)

    Google Scholar 

  25. V.L. Roberts: Strain-gage techniques in biomechanics, Exp. Mech. 6, 19A–22A (1966)

    Google Scholar 

  26. L. Cristofolini, M. Viceconti: Comparison of uniaxial and triaxial rosette gages for strain measurement on the femur, Exp. Mech. 37, 350–354 (1997)

    Google Scholar 

  27. C. Franck, S. Hong, S.A. Maskarinee, D.A. Tirrell, G. Ravichandran: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation, Exp. Mech. 47(3), 427–438 (2007)

    Google Scholar 

  28. A.B. Liggins, W.R. Hardie, J.B. Finlay: The spatial and pressure resolution of Fuji pressure-sensitive films, Exp. Mech. 35, 166–173 (1995)

    Google Scholar 

  29. R.D. Peindl, M.E. Harrow, P.M. Connor, D.M. Banks, D.R. DʼAlessandro: Photoelastic stress freezing analysis of total shoulder replacement systems, Exp. Mech. 44, 228–234 (2004)

    Google Scholar 

  30. R.J. Nikolai, J.W. Schweiker: Investigation of root-periodontium interface stresses and displacements for orthodontic application, Exp. Mech. 12, 406–413 (1972)

    Google Scholar 

  31. H. Vaillancourt, D. McCammond, R.M. Pilliar: Validation of a nonlinear two-dimensional interface element for finite-element analysis, Exp. Mech. 36, 49–54 (1996)

    Google Scholar 

  32. J.F. Dias Rodrigues, H. Lopes, F.Q. de Melo, J.A. Simões: Experimental modal analysis of a synthetic composite femur, Exp. Mech. 44, 29–32 (2004)

    Google Scholar 

  33. J.-J. Ryu, V. Daval, P. Shrotriya: Onset of surface damage in modular orthopedic implants: influence of normal contact loading and stress-assisted dissolution, Exp. Mech. 47(3), 395–403 (2007)

    Google Scholar 

  34. N.J. Hallab, J.J. Jacobs: Orthopaedic implant fretting corrosion, Corros. Rev. 21, 183–213 (2003)

    Google Scholar 

  35. S.L.-Y. Woo, K.S. Lothringer, W.H. Akeson, R.D. Coutts, Y.K. Woo, B.R. Simon, M.A. Gomez: Less rigid internal fixation plates: historical perspectives and new concepts, J. Orthop. Res. 1, 431–449 (2005)

    Google Scholar 

  36. I.M. Peterson, A. Pajares, B.R. Lawn, V.P. Thompson, E.D. Rekow: Mechanical characterization of dental ceramics by Hertzian contacts, J. Dent. Res. 77, 589–602 (1998)

    Google Scholar 

  37. K. Tayton, C. Johnson-Nurs, B. McKibbin, J. Bradley, G. Hastings: The use of semi-rigid carbon-fibre reinforced plates for fixation of human factors, J. Bone Joint Surg. 64-B, 105–111 (1982)

    Google Scholar 

  38. D.A. Rikli, R. Curtis, C. Shilling, J. Goldhahn: The potential of bioresorbable plates and screws in distal radius fracture fixation, Injury 33, B77–B83 (2002)

    Google Scholar 

  39. A. Foux, A. Yeadon, H.K. Uhthoff: Improved fracture healing with less rigid plates: a biomechanical study in dogs, Clin. Orthop. Rel. Res. 339, 232–245 (1995)

    Google Scholar 

  40. S. Saha, S. Pal: Mechanical properties of bone cement: a review, J. Biomed. Mater. Res. 18, 435–462 (2004)

    Google Scholar 

  41. J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen: Cells lying on a bed of microneedles: an approach to isolate mechanical force, Appl. Phys. Sci. 100, 1484–1489 (2003)

    Google Scholar 

  42. M.F. Ashby: The mechanical properties of cellular solids, Metall. Trans. 14A, 1755–1769 (1983)

    Google Scholar 

  43. W.F. Brace: Permeability from resistivity and pore shape, J. Geophys. Res. 82, 3343–3349 (1977)

    Google Scholar 

  44. C.M. Agrawal, R.B. Ray: Biodegradable polymeric scaffolds for muscoskeletal tissue engineering, J. Biomed. Mater. Res. 55, 141–150 (2001)

    Google Scholar 

  45. F.J. OʼBrien, B.A. Harley, I.V. Yannas, L.J. Gibson: The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials 26, 433–441 (2005)

    Google Scholar 

  46. I.V. Yannas, E. Lee, D.P. Orgill, E.M. Skrabut, G.F. Murphy: Synthesis and characterization of a model extracellular-matrix that induces partial regeneration of adult mammalian skin, Proc. Natl. Acad. Sci., Vol. 86 (1989) pp. 933–937

    Google Scholar 

  47. D. Bynum Jr., W.B. Ledtter, C.L. Boyd, D.R. Ray: Holding characteristics of fasteners in bone, Exp. Mech. 11, 363–369 (1971)

    Google Scholar 

  48. P.M. Talaia, A. Ramos, I. Abe, M.W. Schiller, P. Lopes, R.N. Nogueira, J.L. Pinto, R. Claramunt, J.A. Simões: Plated and intact femur strains in fracture fixation using fiber bragg gratings and strain gauges, Exp. Mech. 47(3), 355–363 (2007)

    Google Scholar 

  49. S. Inceoglu, R.F. McLain, S. Cayli, C. Kilincer, L. Ferrara: A new screw pullout test incorporating the effects of stress relaxation, Exp. Techn. 4, 19–21 (2005)

    Google Scholar 

  50. D.D. Wright-Charlesworth, D.M. Miller, I. Miskioglu, J.A. King: Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months, J. Biomed. Mater. Res. 74A, 388–396 (2005)

    Google Scholar 

  51. D.D. Wright-Charlesworth, W.J. Peers, I. Miskioglu, L.L. Loo: Nanomechanical properties of self-reinforced composite poly(methylmethacrylate) as a function of processing temperature, J. Biomed. Mater. Res. 74A, 306–314 (2005)

    Google Scholar 

  52. F. Flueckiger, H. Sternthal, G.E. Klein, M. Aschauer, D. Szolar, G. Kleinhappl: Strength, elasticity, plasticity of expandable metal stents: in vitro studies with three types of stress, J. Vasc. Interv. Radiol. 5, 745–750 (1994)

    Google Scholar 

  53. J. Hanus, J. Zahora: Measurement and comparison of mechanical properties of Nitinol stents, Phys. Scr. T118, 264–267 (2005)

    Google Scholar 

  54. K.E. Perry, C. Kugler: Non-zero mean fatigue testing of NiTi, Exp. Techn. 1, 37–38 (2002)

    Google Scholar 

  55. S.C. Schrader, R. Bear: Evaluation of the compressive mechanical properties of endoluminal metal stents, Cathet. Cardiovasc. Diagn. 44, 179–187 (1998)

    Google Scholar 

  56. J.P. Nuutinen, C. Clerc, P. Tormala: Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents, J. Biomater. Sci. Polym. Ed. 14, 677–687 (2003)

    Google Scholar 

  57. R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent – part II: pressure-diameter relationship, J. Appl. Mech. 71, 697–705 (2004)

    MATH  Google Scholar 

  58. R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent- part II: A beam-on-elastic foundation model, J. Appl. Mech. 71, 706–712 (2004)

    MATH  Google Scholar 

  59. D.S. Goldin, S.L. Venneri, A.K. Noor: The great out of the small, Mech. Eng. 122, 70–79 (2000)

    Google Scholar 

  60. C. Greiner, A.D. Campo, E. Arzt: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload, Langmuir 23, 3495–3502 (2007)

    Google Scholar 

  61. E.N. Brown, S.R. White, N.R. Sottos: Microcapsule induced toughening in a self-healing polymer composite, J. Mater. Sci. 39, 1703–1710 (2004)

    Google Scholar 

  62. C.E. Flynn, S.W. Lee, B.R. Peelle, A.M. Belcher: Viruses as vehicles for growth, organization and assembly of materials, Acta Mater. 51, 5867–5880 (2003)

    Google Scholar 

  63. S. Suresh, A. Mortenson: Fundamentals of Functionally Graded Materials (Institute of Materials, London 1998)

    Google Scholar 

  64. S. Amada, Y. Ichikawa, T. Munekata, Y. Nagese, H. Shimizu: Fiber texture and mechanical graded structure of bamboo, Compos. B 28B, 13–20 (1997)

    Google Scholar 

  65. P. Kreuz, W. Arnold, A.B. Kesel: Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface, Ann. Biomed. Eng. 29, 1054–1058 (2001)

    Google Scholar 

  66. M. Niino, S. Maeda: Recent development status of functionally gradient materials, ISIJ Int. 30, 699–703 (1990)

    Google Scholar 

  67. P.M. Bendsoe, N. Kikuchi: Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197–224 (1998)

    MathSciNet  Google Scholar 

  68. T. Hirano, T. Yamada, J. Teraki, A. Kumakawa, M. Niino, K. Wakashima: Improvement in design accuracy of functionally gradient material for space plane applications, Proc. 7th Int. Symp. Space Technol. Sci. (Tokyo 1990)

    Google Scholar 

  69. C. Schiller, M. Siedler, F. Peters, M. Epple: Functionally graded materials of biodegradable polyesters and bone-like calcium phosphates for bone replacement, Ceram. Trans. 114, 97–108 (2001)

    Google Scholar 

  70. A.J. Markworth, K.S. Ramesh, W.P. Parks Jr.: Review: Modelling studies applied to functionally graded materials, J. Mater. Sci. 30, 2183–2193 (1995)

    Google Scholar 

  71. N. Noda: Thermal stresses in functionally graded materials, J. Thermal Stresses 22, 477–512 (1999)

    MathSciNet  Google Scholar 

  72. C.E. Rousseau, H.V. Tippur: Influence of elastic gradient profiles on dynamically loaded functionally graded materials: Cracks along the gradient, Int. J. Solids Struct. 38, 7839–7856 (2001)

    MATH  Google Scholar 

  73. A.M. Afsar, H. Sekine: Optimum material distribution for prescribed apparent fracture toughness in thick-walled FGM circular pipes, Int. J. Press. Vessels Piping 78, 471–484 (2001)

    Google Scholar 

  74. T.J. Chung, A. Neubrand, J. Rodel: Effect of residual stress on the fracture toughness of Al_20_3/Al gradient materials, Euro Ceram. VII, PT1–3 206, 965–968 (2002)

    Google Scholar 

  75. K.S. Ravichandran: Thermal residual stresses in a functionally graded material system, Mater. Sci. Eng. A 201, 269–276 (1995)

    Google Scholar 

  76. Y.D. Lee, F. Erdogan: Residual/thermal stresses in FGM and laminated thermal barrier coatings, Int. J. Fract. 69, 145–165 (1994)

    Google Scholar 

  77. S. Suresh, A.E. Giannakopoulos, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with sharp interface, J. Mech. Phys. Solids 42, 979–1018 (1994)

    MATH  Google Scholar 

  78. A.E. Giannakopoulos, S. Suresh, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with compositional gradients, J. Mech. Phys. Solids 43, 1335–1354 (1995)

    MathSciNet  Google Scholar 

  79. M. Finot, S. Suresh: Small and large deformation of thick and thin-film multi-layers: effects of layer geometry, plasticity and compositional gradients, J. Mech. Phys. Solids 44, 683–721 (1996)

    Google Scholar 

  80. Q.R. Hou, J. Gao: Thermal stress relaxation by a composition-graded intermediate layer, Mod. Phys. Lett. 14, 685–692 (2000)

    Google Scholar 

  81. B.H. Rabin, R.L. Williamson, H.A. Bruck, X.L. Wang, T.R. Watkins, D.R. Clarke: Residual strains in an Al_2O_3-Ni joint bonded with a composite interlayer: experimental measurements and FEM analysis, J. Am. Ceram. Soc. 81, 1541–1549 (1998)

    Google Scholar 

  82. B.H. Rabin, R.J. Heaps: Powder processing of Ni-Al_2O_3 FGM, Ceram. Trans. 34, 173–180 (1993)

    Google Scholar 

  83. R.L. Williamson, B.H. Rabin, J.T. Drake: Finite element analysis of thermal residual stresses at graded ceramic–metal interfaces part I: model description and geometrical effects, J. Appl. Phys. 74, 1310–1320 (1993)

    Google Scholar 

  84. J.W. Eischen: Fracture of nonhomogeneous materials, Int. J. Fract. 34, 3–22 (1987)

    Google Scholar 

  85. G. Anlas, M.H. Santare, J. Lambros: Numerical calculation of stress intensity factors in functionally graded materials, Int. J. Fract. 104, 131–143 (2000)

    Google Scholar 

  86. M. Dao, P. Gu, A. Maewal, R.J. Asaro: A micromechanical study of residual stresses in functionally graded materials, Acta Mater. 45, 3265–3276 (1997)

    Google Scholar 

  87. M.H. Santare, J. Lambros: Use of graded finite elements to model the behavior of nonhomogeneous materials, J. Appl. Mech.-Trans. ASME 67, 819–822 (2000)

    MATH  Google Scholar 

  88. E.S.C. Chin: Army focused research team on functionally graded armor composites, Mater. Sci. Eng. A 259, 155–161 (1999)

    Google Scholar 

  89. H.A. Bruck: A one-dimensional model for designing functionally graded materials to attenuate stress waves, Int. J. Solids Struct. 37, 6383–6395 (2000)

    MATH  Google Scholar 

  90. X. Han, G.R. Liu, K.Y. Lam: Transient waves in plates of functionally graded materials, Int. J. Numer. Methods Eng. 52, 851–865 (2001)

    MATH  Google Scholar 

  91. G.R. Liu, X. Han, Y.G. Xu, K.Y. Lam: Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network, Compos. Sci. Technol. 61, 1401–1411 (2001)

    Google Scholar 

  92. J.E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, V. Sadaune: Acoustic wave propagation in continuous functionally graded plates: an extension of the legendre polynomial approach, IEEE Trans. Ultrason. Ferroelectr. Frequ. Control 48, 1332–1340 (2001)

    Google Scholar 

  93. Y. Li, K.T. Ramesh, E.S.C. Chin: Dynamic characterization of layered and graded structures under impulsive loading, Int. J. Solids Struct. 38, 6045–6061 (2001)

    MATH  Google Scholar 

  94. P.R. Marur, H.V. Tippur: Evaluation of mechanical properties of functionally graded materials, J. Test. Eval. 26, 539–545 (1998)

    Google Scholar 

  95. V. Parameswaram, A. Shukla: Crack tip stress fields for dynamic fracture in functionally gradient materials, Mech. Mater. 31, 579–596 (1999)

    Google Scholar 

  96. S.S.V. Kandula, J. Abanto-bueno, P.H. Geubelle, J. Lambros: Cohesive modeling of dynamic fracture in functionally graded materials, Int. J. Fract. 132, 275–296 (2005)

    MATH  Google Scholar 

  97. J. Abanto-Bueno, J. Lambros: Experimental determination of cohesive failure properties of a photodegradable copolymer, Exp. Mech. 45, 144–152 (2005)

    Google Scholar 

  98. A. Shukla, N. Jain, R. Chona: Dynamic fracture studies in functionally graded materials, Strain 43, 76–95 (2007)

    Google Scholar 

  99. V. Parameswaran, A. Shukla: Dynamic fracture of a functionally gradient material having discrete property variation, J. Mater. Sci. 33, 3303–3311 (1998)

    Google Scholar 

  100. C.-E. Rousseau, H.V. Tippur: Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis, Mech. Mater. 33, 403–421 (2001)

    Google Scholar 

  101. J. Huang, A.J. Rapoff: Optimization design of plates with holes by mimicking bones through nonaxisymmetric functionally graded materials, Proc. Inst. Mech. Eng. Part L – J. Mater. – Des. Appl., Vol. 217 (2003) pp. 23–27

    Google Scholar 

  102. B. Garita, A. Rapoff: Biomimetic designs from bone, Exp. Techn. 1, 36–39 (2003)

    Google Scholar 

  103. N. Gotzen, A.R. Cross, P.G. Ifju, A.J. Rapoff: Understanding stress concentration about a nutrient foramen, J. Biomech. 36, 1511–1521 (2003)

    Google Scholar 

  104. R.M. Gouker, S.K. Gupta, H.A. Bruck, T. Holzchuh: Manufacturing of multi-material compliant mechanisms using multi-material molding, Int. J. Adv. Manuf. Technol. 28, 1–27 (2006)

    Google Scholar 

  105. L.R. Xu, H. Kuai, S. Sengupta: Dissimilar material joints with and without free-edge stress singularities part I: a biologically inspired design, Exp. Mech. 44, 608–615 (2004)

    Google Scholar 

  106. R.S. Trask, H.R. Williams, I.P. Bond: Self-healing polymer composites: mimicking nature to enhance performance, Bioinspir. Biomimetics 2, P1–P9 (2007)

    Google Scholar 

  107. J.Y. Lee, G.A. Buxton, A.C. Balazs: Using nanoparticles to create self-healing composites, J. Chem. Phys. 121, 5531–5540 (2004)

    Google Scholar 

  108. S.M. Bleay, C.B. Loader, V.J. Hayes, L. Humberstone, P.T. Curtis: A smart repair system for polymer matrix composites, Compos. A 32, 1767–1776 (2001)

    Google Scholar 

  109. X.X. Chen, M.A. Dam, K. Ono, A. Mal, H.B. Shen, S.R. Nutt, K. Sheran, F. Wudl: A thermally re-mendable cross-linked polymeric material, Science 295, 1698–1702 (2002)

    Google Scholar 

  110. C.M. Chung, Y.S. Roh, S.Y. Cho, J.G. Kim: Crack healing in polymeric materials via photochemical [2+2] cycloaddition, Chem. Mater. 16, 3982–3984 (2004)

    Google Scholar 

  111. E.N. Brown, N.R. Sottos, S.R. White: Fracture testing of a self-healing polymer composite, Exp. Mech. 42, 372–379 (2002)

    Google Scholar 

  112. V. Birman: Stability of functionally graded shape memory alloy sandwich panels, Smart Mater. Struct. 6, 278–286 (1997)

    Google Scholar 

  113. K. Ho, G.P. Carman: Sputter deposition of NiTi thin film shape memory alloy using a heated target, Thin Solid Films 370, 18–29 (2000)

    Google Scholar 

  114. H.A. Bruck, C.L. Moore, T. Valentine: Characterization and modeling of bending actuation in polyurethanes with graded distributions of one-way shape memory alloy wires, Exp. Mech. 44, 62–70 (2004)

    Google Scholar 

  115. H.A. Bruck, C.L. Moore, T. Valentine: Repeatable bending actuation in polyurethanes using opposing embedded one-way shape memory alloy wires exhibiting large strain recovery, Smart Mater. Struct. 11, 509–518 (2002)

    Google Scholar 

  116. C.L. Moore, H.A. Bruck: A fundamental investigation into large strain recovery of one-way shape memory alloy wires embedded in flexible polyurethanes, Smart Mater. Struct. 11, 130–139 (2002)

    Google Scholar 

  117. E. Fukada, I. Yasuda: On the piezoelectric effect of bone, J. Phys. Soc. Jpn. 12, 1158–1162 (1957)

    Google Scholar 

  118. G. Song, V. Sethi, H.N. Li: Vibration control of civil structures using piezoceramic smart materials: a review, Eng. Struct. 28, 1513–1524 (2006)

    Google Scholar 

  119. J. Sirohi, I. Chopra: Fundamental understanding of piezoelectric strain sensors, J. Intell. Mater. Syst. Struct. 11, 246–257 (2000)

    Google Scholar 

  120. K.D. Rolt: History of the flextensional electroacoustic transducer, J. Acoust. Soc. Am. 87, 1340–1349 (1990)

    Google Scholar 

  121. B.J. Pokines, E. Garcia: A smart material microamplification mechanisms fabricated using LIGA, Smart Mater. Struct. 7, 105–112 (1998)

    Google Scholar 

  122. A. Garg, D.C. Agrawal: Effect of rare earth (Er, Gd, Eu, Nd, and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics, Mater. Sci. Eng. B 86, 134–143 (2001)

    Google Scholar 

  123. R. Rajapakse, X. Zeng: Toughening of conducting cracks due to domain switching, Acta Mater. 49, 877–885 (2001)

    Google Scholar 

  124. K. Takagi, J.F. Li, S. Yokoyama, R. Watanabe: Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators, J. Eur. Ceram. Soc. 23, 1577–1583 (2003)

    Google Scholar 

  125. J. Tyson, T. Schmidt, K. Galanulis: Biomechanics deformation and strain measurements with 3D image correlation phtogrammetry, Exp. Techn. 5, 39–42 (2002)

    Google Scholar 

  126. Y. Bar-Cohen: Electroactive polymers as artificial muscles: reality and challenges, Proc. 42nd AIAA Struct. Struct. Dyn. Mater. Conf. (Seattle 2001)

    Google Scholar 

  127. G. Mayer, M. Sarikaya: Rigid biological composite materials: structural examples for biomimetic design, Exp. Mech. 42, 394–403 (2002)

    Google Scholar 

  128. G. Mayer: Rigid biological systems as models for synthetic composites, Science 310, 1144–1147 (2005)

    Google Scholar 

  129. F. Barthelat, H. Espinosa: An experimental investigation of deformation and fracture of nacre-mother of pearl, Exp. Mech. 47(3), 311–324 (2007)

    Google Scholar 

  130. L.S. Gyger Jr., P. Kulkarni, H.A. Bruck, S.K. Gupta, O.C. Wilson Jr.: Replamineform inspired bones structures (RIBS) using multi-piece molds and advanced ceramic gelcasting technology, Mater. Sci. Eng. C 27, 646–653 (2007)

    Google Scholar 

  131. A.P. Jackson, J.F.V. Vincent, R.M. Turner: The mechanical design of nacre, Proc. R. Soc. London: Ser. B. Biol. Sci, Vol. 234 (1988) pp. 415–440

    Google Scholar 

  132. S.L. Tracy, H.M. Jennings: The growth of self-aligned calcium carbonate precipitates on inorganic substrates, J. Mater. Sci. 33, 4075–4077 (1998)

    Google Scholar 

  133. E.W. White: Biomaterials innovation: itʼs a long road to the operating room, Mater. Res. Innov. 1, 57–63 (1997)

    Google Scholar 

  134. C. Müller-Mai, C. Voigt, S.R. de Almeida Reis, H. Herbst, U.M. Gross: Substitution of natural coral by cortical bone and bone marrow in the rat femur. 2. SEM, TEM, and in situ hybridization, J. Mater. Sci. Mater. Med. 7, 479–488 (1996)

    Google Scholar 

  135. E.W. White, J.N. Weber, D.M. Roy, E.L. Owen, R.T. Chiroff, R.A. White: Replamineform porous biomaterials for hard tissue implant applications, J. Biomed. Mater. Res. 9, 23–27 (1975)

    Google Scholar 

  136. R.T. Chiroff, E.W. White, J.N. Weber, D.M. Roy: Restoration of articular surfaces overlying replamineform porous biomaterials, J. Biomed. Mater. Res. 9, 29 (1975)

    Google Scholar 

  137. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia: Freezing as a path to build complex composites, Science 311, 515–518 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Bruck Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Bruck, H. (2008). Implantable Biomedical Devices and Biologically Inspired Materials. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_32

Download citation

Publish with us

Policies and ethics