Skip to main content

Mechanical Testing at the Micro/Nanoscale

  • Reference work entry
Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Mechanical testing of micro- and nanoscale materials such as thin films, nanotubes and nanowires, and cellular and subcellular biomaterials is a significant step towards the realization of nanoscale devices and is essential for the commercialization of microscale integrated systems. The challenges in mechanical testing at these smaller length scales emanate from the very basic (specimen preparation and manipulation, high-resolution force and displacement sensing) to complex (enhanced multiphysics coupling, specimen–environment interaction) experimental issues. In this chapter, we attempt to focus on these issues in light of the existing and potential solutions as we review the state of the art in micro- and nanoscale mechanical testing as well as our understanding of materials behavior at these length scales.

This chapter is divided into six sections. The first section introduces the research problem in micro/nanomechanical testing and describes the evolution for the need of this research area with examples in micro/nanoscale materials phenomena. The second section describes the challenges in nanomechanical testing and commonly studied materials. The third section provides a broad overview of the available tools and techniques. The vastness of the relevant literature means that this review essentially is incomplete and instead, the section focuses on the techniques that are most commonly used or have very high potential. The fourth section is devoted to bio-materials, which are ultra compliant and sensitive to the environment and thus present the ultimate challenge in mechanical testing. Section five provides a critical analysis of the available techniques and the emerging problems in mechanical testing and opportunities and challenges therein. Finally, section six suggests further readings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

DIC:

digital image correlation

DRIE:

deep reactive-ion etching

FAC:

focal adhesion complex

FIB:

focused ion beam

ISDG:

interferometric strain/displacement gage

MEMS:

micro-electromechanical system

MW(C)NT:

multiwalled (carbon) nanotubes

NC:

nanocrystalline

RF:

radiofrequency

SEM:

Society for Experimental Mechanics

SEM:

scanning electron microscopy

STM:

scanning tunneling microscope

SW(C)NT:

single-walled (carbon) nanotubes

TEM:

transmission electron microscopy

References

  1. R.P. Vinci, J.J. Vlassak: Mechanical behavior of thin films, Ann. Rev. Mater. Sci. 26, 431–462 (1996)

    Google Scholar 

  2. O. Kraft, C.A. Volkert: Mechanical testing of thin films and small structures, Adv. Eng. Mater. 3, 99–110 (2001)

    Google Scholar 

  3. W.N. Sharpe Jr.: Mechanical properties of MEMS materials. In: The MEMS Handbook, ed. by M. Gad-el-Hak (CRC, Boca Raton 2002) pp. 3–33, Sect. 1, Chapt. 3

    Google Scholar 

  4. V.T. Srikar, S.M. Spearing: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems, Exp. Mech. 43, 238–247 (2003)

    Google Scholar 

  5. M.A. Haque, M.T.A. Saif: A review on micro and nano-mechanical testing with MEMS, Exp. Mech. 43, 1–8 (2003)

    Google Scholar 

  6. F.R. Brotzen: Mechanical testing of thin films, Int. Mater. Rev. 39, 24–45 (1994)

    Google Scholar 

  7. T.D. Shen, C.C. Koch, T.Y. Tsui, G.M. Pharr: On the elastic moduli of nano-crystalline Fe, Cu, Ni, and Cu Ni alloys prepared by mechanical milling/alloying, J. Mater. Res. 10, 2892–2896 (1995)

    Google Scholar 

  8. R.A. Masumura, P.M. Hazzledine, C.S. Pande: Yield stress of fine grained materials, Acta Mater. 46, 4527–4534 (1998)

    Google Scholar 

  9. E. Arzt: Size effects in materials due to microstructural and dimensional constraints: A comparative review, Acta Mater. 46, 5611–5626 (1998)

    Google Scholar 

  10. W.S. Trimmer: Micromechanics and MEMS: Classic and Seminal Papers to 1990 (Wiley-IEEE, New York 1997)

    Google Scholar 

  11. R.O. Ritchie, C.L. Muhlstein, R.K. Nalla: Failure by fracture and fatigue in "nano" and "bio" materials, JSME Int. Ser. A: Solid Mech. Mater. Eng. 47, 238–251 (2004)

    Google Scholar 

  12. S.M. Spearing: Materials issues in microelectromechanical systems (MEMS), Acta Mater. 48, 179–196 (2000)

    Google Scholar 

  13. J. Judy: Microelectromechanical systems (MEMS): fabrication, design and applications, Smart Mater. Struct. 10, 1115–1134 (2001)

    Google Scholar 

  14. W.D. Nix: Mechanical properties of thin films, Metall. Trans. 20A, 2217–2245 (1989)

    Google Scholar 

  15. G.W. Nieman, J.R. Weertman, R.W. Siegel: Mechanical behavior of nano-crystalline Cu and Pd, J. Mater. Res. 6, 1012–1027 (1991)

    Google Scholar 

  16. H. Mizubayashi, J. Matsuno, H. Tanimoto: Youngʼs modulus of silver films, Scr. Mater. 41, 443–448 (1999)

    Google Scholar 

  17. M.A. Haque, M.T.A. Saif: Deformation mechanisms in free-standing nano-scale thin films: A quantitative in-situ TEM study, Proc. Natl. Acad. Sci., Vol. 101 (2004) pp. 6335–6340

    Google Scholar 

  18. D. Chen: Computer model simulation study of nano-crystalline iron, Mater. Sci. Eng. A 190, 193–198 (1995)

    Google Scholar 

  19. J. Schiotz, F.D. Di-Tolla, K.W. Jacobsen: Softening of nano-crystalline metals at very small grain sizes, Nature 391, 561–563 (1998)

    Google Scholar 

  20. P.G. Sanders, C.J. Youngdahl, J.R. Weertman: The strength of nano-crystalline metals with and without flaws, Mater. Sci. Eng. A 234–236, 77–82 (1997)

    Google Scholar 

  21. H.S. Kim, M.B. Bush: The effects of grain size and porosity on the elastic modulus of nano-crystalline materials, Nanostruct. Mater. 11, 361–367 (1999)

    Google Scholar 

  22. H. Huang, F. Spaepen: Tensile testing of free-standing Cu, Ag, and Al thin films and Ag/Cu multilayers, Acta Mater. 48, 3261–3269 (2000)

    Google Scholar 

  23. M.A. Haque, M.T.A. Saif: Thermo-mechanical properties of nanoscale freestanding aluminum films, Thin Solid Films 484, 364–368 (2005)

    Google Scholar 

  24. A.J. Kalkman, A.H. Verbruggen, G.C. Janssen: Youngʼs modulus measurements and grain boundary sliding in freestanding thin metal films, Appl. Phys. Lett. 78, 2673–2675 (2001)

    Google Scholar 

  25. S. Sakai, H. Tanimoto, H. Mizubayashi: Mechanical behavior of high-density nano-crystalline gold prepared by gas deposition Method, Acta Mater. 47, 211–217 (1999)

    Google Scholar 

  26. X. Lin, O. Takahito, Y. Wang, M. Esashi: Study on ultra-thin NEMS cantilevers: High yield fabrication and size-effect on Youngʼs modulus, Proc. IEEE Int. Conf. Micro Electro Mechan. Syst. (2002) pp. 427–430

    Google Scholar 

  27. N.G. Chechenin, J. Bøtigger, J.P. Krog: Nanoindentation of amorphous aluminum oxide films III. The influence of the substrate on the elastic properties, Thin Solid Films 304, 70–77 (1997)

    Google Scholar 

  28. M.Y. Gutkin, I.A. Ovidko, C.S. Pande: Theoretical models of plastic deformation processes in nano-crystalline materials, Rev. Adv. Mater. Sci. 2, 80–102 (2001)

    Google Scholar 

  29. C.C. Koch, J. Naryan: The inverse Hall-Petch effect – Fact or artifact?, Proc. Mater. Res. Soc. Symp., Vol. 634 (2001) pp. B5.1.1–B51.11

    Google Scholar 

  30. S. Yip: Nanocrystals – the strongest size, Nature 391, 532–533 (1998)

    Google Scholar 

  31. T.G. Nieh, J. Wadsworth: Hall-Petch relation in nano-crystalline solids, Scr. Mater. 25, 955–958 (1991)

    Google Scholar 

  32. C.S. Pande, R.A. Masumura, R.W. Armstrong: Pile-up based Hall-Petch relation for nano-scale materials, Nanostruct. Mater. 2, 323–331 (1993)

    Google Scholar 

  33. H. Chokshi, A. Rosen, J. Karch, H. Gleiter: On the validity of the Hall-Petch relationship in nano-crystalline materials, Scr. Mater. 23, 1679–1684 (1989)

    Google Scholar 

  34. B. Cai, Q. Kong, L. Liu, K. Lu: Interface controlled diffusional creep of nano-crystalline pure copper, Scr. Mater. 41, 755–759 (1999)

    Google Scholar 

  35. H.V. Swygenhoven, M. Spaczar, A. Caro: Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni, Acta Mater. 47, 3117–3126 (1999)

    Google Scholar 

  36. P. Heino, E. Ristolainen: Strength of nano-scale polycrystalline copper under shear, Philos. Mag. A 81, 957–970 (2001)

    Google Scholar 

  37. R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, B. Baudelet: The Hall-Petch relation in submicron-grained Al-1.5 %Mg alloy, Scr. Mater. 27, 855–860 (1992)

    Google Scholar 

  38. J. Lian, B. Baudelet, A.A. Nazarov: Model for the prediction of the mechanical behavior of nano-crystalline materials, Mater. Sci. Eng. A 172, 23–29 (1993)

    Google Scholar 

  39. K. Lu, M.L. Sui: An explanation to the abnormal Hall-Petch relation in nano-crystalline materials, Scr. Mater. 28, 1465–1470 (1993)

    Google Scholar 

  40. H.S. Kim, Y. Esterin, B.M. Bush: Plastic deformation of fine-grained materials, Acta Mater. 48, 493–504 (2000)

    Google Scholar 

  41. P.G. Collins, P. Avouris: Nanotubes for electronics, Sci. Am. 12, 62–69 (2000)

    Google Scholar 

  42. C.M. Lieber: Nanoscale science and technology: Building a big future from small things, MRS Bull. 28, 486–491 (2003)

    Google Scholar 

  43. M. Law, J. Goldberger, P. Yang: Semiconductor nanowires and nanotubes, Ann. Rev. Mater. Res. 34, 83–122 (2004)

    Google Scholar 

  44. D.E. Ingber: Mechanobiology and diseases of mechanotransduction, Ann. Med. 35, 564–577 (2003)

    Google Scholar 

  45. J.D. Humphrey: Stress, strain, and mechanotransduction in Cells, J. Biomech. Eng. 123, 638–641 (2001)

    Google Scholar 

  46. H. Huang, R.D. Kamm, R.T. Lee: Cell mechanics and mechanotransduction: pathways, probes, and physiology, Am. J. Physiol. – Cell Physiol. 287, 1–11 (2004)

    Google Scholar 

  47. R. Ritchie: Whither ʼnanoʼ or ʼbioʼ?, Mater. Today 8, 72 (2005)

    Google Scholar 

  48. C. Zhu, G. Bao, N. Wang: Cell mechanics: mechanical response, cell adhesion, and molecular deformation, Ann. Rev. Biomed. Eng. 2, 189–226 (2000)

    Google Scholar 

  49. K.J. Van Vliet, G. Bao, S. Suresh: The biomechanics toolbox: experimental approaches for living cells and biomolecules, Acta Mater. 51, 5881–5905 (2003)

    Google Scholar 

  50. J.V. Small, B. Geiger, I. Kaverina, A. Bershadsky: How do microtubules guide migrating cells?, Nature Rev.; Mol. Cell Biol. 3, 957–964 (2002)

    Google Scholar 

  51. P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D.A. Weitz, V. Viasnoff, J.P. Butler, J.P. Fredberg: Cytoskeletal remodelling and slow dynamics in the living cell, Nat. Mater. 4, 557–561 (2005)

    Google Scholar 

  52. G. Bao, S. Suresh: Cell and molecular mechanics of biological materials, Nat. Mater. 2, 715–725 (2003)

    Google Scholar 

  53. D. Boal: Mechanics of the Cell (Cambridge Univ. Press., Cambridge 2002)

    Google Scholar 

  54. U.S. Bhalla: Models of cell signaling pathways, Curr. Opin. Genet. Dev. 14, 375–381 (2004)

    Google Scholar 

  55. B. Martinac: Mechanosensitive ion channels: molecules of mechanotransduction, J. Cell Sci. 117, 2449–2460 (2004)

    Google Scholar 

  56. H.D. Espinosa, B.C. Prorok, M. Fischer: A methodology for determining mechanical properties of freestanding thin films and MEMS materials, J. Mech. Phys. Solids 51, 47–67 (2003)

    Google Scholar 

  57. W.N. Sharpe Jr.: Tensile testing at the micrometer scale (opportunities in experimental mechanics), Exp. Mech. 43, 228–237 (2003)

    Google Scholar 

  58. G.C. Johnson, P.T. Jones, R.T. Howe: Materials characterization for MEMS: A comparison of uniaxial and bending tests, Proc. SPIE, Vol. 3874 (2000) pp. 94–101

    Google Scholar 

  59. ASTM: Metals – Mechanical Testing; Elevated and Low-Temperature Tests; Metallography, Vol. 03.01 (ASTM, West Conshohocken 2005)

    Google Scholar 

  60. C.G. Andeen, C.W. Hagerling, R.W. Hoffman: The nanotensilometer – An accurate, sensitive tensile test instrument, Proc. 7th Int. Vacuum Congr. and 3rd Int. Conf. Solid Surf. (Vienna 1977)

    Google Scholar 

  61. J.R. Davis: Tensile Testing (ASM International, Materials Park 2004)

    Google Scholar 

  62. G.T. Mearini, R.W. Hoffman: Tensile properties of aluminum/alumina multi-layered thin films, J. Electron. Mater. 22, 623–629 (1993)

    Google Scholar 

  63. W.N. Sharpe Jr., B. Yuan, R.L. Edwards: A new technique for measuring the mechanical properties of thin films, J. Microelectromech. Syst. 6, 193–199 (1997)

    Google Scholar 

  64. D.A. LaVan, W.N. Sharpe Jr.: Tensile testing of microsamples, Exp. Mech. 39, 210–216 (1999)

    Google Scholar 

  65. T. Tsuchyia, M. Shikida, K. Sato: Tensile testing system for sub-micrometer thick films, Sensors Actuators A 97–98, 492–496 (2002)

    Google Scholar 

  66. S. Greek, F. Ericson, S. Johansson, J.A. Schweitz: Micromechanical tensile testing, Mater. Res. Soc. Symp. (1997)

    Google Scholar 

  67. M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeil: Determination of displacements using an improved digital image correlation method, Image Vis. Comput. 1, 133–139 (1983)

    Google Scholar 

  68. S. Chang, C.S. Wang, C.Y. Xiong, J. Fang: Nanoscale in-plane displacement evaluation by AFM scanning and digital image correlation processing, Nanotechnology 16, 344–349 (2005)

    Google Scholar 

  69. X. Shi, H.L.J. Pang, X.R. Zhang, Q.J. Liu, M. Ying: In-situ micro-digital image speckle correlation technique for characterization of materialsʼ properties and verification of numerical models, IEEE Trans. Compon. Packag. Technol. 27, 659–667 (2004)

    Google Scholar 

  70. H.W. Schrier, J.R. Braasch, M.A. Sutton: Systematic errors in digital image correlation caused by intensity interpolation, Opt. Eng. 39, 2915–2821 (2000)

    Google Scholar 

  71. Y.B. Gianchandani, K. Najafi: Bent-beam strain sensors, J. Microelectromech. Syst. 5, 52–58 (1996)

    Google Scholar 

  72. I. Chasiotis, W.G. Knauss: A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Exp. Mech. 42, 51–57 (2002)

    Google Scholar 

  73. S. Cho, J.F. Cardenas-Garcia, I. Chasiotis: Measurement of nanodisplacements and elastic properties of MEMS via the microscopic hole method, Sensors Actuators A 120, 163–171 (2005)

    Google Scholar 

  74. D.T. Read, Y.-W. Cheng, R.R. Keller, J.D. McColskey: Tensile properties of free-standing aluminum thin films, Scr. Mater. 45, 583–589 (2001)

    Google Scholar 

  75. L. Lin, A.P. Pisano, R.T. Howe: A micro strain gauge with mechanical amplifier, J. Microelectromech. Syst. 6, 313–321 (1997)

    Google Scholar 

  76. C.S. Pan, W. Hsu: A microstructure for in situ determination of residual strain, J. Microelectromech. Syst. 8, 200–207 (1999)

    Google Scholar 

  77. V. Ziebart, O. Paul, H. Baltes: Strongly buckled square micromachined membranes, J. Microelectromech. Syst. 8, 423–432 (1999)

    Google Scholar 

  78. F. Ericson, S. Greek, J. Söderkvist, J.-A. Schweitz: High-sensitivity surface micromachined structures for internal stress and stress gradient evaluation, J. Micromech. Microeng. 7, 30–36 (1997)

    Google Scholar 

  79. L. Elbrecht, U. Storm, R. Catanescu, J. Binder: Comparison of stress measurement techniques in surface micromachining, J. Micromech. Microeng. 7, 151–154 (1997)

    Google Scholar 

  80. T. Ueda, G.F. Simenson, W.D. Nix, B.M. Clemens: In-situ observation of stress in Cu/Pd multilayers, Proc. 1995 MRS Meeting (San Francisco 1995)

    Google Scholar 

  81. Y.-L. Shen, S. Suresh, I.A. Blech: Processing-induced stresses and curvature in patterned lines on silicon wafers, Proc. 1996 MRS Spring Symp. (San Francisco 1996)

    Google Scholar 

  82. R. Clos, A. Dadgar, A. Krost: Wafer curvature in the nonlinear deformation range, Physica Status Solidi A: Appl. Res. 201, 75–78 (2004)

    Google Scholar 

  83. M.T.A. Saif, N.C. MacDonald: Microinstruments for submicron materials studies, J. Mater. Res. 13, 3353–3356 (1998)

    Google Scholar 

  84. D.J. Bell, T.J. Lu, N.A. Fleck, S.M. Spearing: MEMS actuators and sensors: observations on their performance and selection for purpose, J. Micromech. Microeng. 15, S153–S164 (2005)

    Google Scholar 

  85. M.A. Haque, M.T.A. Saif: Microscale materials testing using MEMS actuators, J. Microelectromech. Syst. 10, 146–152 (2001)

    Google Scholar 

  86. P.M. Osterberg, S.D. Senturia: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures, J. Microelectromech. Syst. 6, 107–118 (1997)

    Google Scholar 

  87. M.T.A. Saif, N.C. MacDonald: Measurement of forces and spring constants of microinstruments, Rev. Sci. Instrum. 69, 1410–1422 (1998)

    Google Scholar 

  88. H. Kahn, R. Ballarini, J.J. Bellante, A.H. Heuer: Fatigue failure in polysilicon not due to simple stress corrosion cracking, Science 298, 1215–1218 (2002)

    Google Scholar 

  89. A.J. Connally, S.B. Brown: Micromechanical fatigue testing, Exp. Mech. 33, 81–90 (1993)

    Google Scholar 

  90. C.L. Muhlstein, R.T. Howe, R.O. Ritchie: Fatigue of polycrystalline silicon for microelectromechanical system applications: crack growth and stability under resonant loading conditions, Mech. Mater. 36, 13–33 (2004)

    Google Scholar 

  91. R. Ballarini, R.L. Mullen, Y. Yin, H. Kahn, S. Stemmer, A.H. Heuer: The fracture toughness of polysilicon microdevices – a first report, J. Mater. Res. 12, 915–922 (1997)

    Google Scholar 

  92. M.A. Haque, M.T.A. Saif: Application of MEMS force sensors for in-situ mechanical characterization of nano-scale thin films in SEM & TEM, Sensors Actuators A 97–98, 239–245 (2002)

    Google Scholar 

  93. M.A. Haque, M.T.A. Saif: A novel technique for tensile testing of submicron scale freestanding specimens in SEM and TEM, Exp. Mech. 42, 123–130 (2002)

    Google Scholar 

  94. T. Hanabusa, K. Kusaka, O. Sakata: Residual stress and thermal stress observation in thin copper films, Proc. Eight European Vacuum Congress (Berlin 2004)

    Google Scholar 

  95. R.O.E. Vijgen, J.H. Dautzenberg: Mechanical measurement of the residual stress in thin PVD films, Thin Solid Films 270, 264–269 (1995)

    Google Scholar 

  96. M.A. Haque, M.T.A. Saif: Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension, Scr. Mater. 47, 863–867 (2002)

    Google Scholar 

  97. M.A. Haque, M.T.A. Saif: In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope, J. Mater. Res. 20, 1769–1777 (2005)

    Google Scholar 

  98. Y. Zhu, H.D. Espinosa: An electromechanical material testing system for in situ electron microscopy and applications, Proc. Natl. Acad. Sci., Vol. 102 (2005) pp. 14503–14508

    Google Scholar 

  99. S. Lu, D.A. Dikin, S. Zhang, F.T. Fisher, J. Lee, R.S. Ruoff: Realization of nanoscale resolution with a micromachined thermally actuated testing stage, Rev. Sci. Instrum. 75, 2154–2162 (2004)

    Google Scholar 

  100. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)

    Google Scholar 

  101. M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84, 5552–5555 (2000)

    Google Scholar 

  102. H.-J. Butt, B. Cappella, M. Kappl: Force measurements with the atomic force microscope: Technique, interpretation and applications, Surf. Sci. Rep. 59, 1–152 (2005)

    Google Scholar 

  103. P.J. Cumpson, J. Hedley, P. Zhdan: Accurate force measurement in the atomic force microscope: A microfabricated array of reference springs for easy cantilever calibration, Nanotechnology 14, 918–924 (2003)

    Google Scholar 

  104. B.A. Samuel, A.V. Desai, M.A. Haque: Microscale application of column theory for high resolution force and displacement sensing, Appl. Phys. Lett. 87, 021904 (2005)

    Google Scholar 

  105. A.V. Desai, M.A. Haque: Mechanical testing of ZnO nanowires, J. Nanoeng. Nanosyst. 42, 57–65 (2006)

    Google Scholar 

  106. B. Wu, A. Heidelberg, J.J. Boland: Mechanical properties of ultrahigh-strength gold nanowires, Nat. Mater. 4, 525–529 (2005)

    Google Scholar 

  107. E.W. Wong, P.E. Sheehan, C.M. Lieber: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971–1975 (1997)

    Google Scholar 

  108. D. Bozovic, M. Bockrath, J.H. Hafner, C.M. Lieber, H. Park, M. Tinkham: Plastic deformations in mechanically strained single-walled carbon nanotubes, Phys. Rev. B 67, 033407 (2003)

    Google Scholar 

  109. T.W. Tombler, C.W. Zhou, L. Alexseyev, J. Kong, H.J. Dai, L. Lei, C.S. Jayanthi, M.J. Tang, S.Y. Wu: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature 405, 769–772 (2000)

    Google Scholar 

  110. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)

    Google Scholar 

  111. S. Shanmugham, J. Jeong, A. Alkhateeb, D.E. Aston: Polymer nanowire elastic moduli measured with digital pulsed force mode AFM, Langmuir 21, 10214–10218 (2005)

    Google Scholar 

  112. S. Sundararajan, B. Bhushan: Development of AFM-based techniques to measure mechanical properties of nanoscale structures, Sensors Actuators A 101, 338–351 (2002)

    Google Scholar 

  113. H.P. Lang, M. Hegner, E. Meyer, C. Gerber: Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology, Nanotechnology 13, R29–R36 (2002)

    Google Scholar 

  114. X. Li, X. Wang, Q. Xiong, P.C. Eklund: Top-down structure and device fabrication using in situ nanomachining, Appl. Phys. Lett. 27, 233113 (2005)

    Google Scholar 

  115. T.E. Buchheit, S.J. Glass, J.R. Sullivan, S.S. Mani, D.A. Lavan, T.A. Friedmann, R. Janek: Micromechanical testing of MEMS materials, J. Mater. Sci. 38, 4081–4086 (2003)

    Google Scholar 

  116. E.P. Tan, C.T. Lim: Novel approach to tensile testing of micro- and nanoscale fibers, Rev. Sci. Instrum. 75, 2581–2585 (2004)

    Google Scholar 

  117. M.D. Uchic, D.M. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mater. Sci. Eng. A 400–401, 268–278 (2005)

    Google Scholar 

  118. W.C. Oliver, G.M. Pharr: An improved technique for deter-mining hardness and elastic modulus using load and displacementsensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992)

    Google Scholar 

  119. B.E. Alaca, J.C. Selby, M.T.A. Saif, H. Sehitoglu: Biaxial testing of nanoscale films on compliant substrates: Fatigue and fracture, Rev. Sci. Instrum. 73, 2963–2970 (2002)

    Google Scholar 

  120. D.A. Dikin, X. Chen, W. Ding, G. Wagner, R.S. Ruoff: Resonance vibration of amorphous SiO_2 nanowires driven by mechanical or electrical field excitation, J. Appl. Phys. 93, 226–230 (2003)

    Google Scholar 

  121. M.J. Bamber, K.E. Cooke, A.B. Mann, B. Derby: Accurate determination of Youngʼs modulus and Poissonʼs ratio of thin films by a combination of acoustic microscopy and nanoindentation, 28th Int. Conf. Metallurgia (San Diego 2001)

    Google Scholar 

  122. S. Chowdhury, E. de Barra, M.T. Laugier: Hardness measurement of CVD diamond coatings on SiC substrates, Surf. Coat. Technol. 193, 200–205 (2005)

    Google Scholar 

  123. T. Chudoba, N. Schwarzet, V. Linss, F. Richter: Determination of mechanical properties of graded coatings using nanoindentation, Thin Solid Films 469-470, 239–247 (2004)

    Google Scholar 

  124. G.B. de Souza, C.E. Foerster, S.L.R. da Silva, F.C. Serbena, C.M. Lepienski, C.A. dos Santos: Hardness and elastic modulus of ion-nitrided titanium obtained by nanoindentation, Surf. Coat. Technol. 191, 76–82 (2005)

    Google Scholar 

  125. J.H. Edgar, C.H. Wei, D.T. Smith, T.J. Kistenmacher, W.A. Bryden: Hardness, elastic modulus and structure of indium nitride thin films on AlN-nucleated sapphire substrates, J. Mater. Sci.: Mater. Electron. 8, 307–312 (1997)

    Google Scholar 

  126. T.-H. Fang, W.-J. Chang: Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique, Microelectron. Engineer. 65, 231–238 (2002)

    Google Scholar 

  127. G. Feng, W.D. Nix, Y. Yong, C.J. Lee, K. Cho: A study of the nanomechanical properties of nanowires using nanoindentation, J. Appl. Phys. 99(7), 074304 (2004)

    Google Scholar 

  128. S. Hur, S.I. Hong, H.J. Lee, S.W. Han, J.H. Kim, J.Y. Kang, B.-I. Choi, C.-S. Oh: Measurements of mechanical properties of thin polymer films by nanoindentation technique, Proc. 11th Asian Pacific Conf. Nondestructive Testing (Jeju Island 2004)

    Google Scholar 

  129. H. Ishikawa, S. Fudetani, M. Hirohashi: Mechanical properties of thin films measured by nanoindenters, Appl. Surf. Sci. 178, 56–62 (2001)

    Google Scholar 

  130. J.L. Ladison, J.J. Price, J.D. Helfinstine, W.R. Rosch: Hardness, elastic modulus, and fracture toughness bulk properties in corning calcium fluoride, Optical Microlithography XVIII (San Jose 2005)

    Google Scholar 

  131. X. Li, B. Bhushan, K. Takashima, C.-W. Baek, Y.-K. Kim: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy 97, 481–494 (2003)

    Google Scholar 

  132. W.D. Nix: Elastic and plastic properties of thin films on substrates: Nanoindentation techniques, Mater. Sci. Eng. A A234–23, 37–44 (1997)

    Google Scholar 

  133. J.-Y. Rho, T.Y. Tsui, G.M. Pharr: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials 18, 1325–1330 (1997)

    Google Scholar 

  134. J. Woirgard, C. Tromas, J.C. Girard, V. Audurier: Study of the mechanical properties of ceramic materials by the nanoindentation technique, J. Eur. Ceram. Soc. 18, 2297–2305 (1998)

    Google Scholar 

  135. Z.-H. Xu, D. Rowcliffe: Method to determine the plastic properties of bulk materials by nanoindentation, Philos. Mag. A: Phys. Condensed Matter Struct. Defects Mech. Prop. 82, 1893–1901 (2002)

    Google Scholar 

  136. P.K. Zysset, X. Edward Guo, C. Edward Hoffler, K.E. Moore, S.A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32, 1005–1012 (1999)

    Google Scholar 

  137. K.L. Kendig, R. Gibala, B.S. Majumdar, D.B. Miracle, S.G. Warrier: Nanoindentation as a probe for residual stress, Proc. 1997 TMS Annual Meeting (Orlando 1997)

    Google Scholar 

  138. K. Kese, D.J. Rowcliffe: Nanoindentation method for measuring residual stress in brittle materials, J. Am. Ceram. Soc. 86, 811–816 (2003)

    Google Scholar 

  139. A.V. Zagrebelny, C.B. Carter: Detection of residual stresses in glass-penetrated polycrystalline alumina with nanoindentation, Philos. Mag. A: Phys. Cond. Matter Struct. Defects Mech. Prop. 79, 835–845 (1999)

    Google Scholar 

  140. J.G. Swadener, B. Taljat, G.M. Pharr: Measurement of residual stress by load and depth sensing indentation with spherical indenters, J. Mater. Res. 16, 2091–2102 (2001)

    Google Scholar 

  141. M. Iwasa, K. Tanaka, J.A. Barnard, R.C. Bradt: Dynamic hardness of thin films and its thickness dependence, Proc. 1997 MRS Fall Meeting (Boston 1998)

    Google Scholar 

  142. X. Li, B. Bhushan: Dynamic mechanical characterization of magnetic tapes using nanoindentation techniques, 8th Joint Magnetism and Magnetic Materials – International Magnetic Conference – (MMM-Intermag) (San Antonio 2001)

    Google Scholar 

  143. X. Li, B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact. 48, 11–36 (2002)

    Google Scholar 

  144. Y. Wang, L. Qiao, K. Gao, Y. Su, W. Chu, Z. Wang: Measurement of the fracture toughness and critical stress for cracking in SnO_2 nanobelts using nanoindentation, Jinshu Xuebao/Acta Metall. Sinica 40, 594–598 (2004)

    Google Scholar 

  145. M.D. Michel, L.V. Muhlen, C.A. Achete, C.M. Lepienski: Fracture toughness, hardness and elastic modulus of hydrogenated amorphous carbon films deposited by chemical vapor deposition, Thin Solid Films 496, 481–488 (2006)

    Google Scholar 

  146. G.M. Pharr, A. Bolshakov: Understanding nanoindentation unloading curves, J. Mater. Res. 17, 2660–2671 (2002)

    Google Scholar 

  147. G. Shafirstein, M.G. Gee, S. Osgerby, S.R.J. Saunders: Error analysis in nanoindentation, Proc. 1994 Fall Meeting of MRS (Boston 1995)

    Google Scholar 

  148. K. Herrmann, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche, R. Seemann: Progress in determination of the area function of indenters used for nanoindentation, Thin Solid Films 377–378, 394–400 (2000)

    Google Scholar 

  149. N. Tayebi, A.A. Polycarpou, T.F. Conry: Effects of substrate on determination of hardness of thin fillms by nanoscratch and nanoindentation techniques, J. Mater. Res. 19, 1791–1802 (2004)

    Google Scholar 

  150. T.Y. Tsui, G.M. Pharr: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates, J. Mater. Res. 14, 292–301 (1999)

    Google Scholar 

  151. N.X. Randall, C. Julia-Schmutz: Evolution of contact area and pile-up during the nanoindentation of soft coatings on hard substrates, Proc. 1998 MRS Spring Symp. (San Francisco 1998)

    Google Scholar 

  152. D. Beegan, S. Chowdhury, M.T. Laugier: The nanoindentation behaviour of hard and soft films on silicon substrates, Thin Solid Films 466, 167–174 (2004)

    Google Scholar 

  153. J.D. Bressan, A. Tramontin, C. Rosa: Modeling of nanoindentation of bulk and thin film by finite element method, Wear 258, 115–122 (2005)

    Google Scholar 

  154. X. Chen, J.J. Vlassak: A finite element study on the nanoindentation of thin films, Fundamentals of Nanoindentation and Nanotribology II (Boston 2001)

    Google Scholar 

  155. D. Cheng, Z. Yan, L. Yan: Atomic scale simulations of nanoindentation, Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/J. Wuhan Univ. Technol. (Transp. Sci. Engineer.) 29, 396–399 (2005)

    Google Scholar 

  156. T.-H. Fang, C.-I. Weng, J.-G. Chang: Molecular dynamics analysis of temperature effects on nanoindentation measurement, Mater. Sci. Eng. A 357, 7–12 (2003)

    Google Scholar 

  157. G.M. Pharr, A. Bolshakov, T.Y. Tsui, J.C. Hay: Nanoindentation of soft films on hard substrates: Experiments and finite element simulations, Proc. 1997 MRS Fall Meeting (Boston 1998)

    Google Scholar 

  158. M.R. VanLandingham: Review of Instrumented Indentation, J. Res. Natl. Inst. Stand. Technol. 108, 249–265 (2003)

    Google Scholar 

  159. W.C. Oliver, G.M. Pharr: Measurement of hardness and elastic modulus by intrumented indentation: advances in understandingand refinements to methodology, J. Mater. Res. 19, 3–20 (2004)

    Google Scholar 

  160. B. Bhushan, V.S. Williams, R.V. Shack: In-situ nanoindentation hardness apparatus for mechanical characterization of extremely thin films, J. Tribol. Trans. ASME 110, 563–571 (1988)

    Google Scholar 

  161. M. Zhao, C. Jiang, S. Li, S.X. Mao: Probing nano-scale mechanical characteristics of individual semi-conducting nanobelts, Mater. Sci. Eng. A 409, 223–226 (2005)

    Google Scholar 

  162. W.D. Nix, J.R. Greer, G. Feng, E.T. Lilleodden: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation, Thin Solid Films 515(6), 3152–3157 (2007)

    Google Scholar 

  163. T.P. Weihs, S. Hong, J.C. Bravman, W.D. Nix: Mechanical deflection of cantilever microbeams: a new technique for testing the mechanical properties of thin films, J. Mater. Res. 3, 931–943 (1988)

    Google Scholar 

  164. J.S. Mitchell, C.A. Zorman, T. Kicher, S. Roy, M. Mehregany: Examination of bulge test for determining residual stress, Youngʼs modulus, and Poissonʼs ratio of 3C-SiC thin films, J. Aerosp. Eng, MEMS – Microelectromech. Syst. 16, 46–54 (2003)

    Google Scholar 

  165. R.L. Edwards, G. Coles, W.N. Sharpe Jr.: Comparison of tensile and bulge tests for thin-film silicon nitride, Exp. Mech. 44, 49–54 (2004)

    Google Scholar 

  166. J.J. Vlassak, W.D. Nix: New bulge test technique for the determination of Youngʼs modulus and Poissonʼs ratio of thin films, J. Mater. Res. 7, 3242–3249 (1992)

    Google Scholar 

  167. A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen: High-temperature bulge-test setup for mechanical testing of free-standing thin films, Rev. Sci. Instrum. 74, 1383–1385 (2003)

    Google Scholar 

  168. M.K. Small, J.J. Vlassak, S.F. Powell, B.J. Daniels: Accuracy and reliability of bulge test experiments, Proc. 1993 Spring Meeting Mater. Res. Soc. (San Francisco 1993)

    Google Scholar 

  169. W.N. Sharpe Jr., B. Yuan, R.L. Edwards: New technique for measuring the mechanical properties of thin films, J. Microelectromech. Syst. 6, 193–199 (1997)

    Google Scholar 

  170. Y. Xiang, X. Chen, J.J. Vlassak: Plane-strain bulge test for thin films, J. Mater. Res. 20, 2360–2370 (2005)

    Google Scholar 

  171. R. Gao, Z.L. Wang, Z. Bai, W.A. de Heer, L. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622–625 (2000)

    Google Scholar 

  172. S. Cuenot, C. Fretigny, S. Demoustier-Champagne, B. Nysten: Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy, J. Appl. Phys. 93, 5650–5655 (2003)

    Google Scholar 

  173. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, 1513–1516 (1999)

    Google Scholar 

  174. M. Treacy, T. Ebbesen, J. Gibson: Exceptionally high Youngʼs modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)

    Google Scholar 

  175. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy: Youngʼs modulus of single-walled nanotubes, Phys. Rev. B 58, 14013–14019 (1998)

    Google Scholar 

  176. T. Morii, R. Mizuno, H. Haruta, T. Okada: An AFM study of the elasticity of DNA molecules, Thin Solid Films 464–465, 456–458 (2004)

    Google Scholar 

  177. A. Ikai, A. Idiris, H. Sekiguchi, H. Arakawa, S. Nishida: Intra- and intermolecular mechanics of proteins and polypeptides studied by AFM: With applications, Appl. Surf. Sci. 188, 506–512 (2002)

    Google Scholar 

  178. P.E. Marszalek, A.F. Oberhauser, M. Carrion-Vazquez, J.M. Fernandez: Conformational transitions in single protein and polysaccharide molecules studied with AFM techniques, Proc. 1999 IEEE Engineer. Med. Biol. 21st Ann. Conf. and 1999 Fall Meeting Biomed. Engineer. Soc. (1st Joint BMES/EMBS), Vol. 1 (1999) p. 78

    Google Scholar 

  179. G.S. Watson, J.A. Watson, C.L. Brown, S. Myhra: Protein folding and unfolding by force microscopy – A novel ʼinverseʼ methodology, Micro- and Nanotechnology: Materials, Processes, Packaging, and Syst. II (Sydney 2005)

    Google Scholar 

  180. G. Boas: Confocal combined with AFM to study force-induced structural changes, Biophoton. Int. 12, 17–18 (2005)

    Google Scholar 

  181. M. Ludwig, M. Rief, L. Schmidt, H. Li, F. Oesterhelt, M. Gautel, H.E. Gaub: AFM, a tool for single-molecule experiments, Appl. Phys. A: Mater. Sci. Process. 68, 173–176 (1999)

    Google Scholar 

  182. A.F. Oberhauser, P.E. Marszalek, M. Carrion-Vazquez, J.M. Fernandez: Force spectroscopy of cell adhesion molecules, Proc. 1999 IEEE Engineer. Med. Biol. 21st Ann. Conf. and 1999 Fall Meeting Biomed. Engineer. Soc. (1st Joint BMES/EMBS), Vol. 2 (1999) p. 1299

    Google Scholar 

  183. L. Kreplak, H. Bar, J.F. Leterrier, H. Herrmann, U. Aebi: Exploring the mechanical behavior of single intermediate filaments, J. Mol. Biol. 354, 569–577 (2005)

    Google Scholar 

  184. B. Fabry, G.N. Maksym, R.D. Hubmayr, J.P. Butler, J.J. Fredberg: Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry, J. Magn. Magn. Mater, Proc. 1998 2nd Int. Conf. Sci. Clin. Appl. Magn. Carriers 194, 120–125 (1999)

    Google Scholar 

  185. F. Moussy, F.Y.H. Lin, S. Lahooti, Z. Policova, W. Zingg, A.W. Neumann: Micropipette aspiration technique to investigate the adhesion of endothelial cells, Colloids Surf. B: Biointerfaces 2, 493–503 (1994)

    Google Scholar 

  186. K.N. Dahl, S.M. Kahn, D.E. Discher: Micromechanical properties of isolated nuclei and nuclear components, Proc. 2002 IEEE Engineer. Med. Biol. 24th Ann. Conf. and 2002 Fall Meeting Biomed. Engineer. Soc. (BMES/EMBS) (Houston 2002)

    Google Scholar 

  187. V. Heinrich, R.E. Waugh: Piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes, Ann. Biomed. Eng. 24, 595–605 (1996)

    Google Scholar 

  188. K. Prechtel, A.R. Bausch, V. Marchi-Artzner, M. Kantlehner, H. Kessler, R. Merkel: Dynamic force spectroscopy to probe adhesion strength of living cells, Phys. Rev. Lett. 89, 28101–1 (2002)

    Google Scholar 

  189. S. Guanbin, Y. Weiqun, L. Baoan, L. Mian, W. Zezhi, W. Bochu: Investigation on the viscoelasticity of synchronous hepatocellular carcinoma cells, Colloids Surf. B: Biointerfaces 24, 327–332 (2002)

    Google Scholar 

  190. Y.F. Missirlis, D. Mavrilas, G. Athanassiou: Cardiovascular mechanics: Investigation of two components, tissue heart valves and blood cells, Meccanica, Mech. Tissues Tissue Implants 37, 465–476 (2002)

    MATH  Google Scholar 

  191. K.A. Ward, J. Cezeaux, P. Everman, T. Davis, S. Zimmer: In vitro studies of deformation and adhesion of transformed cells, Ann. Biomed. Eng. 1991 Ann. Fall Meeting Biomed. Eng. Soc., Vol. 19 (1991) p. 591

    Google Scholar 

  192. J.E. Molloy, K. Dholakia, M.J. Padgett: Preface: Optical tweezers in a new light, J. Mod. Opt. Opt. Tweezers 50, 1501–1507 (2003)

    Google Scholar 

  193. G.J. Brouhard, H.T. Schek III, A.J. Hunt: Advanced optical tweezers for the study of cellular and molecular biomechanics, IEEE Trans. Biomed. Eng. 50, 121–125 (2003)

    Google Scholar 

  194. Y. Liu, G.J. Sonek, M.W. Berns: Two-beam scanning optical tweezers for cell manipulation and force transduction, Proc. 15th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. (San Diego 1993)

    Google Scholar 

  195. D.G. Grier: A revolution in optical manipulation, Nature 424, 810–816 (2003)

    Google Scholar 

  196. S. Kulin, R. Kishore, K. Helmerson, W.D. Phillips: Studying biological adhesion using optical tweezers, Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, Conference on Lasers and Electro-Optics (CLEO 2000) (2000) p. 590

    Google Scholar 

  197. J.E. Reiner, R. Kishore, C. Pfefferkorn, J. Wells, K. Helmerson, P. Howell, W. Vreeland, S. Forry, L. Locasio, D. Reyes-Hernandez, M. Gaitan: Optical manipulation of lipid and polymer nanotubes with optical tweezers, Optical Trapping and Optical Micromanipulation (Denver 2004)

    Google Scholar 

  198. P. Li, K. Shi, Z. Liu: Manipulation and spectroscopy of a single particle by use of white-light optical tweezers, Opt. Lett. 30, 156–158 (2005)

    Google Scholar 

  199. G.V. Shivashankar, A. Libchaber: Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer, Appl. Phys. Lett. 71, 3727 (1997)

    Google Scholar 

  200. W. Singer, S. Bernet, N. Hecker, M. Ritsch-Marte: Three-dimensional force calibration of optical tweezers, J. Mod. Opt. 47, 2921–2931 (2000)

    Google Scholar 

  201. A. Buosciolo, G. Pesce, A. Sasso: New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers, Opt. Commun. 230, 357–368 (2004)

    Google Scholar 

  202. J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen: Cells lying on a bed of microneedles: An approach to isolate mechanical force, Proc. Natl. Acad. Sci., Vol. 100 (2003) pp. 1484–1489

    Google Scholar 

  203. S. Yang, M.T.A. Saif: Micromachined force sensors for the study of cell mechanics, Rev. Sci. Instrum. 76, 044301–8 (2005)

    Google Scholar 

  204. C. Neidlinger-Wilke, E.S. Grood, J.H.-C. Wang, R.A. Brand, L. Claes: Cell alignment is induced by cyclic changes in cell length: Studies of cells grown in cyclically stretched substrates, J. Orthop. Res. 19, 286–293 (2001)

    Google Scholar 

  205. Y.U. Sun, B.J. Nelson: MEMS for cellular force measurements and molecular detection, Int. J. Inf. Acquis. 1, 23–32 (2004)

    Google Scholar 

  206. N. Li, A. Tourovskaia, A. Folch: Biology on a Chip: Microfabrication for studying the behavior of cultured cells, Crit. Rev. Biomed. Eng. 31, 423–488 (2003)

    Google Scholar 

  207. M.T.A. Saif, C.R. Sager, S. Coyer: Functionalized biomicroelectromechanical systems sensors for force response study at local adhesion sites of single living cells on substrates, Ann. Biomed. Eng. 31, 950–961 (2003)

    Google Scholar 

  208. S. Yang, M.T.A. Saif: Reversible and repeatable linear local cell force response under large stretches, Exp. Cell Res. 305, 42–50 (2005)

    Google Scholar 

  209. A.V. Desai, M.A. Haque: Freestanding Carbon Nanotube Specimen Fabrication, Proc. 2005 5th IEEE Conf. Nanotechnol. (Nagoya 2005)

    Google Scholar 

  210. R.M. Langford, Y.Z. Huang, S. Lozano-Perez, J.M. Titchmarsh, A.K. Petford-Long: Preparation of site specific transmission electron microscopy plan-view specimens using a focused ion beam system, 13th Int. Vaccum Microelectron. Conf. (Guangzhou 2001)

    Google Scholar 

  211. B. Li, X. Tang, H. Xie, X. Zhang: Strain analysis in MEMS/NEMS structures and devices by using focused ion beam system, Micromech. Sect. Sensors Actuators (Kyoto 2004)

    Google Scholar 

  212. A.J. Burns, R. Subramanian, B.W. Kempshall, Y.H. Sohn: Microstructure of as-coated thermal barrier coatings with varying lifetimes, Surf. Coat. Technol. 177–178, 89–96 (2004)

    Google Scholar 

  213. M.K. Miller, K.F. Russell, G.B. Thompson: Strategies for fabricating atom probe specimens with a dual beam FIB, Ultramicroscopy 102, 287–298 (2005)

    Google Scholar 

  214. D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff: Mechanics of carbon nanotubes, Appl. Mech. Rev. 55, 495–533 (2002)

    Google Scholar 

  215. S.C. Peng, K. Cho: Nano electro mechanics of semiconducting carbon nanotube, J. Appl. Mech. Trans. ASME 69, 451–453 (2002)

    MATH  Google Scholar 

  216. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen: Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 90, 156401–156404 (2003)

    Google Scholar 

  217. Y. Guo, W. Guo: Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field, J. Phys. D: Appl. Phys. 36, 805–811 (2003)

    Google Scholar 

  218. V.H. Crespi, M.L. Cohen, A. Rubio: In situ band gap engineering of carbon nanotubes, Phys. Rev. Lett. 79, 2093–2096 (1997)

    Google Scholar 

  219. C.L. Kane, E.J. Mele: Size, shape, and low energy electronic structure of carbon nanotubes, Phys. Rev. Lett. 78, 1932–1935 (1997)

    Google Scholar 

  220. M.B. Nardelli, J. Bernholc: Mechanical deformations and coherent transport in carbon nanotubes, Phys. Rev. B 60, 16338–16341 (1998)

    Google Scholar 

  221. A. Rochefort, D. Salahub, P. Avouris: The effect of structural distortions on the electronic structure of carbon nanotubes, Chem. Phys. Lett. 297, 45–50 (1998)

    Google Scholar 

  222. A. Rochefort, F. Lesage, D. Salhub, P. Avouris: Conductance of distorted carbon nanotubes, Phys. Rev. B 60, 13824–13830 (1999)

    Google Scholar 

  223. L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen: Quantum conductance of carbon nanotubes with defects, Phys. Rev. B 54, 2600–2606 (1996)

    Google Scholar 

  224. J. Cao, Q. Wang, H. Dai: Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching, Phys. Rev. Lett. 90, 157601/1–157601/4 (2003)

    Google Scholar 

  225. C. Oddou, S. Wendling, H. Petite, A. Meunier: Cell mechanotransduction and interactions with biological tissues, Biorheology 37, 17–25 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Amanul Haque Ph.D or Taher Saif Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Haque, M.A., Saif, T. (2008). Mechanical Testing at the Micro/Nanoscale. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_30

Download citation

Publish with us

Policies and ethics