Skip to main content

Materials Science for the Experimental Mechanist

  • Reference work entry
Book cover Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter presents selected principles of materials science and engineering relevant to the interpretation of structure–property relationships. Following a brief introduction, the first section describes the atomic basis for the description of structure at various size levels. Types of atomic bonds form a basis for a classification scheme of materials as well as for the distinction between amorphous and crystalline materials. Crystal structures of elements and compounds are described. The second section presents the thermodynamic and kinetic basis for the formation of microstructures and describes the use of phase diagrams for determining the nature and quantity of equilibrium phases present in materials. Principal methods for the observation and determination of structure are described. The structural foundations for phenomenological descriptions of equilibrium, dissipative, and transport properties are described. The chapter includes examples of the relationships among physical phenomena responsible for various mechanical properties and the values of these properties. In conclusion the chapter presents several useful principles for experimental mechanists to consider when measuring and applying values of material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMC:

ceramic matrix composite

GRP:

glass-reinforced plastic

MMC:

metal matrix composites

ODF:

orientation distribution function

OIM:

orientation imaging microscopy

OMC:

organic matrix composites

PMC:

polymer matrix composites

RMS:

root-mean-square

RVE:

representative volume element

SEM:

Society for Experimental Mechanics

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

bcc:

body-centered cubic

fcc:

face-centered cubic

hcp:

hexagonal close-packed

References

  1. J.F. Shackelford: Introduction to Materials Science for Engineers, 6th edn. (Pearson-Prentice Hall, New York 2004)

    Google Scholar 

  2. D.W. Callister: Materials Science and Engineering An Introduction, 6th edn. (Wiley, New York 2003)

    Google Scholar 

  3. D.R. Askeland: The Science and Engineering of Materials, 2nd edn. (Thomson, Stanford 1992)

    Google Scholar 

  4. M.F. Ashby, D.R. Jones: Engineering Materials 1: An Introduction to Their Properties and Applications, 2nd edn. (Butterworth Heinemann, Oxford 2000)

    Google Scholar 

  5. J.P. Hirth, J. Lothe: Theory of Dislocations, 2nd edn. (Wiley, New York 1982)

    Google Scholar 

  6. F.R.N. Nabarro, J.P. Hirth (Eds.): Dislocations in Solids, Vol. 12 (Elsevier, Amsterdam 2004)

    Google Scholar 

  7. C.S. Barrett, W.D. Nix, A. Tetleman: Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs 1973)

    Google Scholar 

  8. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak: Binary Alloy Phase Diagrams, 2nd edn. (ASM Int., Materials Park 1990)

    Google Scholar 

  9. R.S. Roth, T. Negas, L.P. Cook: Phase Diagrams for Ceramists, Vol. 5 (American Ceramic Society, Inc., 1983)

    Google Scholar 

  10. P. Villers, A. Prince, H. Okamoto: Handbook of Ternary Alloy Phase Diagrams (ASM Int., Materials Park 1995)

    Google Scholar 

  11. J. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig Jr., C.E. Lyman, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis, 2nd edn. (Springer, New York 1992)

    Google Scholar 

  12. R.T. DeHoff, F.N. Rhines: Quantitative Microscopy (McGraw-Hill, New York 1968)

    Google Scholar 

  13. B.D. Cullity: Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading 1978)

    Google Scholar 

  14. B.E. Warren: X-ray Diffraction (General, New York 1990)

    Google Scholar 

  15. D.K. Smith, R. Jenkins: The powder diffraction file: Past, present and future, Rigaku J. 6(2), 3–14 (1989)

    Google Scholar 

  16. W.I.F. David, K. Shankland, L.B. McCusker, C. Baerlocher (Eds.): Structure Determination from Powder Diffraction Data, International Union of Crystallography (Oxford Univ. Press, New York 2002)

    Google Scholar 

  17. I.C. Noyan, J.B. Cohen, B. Ilschner, N.J. Grant: Residual Stress Measurement by Diffraction and Interpretation (Springer, New York 1989)

    Google Scholar 

  18. C.S. Hartley: International Conference on Experimental Mechanics, ICEM12-12th (Italy 2004)

    Google Scholar 

  19. D.K. Bowen, B.K. Tanner: High Resolution X-ray Diffractometry and Topography (Taylor Francis, New York 1998)

    Google Scholar 

  20. L. Cartz: Nondestructive Testing Radiography, Ultrasonics, Liquid Penetrant, Magnetic Particle, Eddy Current (ASM Int., Materials Park 1995)

    Google Scholar 

  21. D.B. Williams, C.B. Carter: Transmission electron microscopy: a textbook for materials science (Kluwer Academic, New York, 1996)

    Google Scholar 

  22. B.L. Adams, S.I. Wright, K. Kunze: Orientation imaging: The emergence of a new microscopy, Met. Mat. Trans. A 24, 819–831 (1993)

    Article  Google Scholar 

  23. J.A. James, J.R. Santistban, L. Edwards, M.R. Daymond: A virtual laboratory for neutron and synchrotron strain scanning, Physica B 350(1–3), 743–746 (2004)

    Article  Google Scholar 

  24. L.E. Malvern: Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood Cliffs 1969)

    Google Scholar 

  25. J.F. Nye: Physical Properties of Crystals (Clarendon, Oxford 1985)

    Google Scholar 

  26. S.M. DeGroot: Thermodynamics of Irreversible Processes (North-Holland, Amsterdam 1951)

    Google Scholar 

  27. M.P. Marder: Condensed Matter Physics (Wiley, New York 2000)

    Google Scholar 

  28. W.G. Cady: Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals (Dover, New York 1964)

    Google Scholar 

  29. C.S. Hartley: Single crystal elastic moduli of disordered cubic alloys, Acta Mater. 51, 1373–1391 (2003)

    Article  Google Scholar 

  30. C. Zener: Elasticity and Anelasticity of Metals (Univ. Chicago Press, Chicago 1948)

    Google Scholar 

  31. J.D. Ferry: Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York 1980)

    Google Scholar 

  32. B. A. Bilby: Continuous Distributions of Dislocations, Progress in Solid Mechanics (1960)

    Google Scholar 

  33. J.D. Eshelby: The continuum theory of lattice defects, Solid State Phys. 3, 79–144 (1956)

    Article  Google Scholar 

  34. E. Kröner: Continuum theory of defects. In: Les Houches, Session XXXV, 1980 – Physics of Defects, ed. by R. Balian, M. Kleman, J.-P. Poirer (North-Holland, Amsterdam 1981) pp. 282–315

    Google Scholar 

  35. C.S. Hartley: A method for linking thermally activated dislocation mechanisms of yielding with continuum plasticity theory, Philos. Mag. 83, 3783–3808 (2003)

    Article  Google Scholar 

  36. R. Asaro: Crystal Plasticity, J. Appl. Mech. 50, 921–934 (1983)

    Article  MATH  Google Scholar 

  37. J. Lubliner: Plasticity Theory (Macmillan, New York 1990)

    MATH  Google Scholar 

  38. M.E. Glicksman: Diffusion in Solids (Wiley, New York 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Hartley Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Hartley, C.S. (2008). Materials Science for the Experimental Mechanist. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_2

Download citation

Publish with us

Policies and ethics