Skip to main content

Optical Fiber Strain Gages

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Optical fiber strain sensing is an evolving field in optical sciences in which multiple optical principles and techniques are employed to measure strain. This chapter seeks to provide a concise overview of the various types of optical fiber strain sensors currently available. The field of optical fiber strain sensing is nearly 30 years old and is still breaking new ground in terms of optical fiber technology, instrumentation, and applications. For each sensor discussed in the following sections, the basic optical layout is presented along with a description of the optical phenomena and the governing equations.

Comprehensive coverage of all aspects of optical fiber strain sensing is beyond the scope of this chapter. For example, each sensor type can be interrogated by a number of means, sometimes based on differing technology. Furthermore, these sensors are finding applications in a wide variety of fields including aerospace, oil and gas, maritime, and civil infrastructures. The interested reader is referred to the works by Grattan and Meggit [14.1], Measures [14.2], and Udd [14.3] for more-detailed descriptions of interrogation techniques and applications of the various sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABS:

American Bureau of Shipping

DTS:

distributed temperature sensing

DTS:

dodecyltrichlorosilane

EFPI:

extrinsic Fabry–Pérot interferometer

FBG:

fiber Bragg grating

LAN:

local area network

LED:

light-emitting diode

LPG:

long-period grating

NA:

numerical aperture

OFDR:

optical frequency-domain reflectometry

OPD:

optical path difference

PBG:

photonic-bandgap

PCF:

photonic-crystal fiber

PLD:

path length difference

PM:

polarization maintaining

PM:

power meter

RF:

radiofrequency

RSG:

resistance strain gage

TDM:

time division multiplexing

TIR:

total internal reflection

WDM:

wavelength-domain multiplexing

References

  1. K.T.V. Grattan, B.T. Meggitt (Eds.): Optical Fiber Sensor Technology, Vol. 1-4 (Kluwer Academic, Boston 1995)

    Google Scholar 

  2. R.M. Measures: Structural Monitoring with Fiber Optic Technology (Academic, San Diego 2001)

    Google Scholar 

  3. E. Udd (Ed.): Fiber Optic Smart Structures (Wiley, New York 1995)

    Google Scholar 

  4. Crystal Fibre, Birkerød, Denmark (www.crystal-fibre.com)

    Google Scholar 

  5. N.G. Skinner, J.L. Maida Jr.: Downhole fiber-optic sensing: The oilfield service providerʼs perspective, SPIE Fiber Optic Sensor Technol. Appl. III, 5589, 206–220 (2004)

    Google Scholar 

  6. B. Culshaw: Optical fiber sensor technologies: Opportunities and – perhaps – pitfalls, J. Lightwave Technol. 22(1), 39–50 (2004)

    Article  Google Scholar 

  7. A. Snyder, J. Love: Optical Waveguide Theory (Chapman Hall, New York 1983)

    Google Scholar 

  8. C.D. Butter, G.B. Hocker: Fiber optics strain gauge, Appl. Opt. 17(18), 2867–2869 (1978)

    Article  Google Scholar 

  9. S.M. Melle, K. Lui, R.M. Measures: Practical fiber-optic Bragg grating strain gauge system, Appl. Opt. 32, 3601–3609 (1993)

    Article  Google Scholar 

  10. B. Hitz: Fiber sensor uses Raman and Brillouin scattering, Photonics Spectra 39(7), 110–112 (2005)

    Google Scholar 

  11. M. Nikles: Omnisens, www.omnisens.ch

    Google Scholar 

  12. R. Kashyap: Fiber Bragg Gratings (Academic, San Diego 1999)

    Google Scholar 

  13. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki: Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication, Appl. Phys. Lett. 32, 647–649 (1978)

    Article  Google Scholar 

  14. A. Othonos, K. Kalli: Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston 1999)

    Google Scholar 

  15. G. Meltz, W.W. Morey, W.H. Glenn: Formation of Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett. 14, 823–825 (1989)

    Article  Google Scholar 

  16. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert: Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Appl. Phys. Lett. 62, 1035–1037 (1993)

    Article  Google Scholar 

  17. P. Sivanesan, J.S. Sirkis, Y. Murata, S.G. Buckley: Optimal wavelength pair selection and accuracy analysis of dual fiber grating sensors for simultaneously measuring strain and temperature, Opt. Eng. 41, 2456–2463 (2002)

    Article  Google Scholar 

  18. R.B. Wagreich, J.S. Sirkis: Distinguishing fiber Bragg grating strain effects, 12th International Conference on Optical Fiber Sensors, OSA, Vol. 16 (Technical Digest Series, Williamsburg 1997) pp. 20–23

    Google Scholar 

  19. C. Baldwin: Multi-parameter sensing using fiber Bragg grating sensors, Proc. of SPIE 6004, Fiber optic sensor technologies and applications IV, 60040A-1 (2005)

    Google Scholar 

  20. C. Baldwin, T. Salter, J. Niemczuk, P. Chen, J. Kiddy: Structural monitoring of composite marine piles using multiplexed fiber Bragg grating sensors: In-field applications, Proc. SPIE 4696, 82–91 (2002)

    Article  Google Scholar 

  21. A. Kersey, M.A. Davis, T.A. Berkoff, A.D. Dandridge, R.T. Jones, T.E. Tsai, G.B. Cogdell, G.W. Wang, G.B. Havsgaard, K. Pran, S. Knudsen: Transient load monitoring on a composite hull ship using distributed fiber optic Bragg grating sensors, Proc. SPIE 3042, 421–430 (1997)

    Article  Google Scholar 

  22. C. Baldwin, J. Kiddy, T. Salter, P. Chen, J. Niemczuk: Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton, MTS/IEEE Oceans 2002, 3, 1807–1814 (2002)

    Google Scholar 

  23. C. Baldwin, T. Salter, J. Kiddy: Static shape measurements using a multiplexed fiber Bragg grating sensor system, Proc. SPIE 5384, 206–217 (2004)

    Article  Google Scholar 

  24. B.A. Childers, M.E. Froggatt, S.G. Allison, T.C. Moore Sr., D.A. Hare, C.F. Batten, D.C. Jegley: Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure, Proc. SPIE 4332, 133–142 (2001)

    Article  Google Scholar 

  25. Z. Zhang, J.S. Sirkis: Temperature-compensated long period grating chemical sensor, Techn. Dig. Ser. 16, 294–297 (1997)

    Google Scholar 

  26. J. Kiddy, C. Baldwin, T. Salter: Certification of a submarine design using fiber Bragg grating sensors, Proc. SPIE 5388, 133–142 (2004)

    Google Scholar 

  27. P. E. Sanders: Optical Sensors in the Oil and Gas Industry, Presentation for New England Fiberoptic Council (NEFC) (2004)

    Google Scholar 

  28. P. J. Wright, W. Womack: Fiber-Optic Down-Hole Sensing: A Discussion on Applications and Enabling Wellhead Connection Technology, Proc. of Offshore Technology Conference, OTC 18121 (2006)

    Google Scholar 

  29. D.V. Brower, F. Abbassian, C.G. Caballero: Real-time Fatigue Monitoring of Deepwater Risers Using Fiber Optic Sensors, Proc. of ETCE/OMAE2000 Joint Conference: Energy for the New Millennium, ASME OFT-4066 (2000) pp. 173–180

    Google Scholar 

  30. L. Sutherland: Joint Industry Project, DeepStar, www.insensys.com, Insensys Ltd. (2005)

    Google Scholar 

  31. Insensys: Wind Energy, www.insensys.com (2006)

    Google Scholar 

  32. J. Kiddy: Deflections Measurements of Wind Turbine Blades using Fiber Optic Sensors, WINDPOWER 2006, Poster (2006)

    Google Scholar 

  33. A. Del Grosso, D. Inaudi: European Perspective on Monitoring-Based Maintenance, IABMAS ʼ04, International Association for Bridge Maintenance and Safety (Kyoto 2004)

    Google Scholar 

  34. P. Kronenberg, N. Casanova, D. Inaudi, S. Vurpillot: Dam monitoring with fiber optics deformation sensors, Proc. SPIE 3043, 2–11 (1997)

    Article  Google Scholar 

  35. B. Glisic, D. Inaudi, K.C. Hoong, J.M. Lau: Monitoring of building columns during construction, 5th Asia Pacific Structural Engineering and Construction Conference (APSEC) (2003) pp. 593–606

    Google Scholar 

  36. D. Inaudi, B. Glisic: Application of distributed fiber optic sensory for SHM, 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris S. Baldwin Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Baldwin, C.S. (2008). Optical Fiber Strain Gages. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_14

Download citation

Publish with us

Policies and ethics