Skip to main content

Optical Detectors

  • Reference work entry
Springer Handbook of Lasers and Optics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Optical detectors are applied in all fields of human activities – from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

This chapter starts with a brief historical sketch of first experiments facilitating development of optical detectors. The overview of photo detector types is followed by the description of the most important figures of merit and different detection regimes.

A detailed description of different types of optical detectors is presented in the following sections. The device structure and physics as well as important materials for fabrication, figures of merit, and brief application notes are given for photoconductors, photodiodes, quantum well photodetectors, semiconductor detectors with intrinsic amplification, charge transfer detectors, photoemissive detectors, and thermal photodetectors. The chapter includes also a brief overview of imaging systems and principles of black and white and color photography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BLIP:

background-limited infrared photodetector

CCD:

charge-coupled device

CCIS:

charge-coupled image sensor

CMOS:

complementary metal–oxide–semiconductor detector

CTIS:

charge transfer image sensor

DEPFET:

depleted field effect transistor structure

FET:

field effect transistor

FWHM:

full width at half-maximum

IR:

infrared

LIDAR:

light detecting and ranging

MCP:

microchannel plate

MIS:

metal–insulator–semiconductor

MOS:

metal–oxide–semiconductor

MTF:

modulation transfer function

NEP:

noise equivalent power

PMT:

photomultiplier tube

QDIP:

quantum-dot infrared photodetector

QWIP:

quantum well infrared photodetector

SOI:

silicon-on-insulator

TV:

television

UV:

ultraviolet

References

  1. D. Wood: Optoelectronic Semiconductor Devices (Prentice Hall, New York 1994)

    Google Scholar 

  2. E. L. Dereniak, G. D. Boreman: Infrared Detectors and Systems (Wiley, New York 1996)

    Google Scholar 

  3. E. L. Dereniak, D. G. Crowe: Optical Radiation Detectors (Wiley, New York 1984)

    Google Scholar 

  4. D. L. Smith: Theory of generation-recombination noise in intrinsic photoconductors, J. Appl. Phys. 53, 7051 (1982)

    Article  ADS  Google Scholar 

  5. T. S. Moss, G. J. Burrell, B. Elis: Semiconductor Opto-electronics (Butterworth, London 1973)

    Google Scholar 

  6. S. M. Sze: Physics of Semiconductor Devices (Wiley, New York 2001)

    Google Scholar 

  7. J. Geist: Quantum efficiency of the p-n junction in silicon as an absolute radiometric standard, Appl. Opt. 18, 760–762 (1979)

    Article  ADS  Google Scholar 

  8. C. Hicks, M. Kalatsky, R. A. Metzler, A. O. Goushcha: Quantum efficiency of silicon photodiodes in the near infrared spectral range, Appl. Opt. 42, 4415–4422 (2003)

    Article  ADS  Google Scholar 

  9. A. O. Goushcha, R. A. Metzler, V. N. Kharkyanen, C. Hicks, N. M. Berezetska: Determination of the carrier collection efficiency function of Si photodiode using spectral sensitivity measurements, Proc. SPIE 5353, 12–19 (2004)

    Article  ADS  Google Scholar 

  10. G. Lutz: Semiconductor Radiation Detectors Device Physics (Springer, Berlin, Heidelberg 1999)

    MATH  Google Scholar 

  11. M. Shur: Physics of Semiconductor Devices (Prentice Hall, Englewood Cliffs 1990)

    Google Scholar 

  12. P. P. Webb, R. J. McIntyre, J. Conradi: Properties of avalanche photodiodes, RCA Rev. 35, 234–277 (1974)

    Google Scholar 

  13. S. M. Sze, G. Gibbons: Avalanche breakdown voltages of abrupt and linearly graded p-n junctions in Ge, Si, and GaP, Appl.Phys. Lett. 8, 8111 (1966)

    Article  Google Scholar 

  14. K. K. Ng: Complete Guide to Semiconductor Devices (Wiley, New York 2002)

    Google Scholar 

  15. A. S. Grove: Physics and Technology of Semiconductor Devices (Wiley, New York 1967)

    Google Scholar 

  16. S. S. Vishnubhatla, B. Eyglunet, J. C. Woolley: Electroreflectance measurements in mixed III-V alloys, Can. J. Phys. 47, 1661 (1969)

    Article  ADS  Google Scholar 

  17. M. S. Ünlu, S. Strite: Resonant cavity enhanced photonic devices, Appl. Phys. 78, 607–638 (1995)

    Article  Google Scholar 

  18. E. Chen, S. Y. Chou: High-efficiency and high-speed silicon metal-semiconductor-metal photodetectors operating in the infrared, Appl. Phys. Lett. 70, 753–755 (1997)

    Article  ADS  Google Scholar 

  19. M. K. Emsley, O. Dosunmu, M. S. Ünlu: High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates, IEEE Photon Technol. Lett. 14, 519–521 (2002)

    Article  ADS  Google Scholar 

  20. S. M. Csutak, S. Dakshina-Murthy, J. C. Campbell: CMOS-compatible planar silicon waveguide-grating-coupler photodetectors fabricated on silicon-on-insulator (SOI) substrates, IEEE J. Quantum Elect. 38, 477–480 (2002)

    Article  ADS  Google Scholar 

  21. M. Ghioni, F. Zappa, V. P. Kesan, J. Warnock: A VLSI-compatible high-speed silicon photodetector for optical data links, IEEE Trans. Electron Dev 43, 1054–1060 (1996)

    Article  ADS  Google Scholar 

  22. J. D. Schaub, S. J. Koester, G. Dehlinger, Q. C. Ouyang, D. Guckenberger, M. Yang, D. Rogers, J. Chu, A. Grill: High speed, lateral pin photodiodes in silicon technologies, Semiconductor Photodetectors 2004, Proc. SPIE 5353, 1–11 (2004)

    Article  ADS  Google Scholar 

  23. K. Kato, S. Hata, K. Kawano, J. I. Yoshida, A. Kozen: A high efficiency 50 GHz InGaAs multimode waveguide photodetector, IEEE J. Quantum Elect. 28, 2728–2735 (1992)

    Article  ADS  Google Scholar 

  24. D. Wake, T. P. Spooner, S. D. Perrin, I. D. Henning: 50 GHz InGaAs edge-coupled pin photodetector, Electron. Lett. 27, 1073–1075 (1991)

    Article  Google Scholar 

  25. T. Takeuchi, T. Nakata, K. Makita, M. Yamaguchi: High-speed, high-power and high-efficiency photodiodes with evanescently coupled graded-index waveguide, Electron. Lett. 36, 972–973 (2000)

    Article  Google Scholar 

  26. S. Demiguel, L. Giraudet, L. Joulaud, J. Decobert, F. Blanche, V. Coupe, F. Jorge, P. Pagnod-Rossiaux, E. Boucherez, M. Achouche, F. Devaux: Evanescently coupled photodiodes integrating a double-stage taper for 40-Gb/s applications – compared performance with side-illuminated photodiodes, J. Lightwave Technol. 20, 2004–2014 (2002)

    Article  ADS  Google Scholar 

  27. S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, A. Anselm: Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications, IEEE Photonics Technol. Lett 15, 1761–1763 (2003)

    Article  ADS  Google Scholar 

  28. D. Color Vision. Malacara: Theory and Applications, SPIE Press Monograph PM105 (Spie, Bellingham 2002)

    Google Scholar 

  29. R.M. Turner: Vertical color filter detector group and array, US Patent 6864557 (March 8, 2005)

    Google Scholar 

  30. S. D. Gunapala, S. V. Bandara: Quantum well infrared photodetector (QWIP) focal plane arrays, Semiconduct. Semimet. 62, 197–282 (2000)

    Article  Google Scholar 

  31. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, P. M. Petroff: Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett. 63, 3203 (1993)

    Article  ADS  Google Scholar 

  32. J. M. Moison, F. Houzay, L. Leprince andF. Barthe, E. Andre, O. Vatel: Self-organized growth of regular nanometer-scale InAs dots on GaAs, Appl. Phys. Lett. 64, 196 (1994)

    Article  ADS  Google Scholar 

  33. N. Biyikli, I. Kimukin, B. Butun, O. Aytür, E. Ozbay: ITO-Schottky Photodiodes for high-performance detection in the UV–IR spectrum, IEEE J. Select. Top. Quantum Elect. 10, 759–765 (2004)

    Article  Google Scholar 

  34. K. C. Hwang, Sheng S. Li, Y. C. Kao: A novel high-speed dual wavelength InAlAs/InGaAs graded superlattice Schottky barrier photodiode for 0.8 and 1.3 micron detection, Proc. SPIE 1371, 128–137 (1990)

    Article  ADS  Google Scholar 

  35. F. D. Shepherd, A. C. Yang: Silicon Schottky retains for infrared imaging, Tech. Dig. IEEE IEDM 19, 310–313 (1973)

    Google Scholar 

  36. W. F. Kosonocky: Review of Schottky-barrier imager technology. In: Infrared Detectors and Focal Plane Arrays, Proc. SPIE, ed. by L. Eustace, R. Dereniak, E. Sampson (SPIE, Bellingham 1990) pp. 2–26

    Google Scholar 

  37. S. M. Sze, D. J. Coleman, A. Loya: Current transport in metal-semiconductor-metal (MSM) structures, Solid State Electron 14, 1209 (1971)

    Article  ADS  Google Scholar 

  38. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, D. J. Landers: Geiger-mode avalanche photodiodes for three-dimensional imaging, Lincoln Lab. J. 13, 335–350 (2002)

    Google Scholar 

  39. R. J. McIntyre: Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron Dev. ED-13, 164 (1966)

    Article  Google Scholar 

  40. J. Kemmer, G. Lutz: New semiconductor detector concepts, Nucl. Instrum. Meth A253, 356–377 (1987)

    ADS  Google Scholar 

  41. W. S. Boyle, G. E. Smith: Charge coupled semiconductor devices, Bell Syst. Tech. J. 49, 587 (1970)

    Google Scholar 

  42. M. F. Tompsett, G. F. Amelio, G. E. Smith: Charge coupled 8-bit shift register, Appl. Phys. Lett. 17, 111 (1970)

    Article  ADS  Google Scholar 

  43. M. F. Tompsett, G. F. Amelio, W. J. Bertram, R. R. Buckley, W. J. McNamara, J. C. Mikkelsen, D. A. Sealer: Charge-coupled imaging devices: Experimental results, IEEE Trans. Electron Dev. 18, 992–996 (1971)

    Article  Google Scholar 

  44. W. J. Bertram, D. A. Sealer, C. H. Sequin, M. F. Tompsett, R. R. Buckley: Recent advances in charge coupled imaging devices, INTERCON Dig. 292 (1972)

    Google Scholar 

  45. W. S. Boyle, G. E. Smith: Buried channel charge coupled devices, US Patent 3792322 (1974)

    Google Scholar 

  46. C. H. Sequin, M. F. Tompsett: Charge Transfer Devices (Academic, New York 1975)

    Google Scholar 

  47. P. Magnan: Detection of visible photons in CCD and CMOS: A comparative view, Nuclear Instrum. Meth. A504, 199–212 (2003)

    Article  ADS  Google Scholar 

  48. J. Janesick: Scientific Charge Coupled Devices (SPIE, Bellingham, Washington 2001)

    Book  Google Scholar 

  49. Hamamatsu: PMT Handbook (Hamamatsu Corp., Hamamatsu City 2004)

    Google Scholar 

  50. G. Rieke: Detection of Light, Vol. 2nd edn. (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  51. W. Demtröder: Laser Spectroscopy, Vol. 3rd edn. (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  52. Burle: Burle Channeltron Electron Multiplier Handbook for Mass Spectrometry Applications (Galileo Electro-Optics Corp., Sturbridge 1991)

    Google Scholar 

  53. J. L. Wiza: Microchannel plate detectors, Nuclear Instruments and methods 162, 587–601 (1979)

    Article  ADS  Google Scholar 

  54. W. B. Colson, J. McPherson, F. T. King: High-gain imaging electron multiplier, Rev. Sci. Instrum. 44, 1694–1696 (1973)

    Article  ADS  Google Scholar 

  55. R. De Waard, E. M. Wormser: Description and properties of various thermal detectors, Proc. IRE 47, 1508–1513 (1959)

    Article  Google Scholar 

  56. S. G. Porter: A brief guide to pyroelectric detectors, Ferroelectrics 33, 193–206 (1981)

    Article  Google Scholar 

  57. E. M. Wormser: Properties of thermistor infrared detectors, J. Opt. Soc. Am. 43, 15–21 (1953)

    Article  ADS  Google Scholar 

  58. R. W. Astheimer: Thermistor infrared detectors, Proc. SPIE 443, 95–109 (1984)

    ADS  Google Scholar 

  59. F. J. Low: Low-temperature germanium bolometer, J. Opt. Soc. Am. 51, 1300–1304 (1961)

    Article  ADS  Google Scholar 

  60. P.Ł. Richards: Bolometer for infrared and millimeter waves, J. Appl. Phys 76, 1–24 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  61. A. Rogalski, Z. Bielecki: Detection of optical radiation, Bull. Pol. Ac. Tech 52, 43–66 (2004)

    Google Scholar 

  62. A.O. Goushcha et al.: Ultra thin back illuminated photodiode array structures and fabrication methods, US Patent 66724735 (2004)

    Google Scholar 

  63. R. P. Luhta, R. A. Mattson, N. Taneja, P. Bui, R. Vasbo: Back-illuminated photodiodes for multislice CT, Proc. SPIE 5030, 235–245 (2003)

    Article  ADS  Google Scholar 

  64. S. E. Holland, N. W. Wang, W. W. Moses: Development of low noise, back-side illuminated silicon photodiode arrays, IEEE Trans. Nucl. Sci. 44, 443–447 (1997)

    Article  ADS  Google Scholar 

  65. W. Thomas: Handbook of Photographic Science and Engineering (Wiley, New York 1973)

    Google Scholar 

  66. A. P. Marchetti, G. L. Bottger: Optical absorption spectrum of AgF, Phys. Rev. B. 3, 2604–2607 (1971)

    Article  ADS  Google Scholar 

  67. F. C. Brown: Solid State Chemistry, ed. by B. Hannay (Plenum, New York 1973)

    Google Scholar 

  68. B. L. Joesten, F. C. Brown: Indirect optical absorption of AgCl-AgBr alloys, Phys. Rev. 148, 919–927 (1966)

    Article  ADS  Google Scholar 

  69. S. Glaus, G. Calzaferri: The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study, Photochem. Photobiol. Sci. 2, 398–401 (2003)

    Article  Google Scholar 

  70. S. Dahne: The evolution of thinking on the mechanism of spectral sensitization, J. Imaging Sci. Technol. 38, 101–117 (1994)

    Google Scholar 

  71. R. W. Gurney, N. F. Mott: The theory of the photolysis of silver bromide and the photographic latent image, Proc. Roy. Soc. A164, 151–164 (1938)

    ADS  Google Scholar 

  72. T. Förster: Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys 2, 55–75 (1948)

    Article  MATH  Google Scholar 

  73. D. L. Dexter, T. Förster, R. S. Knox: Radiation transfer of energy of electronic excitation between molecules in crystal, Phys. Stat. Sol. 34, 159 (1969)

    Article  ADS  Google Scholar 

  74. D. L. Andrews, A. A. Demidow (Eds.): Resonant Energy Transfer (Wiley, Chichester 1999)

    Google Scholar 

  75. R. D. Theys, G. Sosnovsky: Chemistry and processes of color photography, Chem. Rev. 97, 83–132 (1997)

    Article  Google Scholar 

  76. J. Belloni: Photography: enhancing sensitivity by silver-halide crystal doping, Radiat. Phys. Chem. 67, 291–296 (2003)

    Article  ADS  Google Scholar 

  77. G. D. Boreman: Modulation Transfer Function in Optical and Electro-optical systems (SPIE, Bellingham 2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Goushcha Prof. or Bernd Tabbert Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Goushcha, A., Tabbert, B. (2007). Optical Detectors. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30420-5_9

Download citation

Publish with us

Policies and ethics