Skip to main content

Thin Film Optical Coatings

  • Reference work entry
Springer Handbook of Lasers and Optics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Within the scientific conception of the modern world, thin film optical coatings can be interpreted as one-dimensional photonic crystals. In general, they are composed of a sequence of single layers which consist of different transparent dielectrics with a thickness in the nanometer scale according to the operation wavelength range. The major function of these photonic structures is to adapt the properties of an optical surface to the needs of specific applications. By application of optical thin film coatings with optimized designs, the spectral characteristics of a surface can be modified to practically any required transfer function for a certain wavelength range. For example, the Fresnel reflection of a lens or a laser window can be suppressed for a broad wavelength range by depositing an antireflective coating containing only a few single layers. On the basis of a layer stack with alternating high- and low-refracting materials, high reflectance values up to 99.999% can be achieved for a certain laser wavelength. In addition to these basic functions, optical coatings can realize a broad variety of spectral filter characteristics according to even extremely sophisticated demands in modern precision optics and laser technology. Moreover, recent developments in optical thin film technology provide the means to combine selected optical properties with other features concerning, for instance, the thermal, mechanical or chemical stability of a surface. The latest progress in ophthalmic coatings even includes the integration of self-cleaning, photoactive or anti-fogging functions in antireflective coatings on glass.

As a consequence of this enormous flexibility in adjusting the properties of functional surfaces, optical coatings can be found in nearly every product and development of modern optic today.

In order to keep pace with the rapid development of optical technology, innovations in the design, deposition processes and handling of optical coatings are some of the crucial factors. Also, high demands in respect to precision and reproducibility are imposed on the control of layer thickness during the production of the coating systems. For certain applications in fs lasers or optical measurement systems the individual layer thickness has to be controlled within the sub-nanometer scale, which can be only achieved on the basis of advanced in situ monitoring techniques of the growing layers. These skills have to be complemented by extended knowledge of characterization, because optimization and marketing of optical coatings can only be performed on the basis of reliable and standardized characterization techniques. The present chapter addresses these major aspects of optical coatings and concentrates on the essential topics of optical coatings in their theoretical modeling, production processes, and quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

APCVD:

atmospheric pressure chemical vapor deposition

AR:

antireflection

ARS:

angle-resolved scattering

CCD:

charge-coupled device

CVD:

chemical vapor deposition

HR:

highly reflecting

IAD:

ion-assisted deposition

IBAD:

ion-beam-assisted deposition

IBS:

ion-beam sputtering

LCVD:

laser(-induced) chemical vapor deposition

LIDT:

laser-induced damage threshold

LPCVD:

low-pressure CVD

PECVD:

plasma-enhanced chemical vapor deposition

PICVD:

plasma impulse CVD

PLD:

pulsed-laser deposition

PVD:

physical vapor deposition

QWOT:

quarter-wave optical thickness

RF:

radio frequency

RLVIP:

reactive low-voltage ion plating

SEM:

scanning electron microscope

TS:

total scattering

UV:

ultraviolet

YAG:

yttrium aluminium garnet

References

  1. P. Vukusic, J. R. Sambles: Photonic structures in biology, Nature 424, 852–855 (2003)

    Article  ADS  Google Scholar 

  2. J. v. Fraunhofer: Versuche über die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel, denselben zuvorzukommen (Verlag der Königlich Bayerischen Akademie der Wissenschaften, München 1888) p. 1817

    Google Scholar 

  3. H. D. Taylor: A Method of Increasing the Brilliancy of the Images Formed by Lenses, British patent No 29561 (1904)

    Google Scholar 

  4. C. Fabry, A. Perot: Théorie et applications dʼune novelle méthode de spectroscopie interférentielle, Ann. Chim. Phys. 16, 115–144 (1899)

    Google Scholar 

  5. M. Born, E. Wolf: Principles of Optics, 7 edn. (Cambridge Univ. Press, Cambridge 1999) p. 986

    Google Scholar 

  6. A. J. Thelen: Design of Optical Interference Coatings (McGraw-Hill, New York 1989) p. 255

    Google Scholar 

  7. H. M. Lidell, H. G. Jerrard: Computer-Aided Techniques for the Design of Multilayer Filters (Adam Hilger, Bristol 1981) p. 194

    Google Scholar 

  8. P. Baumeister: Computer software for optical coatings, Photon. Spectra 22(9), 143–148 (1988)

    Google Scholar 

  9. A. Macleod: Thin-Film Optical Filters, 3 edn. (Inst, Publishing, London 2001) p. 641

    Book  Google Scholar 

  10. W. R. Grove: On the electrochemical polarity of gases, Philos. Trans. R. Soc., London 142, 87–101 (1852)

    Article  Google Scholar 

  11. M. Faraday: The bakerian lecture: experimental relations of gold (and other metals) to light, Philos. Trans. R. Soc., London 147, 145–181 (1857)

    Article  Google Scholar 

  12. A. W. Wright: On the production of transparent metallic films by the electrical discharge in exhausted tubes, Am. J. Science Arts 3rd Ser. 13(73), 49–55 (1877)

    Google Scholar 

  13. T. A. Edison: Art of Plating One Material with Another, US Patent 526,147 (1894)

    Google Scholar 

  14. A. Macleod: The early days of optical coatings, Journal of Optics A: Pure Appl. Opt. 1, 779–783 (1999)

    Article  ADS  Google Scholar 

  15. D. M. Mattox: The Foundations of Vacuum Coating Technology (Noyes Publications, Norwich 2003) p. 150

    Google Scholar 

  16. H. Bach, D. Krause: Thin Films on Glass, ed. by H. Bach, D. Krause (Springer, Berlin, Heidelberg 1997) p. 404

    Google Scholar 

  17. H. K. Pulker: Coatings On Glass, 2 edn. (Elsevier, Amsterdam 1999) p. 548

    Google Scholar 

  18. R. R. Willey: Practical Design and Production of Optical Thin Films, 2 edn. (Marcel Dekker, New York 2002) p. 547

    Book  Google Scholar 

  19. P. W. Baumeister: Optical Coating Technology (SPIE Press, Bellingham 2004) p. 840

    Book  Google Scholar 

  20. M. Friz, F. Waibel: Coatings Materials, Optical Interference Coatings, Springer Ser. Opt. Sci. 88, 105–130 (2003)

    Google Scholar 

  21. H. Hertz: I. Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume, Ann. Phys. 17, 177–200 (1882)

    Article  Google Scholar 

  22. M. Knudsen: Die maximale Verdampfungsgeschwindigkeit des Quecksilbers, Ann. Phys. 47, 697–708 (1915)

    Article  Google Scholar 

  23. K. H. Guenther: Microstructure of vapor-deposited optical coatings 23(21), 3806–3816 (1984)

    Google Scholar 

  24. I. Petrov, P. B. Barna, L. Hultman, J. E. Greene: Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21(5), 117–128 (2003)

    Article  ADS  Google Scholar 

  25. B. A. Movchan, A. V. Demchishin: Study of the structure and properties of thick vacuum condesates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide, Phys. Met. Metallogr. 28, 83 (1969)

    Google Scholar 

  26. M. Auwärter: Verfahren und Einrichtung zur Herstellung dünner Schichten aus Metallverbindungen enthaltenden Ausgangssubstanzen durch Aufdampfen im Vakuum und nach dem Verfahren erhaltene Aufdampfschicht, Swiss Patent No 322265 (1957)

    Google Scholar 

  27. M. Auwärter: Process for the Manufacture of Thin Films, US Patent 2,920,002 (1960)

    Google Scholar 

  28. D. M. Mattox: Apparatus for Coating a Cathodically Biased Substrate from Plasma of Ionized Coating Material, US Patent 3,329,601 (1967)

    Google Scholar 

  29. H. K. Pulker, W. Haag, M. Buhler, E. Moll: Optical and mechanical properties of ion plated oxide films, ed. by H. K. Pulker, W. Haag, M. Buhler, E. Moll (Proc. IPAT 85, 5th Int. Conf. on Ion and Plasma Assisted Techniques, Munich 1985) pp. 299–306

    Google Scholar 

  30. J. D. Targove, H. A. MacLeod: Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition, Appl. Opt. 27, 18, 3779–3781 (1988)

    Article  Google Scholar 

  31. S. Berg, I. V. Katardjiev: Preferential sputtering effects in thin film processing, J. Vac. Sci. Technol. A 17(4), 1916–1925 (1999)

    Article  ADS  Google Scholar 

  32. J. B. Malherbe, S. Hofmann, J. M. Sanz: Preferential Sputtering of Oxides: A Comparison of Model Predictions with Experimental Data, Appl. Surf. Sci. 27(3), 355–365 (1986)

    Article  ADS  Google Scholar 

  33. W. Ensinger: Ion Sources for Ion Beam Assisted Thin-Film Deposition, Rev. Sci. Instrum. 63(11), 5217–5233 (1992)

    Article  ADS  Google Scholar 

  34. H. R. Kaufman, R. S. Robinson: Operation of Broad-Beam Sources (Commonwealth Scientific Corp., Alexandria 1987) p. 201

    Google Scholar 

  35. J. A. Thornton: Influence of apparatus geometry and deposition conditions on the structure and topography of thick coatings, J. Vac. Sci. Technol. 11(4), 666–670 (1974)

    Article  ADS  Google Scholar 

  36. H. Ehlers, M. Lappschies, D. Ristau: Ion assisted deposition processes for precision and laser optics, Proc. SPIE 5250, 519–527 (2004)

    Article  ADS  Google Scholar 

  37. C. R. Ottermann, K. Bange: Correlation between the density of TiO films and their properties, Thin Solid Films 286(1-2), 32–34 (1996)

    Article  ADS  Google Scholar 

  38. J. Y. Robic, H. Leplan, Y. Pauleau, B. Rafin: Residual stress in silicon dioxide thin films produced by ion-assisted deposition, Thin Solid Films 290-291, 34–39 (1996)

    Article  ADS  Google Scholar 

  39. J. E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, I. Stevenson, G. Sadkin, D. Morton, S. McEldowney, R. Klinger, P. J. Martin, N. Court, S. Dligatch, M. Gross, R. P. Netterfield: Mechanical characteristics of optical coatings prepared by various techniques: A comparative study, Appl. Opt. 43(13), 2670–2679 (2004)

    Article  ADS  Google Scholar 

  40. S. M. Rossnagel, J. J. Cuomo, W. D. Westwood: Handbook of Plasma Processing Technology, ed. by S. M. Rossnagel, J. J. Cuomo, W. D. Westwood (Noyes Publications, Park Ridge 1990) p. 523

    Google Scholar 

  41. I. Safi: Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surface and Coatings Technology 127(2-3), 203–218 (2000)

    Article  Google Scholar 

  42. M. A. Scobey, R. I. Seddon, J. W. Seeser, R. R. Austin, P. M. Lefebvre, B. Manley: Magnetron Sputtering Apparatus and Process, US Patent 4,851,095 (1989)

    Google Scholar 

  43. R. I. Seddon, P. M. Lefebvre: MetaMode: a new method for high-rate MetaMode reactive sputtering, Proc. SPIE 1323, 122–126 (1990)

    Article  ADS  Google Scholar 

  44. J. Szczyrbowski, G. Braeuer, W. Dicken, M. Scherer, W. Maass, G. Teschner, A. Zmelty: Reactive sputtering of dielectric layers on large scale substrates using an AC twin magnetron cathode, Surface and Coatings Technology 93(1), 14–20 (1997)

    Article  Google Scholar 

  45. D. T. Wei, A. W. Louderback: Method for Fabricating Multi-Layer Optical Films, US Patent 4,142,958 (1978)

    Google Scholar 

  46. G. Rempe, R. J. Thompson, H. Kimble, R. Lalezari: Measurement of ultralow losses in an optical interferometer, Opt. Lett. 17(5), 363–365 (1992)

    Article  ADS  Google Scholar 

  47. D. H. Sutter, L. Gallmann, N. Matuschek, F. Morier-Genoud, V. Scheuer, G. Angelow, T. Tschudi, G. Steinmeyer, U. Keller: Sub-6-fs pulses from a SESAM-assisted Kerr-lens modelocked Ti: sapphire laser: at the frontiers of ultrashort pulse generation, Appl. Phys. B 70, 5–12 (2000)

    ADS  Google Scholar 

  48. E. Quesnel, C. Teyssier, V. Muffato, J. Thibault: Study of ion-beam-sputtered Mo/Si mirrors for EUV lithography mask: influence of sputtering gas, Proc. SPIE 5250, 88–98 (2004)

    Article  ADS  Google Scholar 

  49. J. O. Carlsson: Chemical Vapor Deposition, Handbook of Deposition Technologies for Films and Coatings, 2 edn., ed. by R. F. Bunshah (Noyes Publications, Park Ridge 1994) p. 888

    Google Scholar 

  50. L. Martinu, D. Poitras: Plasma deposition of optical films and coatings: A review, Vacuum Science & Technology A 18(6), 2619–2645 (2000)

    Article  ADS  Google Scholar 

  51. D. Krause: Plasma Impulse Chemical Vapour Deposition (PICVD) in Thin Films on Glass, ed. by H. Bach, D. Krause (Springer, Berlin, Heidelberg 1997) Chap. 5.3, p. 404

    Google Scholar 

  52. C. Duty, D. Jean, W. J. Lackey: Laser chemical vapour deposition: materials, modelling, and process control, Int. Mat. Rev. 46(6), 271–287 (2001)

    Article  Google Scholar 

  53. S. Leppavuori, J. Remes, H. Moilanen: Laser chemical vapour deposition of Cu and Ni in integrated circuit repair, Proc. SPIE 2874, 272–282 (1996)

    Article  ADS  Google Scholar 

  54. C. Fauteux, R. Longtin, J. Pegna, M. Boman: Microstructure and growth mechanism of laser grown carbon microrods as a function of experimental parameters, J. Appl. Phys. 95(5), 2737–2743 (2004)

    Article  ADS  Google Scholar 

  55. P. L. Swart, B. M. Lacquet, A. A. Chtcherbakov, P. V. Bulkin: Automated electron cyclotron resonance plasma enhanced chemical vapor deposition system for the growth of rugate filters, J. Vac. Sci. & Tech. A 18(1), 74–78 (2000)

    Article  ADS  Google Scholar 

  56. P. R. Willmott: Deposition of complex multielemental thin films, Progress in Surface Science 76, 163–217 (2004)

    Article  ADS  Google Scholar 

  57. M. C. Ferrara, M. R. Perrone, M. L. Protopapa, J. Sancho-Parramon, S. Bosch, S. Mazzarelli: High mechanical-damage-resistant sol-gel coating for high-power lasers, Proc. SPIE 5250, 537–545 (2004)

    Article  ADS  Google Scholar 

  58. G. Sauerbrey: Use of quartz vibrator for weighing thin layers and as a micro-balance, Z. Phys. 155(2), 206–222 (1959)

    Article  ADS  Google Scholar 

  59. R. Richier, A. Fornier, E. Pelletier: Optical Monitoring of Thin-Film Thickness, Thin Films for Optical Systems, ed. by R. Flory (Marcel Dekker, New York 1995) p. 585

    Google Scholar 

  60. D. Ristau: Characterisation and monitoring, Springer Ser. Opt. Sci. 88, 181–205 (2003)

    Google Scholar 

  61. ISO: ISO 11254: Test methods for laser induced damage threshold of optical surfaces. Part 1: 1 on 1-test, 2000, Part 2: S on 1 test, 2001, Part 3 (FDIS): Certification of power handling capability (ISO, Geneva 2002)

    Google Scholar 

  62. ISO: ISO 11551(1997): Test method for absorptance of optical laser components (ISO, Geneva 1997)

    Google Scholar 

  63. ISO: ISO 13696: Test method for radiation scattered by optical components (ISO, Geneva 2002)

    Google Scholar 

  64. ISO: ISO/DIS 15368: Measurement of reflectance of plane surfaces and transmittance of plane parallel elements (ISO, Geneva 2000)

    Google Scholar 

  65. ISO: ISO/DIS 13697: Optics and optical instruments. Lasers and laser related equipment. Test method for reflectance and transmittance of optical laser components (ISO, Geneva 2004)

    Google Scholar 

  66. ISO: ISO 9211: Optical coatings (ISO, Geneva 1994-2004)

    Google Scholar 

  67. ISO: ISO 9022: Optics and optical Instruments – Environmental test methods (ISO, Geneva 2004)

    Google Scholar 

  68. ISO: ISO 10110: Preparation of drawings for optical elements and systems (ISO, Geneva 1997)

    Google Scholar 

  69. H. Czichos, T. Saito, L. Smith: Springer Handbook of Material Measurement Methods, Vol. 88, ed. by H. Czichos, T. Saito, L. Smith (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  70. ISO: ISO/DTR 22588: Optics and Photonics – Lasers and laser-related equipment –Absorption induced effects in laser optical components (ISO, Geneva 2004)

    Google Scholar 

  71. M. Rahe, D. Ristau, H. Schmidt: The effect of hydrogen concentration in conventional and IAD coatings on the absorption and laser induced damage at 10.6 μ m, Proc. SPIE 1848, 335–348 (1992)

    Article  ADS  Google Scholar 

  72. T. Gross, F. Dreschau, D. Ristau, P. Fuhrberg, M. Adamik: Characterisation of laser components for high power Ho:YAG-laser, Proc. SPIE 3244, 111–117 (1997)

    Article  ADS  Google Scholar 

  73. D. Ristau, U. Willamowski, H. Welling: Evaluation of a round robin test on optical absorption at 10.6 μ m, Proc. SPIE 2870, 502–514 (1996)

    Article  ADS  Google Scholar 

  74. D. Ristau, U. Willamowski, H. Welling: Measurement of optical absorptance according to ISO 11551: Parallel round-robin test at 10.6 μ m, Proc. SPIE 3578, 657–671 (1999)

    Article  ADS  Google Scholar 

  75. U. Willamowski, D. Ristau, E. Welsch: Measuring the absolute absorptance of optical laser components, Appl. Opt. 37(36), 8362–8370 (1998)

    Article  ADS  Google Scholar 

  76. J. M. Bennett, L. Mattsson: Introduction to Surface Roughness and Scattering, 2 edn. (Opt. Soc. Am., Washington, D.C. 1999) p. 130

    Google Scholar 

  77. A. Duparré: Light Scattering of Thin Dielectric Films in: Handbook of Optical Properties, Thin Films for Optical Coatings, Vol. 1, ed. by R. E. Hummel, K. H. Guenther (CRC, Boca Raton 1995) pp. 273–303

    Google Scholar 

  78. ASTM: E1392-90: Standard practice for angle resolved optical scatter measurements on specular or diffuse surfaces (ASTM, Philadelphia 1990)

    Google Scholar 

  79. ASTM: ASTM Doc. F1048-87: Standard test method for measuring the effective surface roughness of optical components by total integrated scattering (ASTM, Philadelphia 1987)

    Google Scholar 

  80. R. Ulbricht: Die Bestimmung der mittleren räumlichen Lichtintensität durch nur eine Messung, Elektrotechnische Zeitschrift 29, 595–597 (1900)

    Google Scholar 

  81. W. W. Coblentz: The diffuse reflecting power of various substances, Bull. Bur. Stand. 9, 283–325 (1913)

    Google Scholar 

  82. P. Kadkhoda, A. Müller, D. Ristau, A. Duparré, S. Gliech, H. Lauth, U. N. Reng, M. R. Schuhmann, C. Amra, C. Deumie, C. Jolie, H. Kessler, T. Lindström, C. G. Ribbing, J. M. Bennett: International round-robin experiment to test the ISO total scattering draft standard, Appl. Opt. 39(19), 3321–3332 (2000)

    Article  ADS  Google Scholar 

  83. P. Kadkhoda, H. Welling, S. Günster, D. Ristau: Investigation on total scattering at 157 nm and 193 nm, Proc. SPIE 4099, 65–74 (2000)

    Article  ADS  Google Scholar 

  84. A. Hultacker, S. Gliech, N. Benkert, A. Duparré: VUV-Light scattering measurements of substrates and thin film coatings, Proc. SPIE 5188, 115–122 (2003)

    Article  ADS  Google Scholar 

  85. Laser-induced damage in optical materials. Proceedings of the Boulder Damage Symposium. NIST Spec. Publ. and SPIE-Publications, 1969 to 2006. NBS SP 372 (1972), NBS SP 387 (1973), NBS SP 414 (1974), NBS SP 435 (1975), NBS SP 462 (1976), NBS SP 509 (1977), NBS SP 541 (1978), Index of Papers 1969 - 1978 (1979), NBS SP 568 (1979), NBS SP 620 (1981), NBS SP 638 (1983), NBS SP 669 (1984), NBS SP 688 (1985), NBS SP 727 (1986), NBS SP 746 (1987), NBS SP 752 (1987), NBS SP 756 (1988), NBS SP 775 (1989), NBS SP 801, ASTM STP 1117, and SPIE Vol. 1438 (1989), ASTM STP 1141, and SPIE Vol. 1441 (1991), SPIE Vol. 1624 (1992), SPIE Vol. 1848 (1993), SPIE Vol. 2114 (1994), 25 Years Index: 1969 - 1993, SPIE Vol. 2162 (1994,) SPIE Vol. 2428 (1995), SPIE Vol. 2714 (1995), SPIE Vol. 2966 (1997), SPIE Vol. 3244 (1998), SPIE Vol. 3578 (1999), SPIE Vol. 3902 (2000), SPIE Vol. 4374 (2001), SPIE Vol. 4679 (2002), SPIE Vol. 4932 (2003), SPIE Vol. 5273 (2004), SPIE Vol. 5647 (2005), SPIE Vol. 5991 (2006) The publications of the first thirty years are available as CD-version: Laser Induced Damage in Optical Materials. Collected Papers published by the International Society of Optical Engineering, Washington 98227-0010

    Google Scholar 

  86. T. W. Walker, A. H. Guenther, P. Nielsen: Pulsed laser induced damage to thin film coatings, IEEE J. Quant. Elec. QE17(10), 2041–2065 (1981)

    Article  ADS  Google Scholar 

  87. T. W. Walker, A. Vaidyanathan, A. H. Guenther, P. Nielsen: Impurity breakdown in thin films. In: Proc.Symp. Laser Induced Damage Opt. Mat., ed. by T. W. Walker, A. Vaidyanathan, A. H. Guenther, P. Nielsen (NBS Special Publication, Washington 1979) pp. 479–495

    Google Scholar 

  88. H. Goldenberg, C. J. Tranter: Heat flow in an infinite medium heated by a sphere, Brit. J. Appl. Phys. 3, 296–298 (1952)

    Article  ADS  Google Scholar 

  89. D. Ristau: Laser damage in thin film coatings. In: Encyclopedia of Modern Optics, ed. by R. D. Guenther, D. G. Steel, L. Bayvel (Elsevier, Amsterdam 2004) pp. 339–349

    Google Scholar 

  90. D. Ristau, X. C. Dang, J. Ebert: Interface and bulk absorption of oxide layers and correlation to damage threshold at 1.064 μm, NBS Spec. Publ. 727, 298–312 (1984)

    Google Scholar 

  91. J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, K. Starke: Femtosecond laser pulse induced breakdown in dielectric thin films, Phys. Rev. B 63(4), 045117/1–5 (2001)

    Article  ADS  Google Scholar 

  92. M. Mero, L. Jianhua, A. Sabbah, J. C. Jasapara, K. Starke, D. Ristau, J. K. McIver, W. G. Rudolph: Femtosecond pulse damage and pre-damage behavior of dielectric thin films, Proc. SPIE 4932, 202–215 (2003)

    Article  Google Scholar 

  93. N. Bloembergen: Role of cracks, pores and absorbing inclusions on laser damage threshold of transparent dielectrics, Appl. Opt. 12(4), 661–664 (1973)

    Article  ADS  Google Scholar 

  94. R. A. House: The effects of surface structural properties on laser-induced damage at 1.06 micrometers (Air Force Inst. of Tech., Wright-Patterson, OH 1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Detlev Ristau Dr. or Henrik Ehlers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Ristau, D., Ehlers, H. (2007). Thin Film Optical Coatings. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30420-5_6

Download citation

Publish with us

Policies and ethics