Skip to main content

Optical Materials and Their Properties

  • Reference work entry
Springer Handbook of Lasers and Optics

Abstract

This chapter provides an extended overview on todayʼs optical materials, which are commonly used for optical components and systems. In Sect. 5.1 the underlying physical background on light–matter interaction is presented, where the phenomena of refraction (linear and nonlinear), reflection, absorption, emission and scattering are introduced. Sections 5.2 through 5.8 focus on the detailed properties of the most common types of optical materials, such as glass, glass ceramics, crystals, and plastics. In addition, special materials displaying “unusual nonlinear” or “quasi-nonreversible” optical behavior such as photorefractive or photorecording solids are described in Sect. 5.9. The reader could use this chapter as either a comprehensive introduction to the field of optical materials or as a reference text for the most relevant material information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ARS:

angle-resolved scattering

CCD:

charge-coupled device

COC:

cyclic olefin copolymer

COP:

cyclic olefin polymer

CVD:

chemical vapor deposition

CW:

continuous wave

DFWM:

degenerate four-wave mixing

DWDM:

dense wavelength division multiplexed

EL:

electroluminescence

FOM:

figure of merit

FWM:

four-wave mixing

FoM:

figure of merit

HMO:

heavy metal oxide

HOMO:

highest occupied molecular orbital

IR:

infrared

ITO:

indium–tin oxide

LUMO:

lowest unoccupied molecular orbital

MQW:

multiquantum well

MTF:

modulation transfer function

NRI:

nonresonant intrinsic

OLED:

organic light-emitting device

PC:

photonic crystal

PDLC:

polymer-dispersed liquid crystal

PEDT/PSS:

polyethylenedioxythiophene/ polystyrylsulfonat

PL:

photoluminescence

PMMA:

polymethylmethacrylate

PPE:

personal protective equipment

PPV:

poly-para-phenylenevinylene

PVD:

physical vapor deposition

RE:

rare-earth

RMS:

root-mean-square

SC:

supercontinuum

SHG:

second-harmonic generation

SI:

Système International

STP:

standard temperature and pressure

THG:

third-harmonic generation

UV:

ultraviolet

YAG:

yttrium aluminium garnet

si:

semiinsulating

References

  1. J. Jackson: Classical Electrodynamics (Wiley, New York 1975)

    MATH  Google Scholar 

  2. L. D. Landau, E. M. Lifshitz: The Classical Theory of Fields (Addison Wesley, New York 1971)

    Google Scholar 

  3. Ch. Kittel: Introduction to Solid State Physics (Oldenbourg, Munich 1988)

    Google Scholar 

  4. H. Haken: Quantum Field Theory of Solids (Teubner, Stuttgart 1973)

    Google Scholar 

  5. A. Sommerfeld: Optics: Lectures on Theoretical Physics, Vol. IV (Academic, New York 1954)

    MATH  Google Scholar 

  6. A. C. Hardy, F. H. Perrin: The Principles of Optics (McGraw-Hill, New York 1932)

    MATH  Google Scholar 

  7. C. S. Williams, O. A. Becklund: Optics: A Short Course for Engineers and Scientists (Wiley, New York 1972)

    Google Scholar 

  8. W. G. Driscoll, W. Vaughan (Eds.): Handbook of Optics (McGraw-Hill, New York 1978)

    Google Scholar 

  9. D. Halliday, R. Resnick, J. Walker: Fundamentals of Physics, 4th edn. (Wiley, New York 1993)

    Google Scholar 

  10. J. H. Simmons, K. S. Potter: Optical Materials (Academic, New York 2000)

    Google Scholar 

  11. E. Hecht: Optics, 4th edn. (Addison Wesley, New York 2002)

    Google Scholar 

  12. S. Singh: Refractive index measurement and its applications, Phys. Scr. 65(2), 167–180 (2002)

    Article  ADS  MATH  Google Scholar 

  13. S. Tominaga, N. Tanaka: Refractive index estimation and color image rendering, Pattern Recognition Lett. 24(11), 1703–1713 (2003)

    Article  Google Scholar 

  14. J. E. Shelby: Introduction to Glass Science and Technology (The Royal Society of Chemistry, Cambridge 1997)

    Google Scholar 

  15. H. Bach, N. Neurorth (Eds.): The Properties of Optical Glass (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  16. J. V. Hughes: A new precision refractometer, J. Rev. Sci. Instrum. 18, 234 (1941)

    Article  ADS  Google Scholar 

  17. A. B. P. Lever: Inorganic Electronic Spectroscopy (Elsevier, New York 1968)

    Google Scholar 

  18. C. R. Bamford: Colour Generation and Control in Glass (Elsevier, New York 1977)

    Google Scholar 

  19. A. Paul: Chemistry of Glass (Chapman Hall, New York 1990)

    Google Scholar 

  20. D. C. Harris, M. D. Bertolucci: Symmetry, Spectroscopy: An Introduction to Vibrational, Electronic Spectroscopy (Dover, New York 1978)

    Google Scholar 

  21. M. Born, E. Wolf: Principles of Optics (Cambridge Univ. Press, Cambridge 1999) p. 218

    Google Scholar 

  22. I. B. Bersuker: Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory (Wiley, New York 1996)

    Google Scholar 

  23. J. E. Shelby: Introduction to Glass Science and Technology (The Royal Society of Chemistry, Cambridge 1997)

    Google Scholar 

  24. B. Douglas, D. McDaniel, J. Alexander: Concepts and Models of Inorganic Chemistry, 3rd edn. (Wiley, New York 1994)

    Google Scholar 

  25. C. K. Jorgensen: Spectroscopy of transition-group complexes, Adv. Chem. Phys. 5, 33–145 (1963)

    Article  Google Scholar 

  26. N. W. Ashcroft, N. D. Mermin: Solid State Physics (Thomson, Stamford 2000)

    Google Scholar 

  27. J. D. Jackson: Classical Electrodynamics (Wiley, New York 1975)

    MATH  Google Scholar 

  28. J. F. Nye: Physical Properties of Crystals (Oxford Univ. Press, Oxford 1957)

    MATH  Google Scholar 

  29. M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1986)

    Google Scholar 

  30. H. Vogel: Gerthsen Physik (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  31. B. E. A. Saleh, M. C. Teich: Fundamentals of Photonics (Wiley, New York 1991)

    Book  Google Scholar 

  32. Y. R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)

    Google Scholar 

  33. W. Nie: Optical nonlinearity: Phenomena, applications and materials, Adv. Mater. 5, 520–545 (1993) and cited papers

    Article  Google Scholar 

  34. C. F. Klingshirn: Semiconductor Optics (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  35. N. F. Borrelli, D. W. Hall: Optical Properties of Glass, ed. by Uhlmann, Kreidl (American Ceramic Society, Westerville 1991) pp. 87–124

    Google Scholar 

  36. P. Chakraborty: Metal nanoclusters in glasses as nonlinear photonic materials, J. Mater. Sci. 33, 2235–2249 (1998)

    Article  ADS  Google Scholar 

  37. E. M. Vogel, M. J. Weber, D. M. Krol: Nonlinear optical phenomena in glass, Phys. Chem. Glasses 32, 231–250 (1991) and cited papers

    Google Scholar 

  38. E. M. Vogel: Glasses as nonlinear photonic materials, J. Am. Ceram. Soc. 72, 719–724 (1989)

    Article  Google Scholar 

  39. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, N. F. Borrelli: Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses, J. Opt. Soc. Am. B 12, 2053–2059 (1995)

    Article  ADS  Google Scholar 

  40. H. Tanaka, K. Kashima, K. Hirao, N. Soga, A. Mito, H. Nasu: Second harmonic generation in poled tellurite glasses, Jpn. J. Appl. Phys 32(2), 843 (1993)

    Article  ADS  Google Scholar 

  41. K. Hirao, T. Mitsuyu, J. Si, J. Qiu: Active Glasses for Photonic Devices (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  42. K. Hirao: Active Glass Project NEWS, 99.8 Final Rep. No. 3 (Japan Science and Technology Agency, Kawaguchi City 1999)

    Google Scholar 

  43. H. Nasu, J. D. MacKenzie: Nonlinear optical properties of glass and glass or gel based compositions, Opt. Eng. 26, 102–106 (1987)

    Google Scholar 

  44. J. S. Aitchinson, J. D. Prohaska, E. M. Vogel: The nonlinear optical properties of glass, Met. Mater. Proc. 8, 277–290 (1996)

    Google Scholar 

  45. B. G. Potter, M. B. Sinclair: Photosensitive, rare earth doped ceramics for optical sensing, J. Electroceram. 2, 295–308 (1998)

    Article  Google Scholar 

  46. F. Ishh, T. Sawatari, A. Odajima: NMR study of chain orientation in drawn poly(vinylidene fluoride) films I. The effects of poling on the double orientation distribtion function, Jpn. J. Appl. Phys 27, 1047–1053 (1988)

    Article  ADS  Google Scholar 

  47. M. G. Kuzyk, K. D. Singer, H. E. Zahn, L. A. King: Second-order nonliniear-optical tensor properties of poled films under stress, J. Opt. Soc. Am. B 6, 742 (1989)

    Article  ADS  Google Scholar 

  48. S. Miyata, H. Sasabe: Poled Polymers, their Applications to SHG and EO Devices (Taylor Francis, New York 1997)

    Google Scholar 

  49. W. Koechner: Solid-State Laser Engineering (Springer, Berlin, Heidelberg 1976)

    Google Scholar 

  50. H. C. Van de Hulst: Light Scattering by Small Particles (Dover, New York 1981)

    Google Scholar 

  51. G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Physik, Vol. 25, ed. by E. Grüneisen (Barth, Leipzig 1908) pp. 377–445

    Google Scholar 

  52. A. Ishimaru: Wave Propagation and Scattering in Random Media (IEEE, Piscataway 1997)

    MATH  Google Scholar 

  53. C. Bohren, D. Huffman: Absorption, Scattering of Light by Small Particles (Wiley, New York 1983)

    Google Scholar 

  54. M. Born, E. Wolf: Principles of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  55. P. Debye, A. M. Bueche: J. Appl. Phys. 20, 518 (1949)

    Article  ADS  Google Scholar 

  56. C. S. Johnson, D. A. Gabriel: Laser Light Scattering (Dover, New York 1981)

    Google Scholar 

  57. A. Dogariu: Volume Scattering in Random Media. In: Handbook of Optics, Volume III, 2nd edition, Part 1 Classical optics, ed. by M. Bass (McGraw-Hill, New York 2001) Chap. 3

    Google Scholar 

  58. P. D. Kaplan, A. D. Dinsmore, A. G. Yodh: Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures, Phys. Rev. E 50, 4827 (1994)

    Article  ADS  Google Scholar 

  59. J. M. Elson, H. E. Bennett, J. M. Bennett: Scattering from optical surfaces. In: Applied Optics and Optical Engineering, Vol. 7, ed. by R. Shannon, J. Wyant (Academic, New York 1979) Chap. 7

    Google Scholar 

  60. A. Ishimaru: Wave Propagation and Scattering in Random Media (IEEE, Piscataway 1997)

    MATH  Google Scholar 

  61. A. Duparré: Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components, Appl. Opt. 41, 154–171 (2002)

    Article  ADS  Google Scholar 

  62. M. Born, E. Wolf: Principles of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  63. S. Musikant: Optical Materials (Dekker, New York 1985)

    Google Scholar 

  64. H. Bach, N. Neuroth: The Properties of Optical Glass, Schott Series on Glass and Glass Ceramics (Springer, Berlin, Heidelberg 1995)

    Book  Google Scholar 

  65. W. H. Armistead, S. D. Stookey: Photochromic silicate glasses sentized by silver halides, Science 144, 150–158 (1964)

    Article  ADS  Google Scholar 

  66. F.-T. Lentes: Refractive index and dispersion. In: The Properties of Optical Glass, ed. by H. Bach, N. Neuroth (Springer, Berlin, Heidelberg 1998) pp. 19–57

    Chapter  Google Scholar 

  67. H. G. Pfänder: Optische Gläser und Brillengläser. In: Schott Glaslexikon (mvg, Landsberg 1997) pp. 129–142

    Google Scholar 

  68. B. Jaschke: Einfluß der Wissenschaften. In: Glasherstellung (Deutsches Museum, Munich 1997) pp. 79–86

    Google Scholar 

  69. H. G. Pfänder: Geschichte des Glases. In: Schott Glaslexikon (mvg, Landsberg 1997) pp. 13–23

    Google Scholar 

  70. N. J. Kreidl: Optical properties. In: Handbook of Glass Manufacture, ed. by F. V. Tooley (Books for Industry, New York 1974) pp. 957–997

    Google Scholar 

  71. B. Jaschke: Neuerungen in der Glasherstellung. In: Glasherstellung (Deutsches Museum, Munich 1997) pp. 65–78

    Google Scholar 

  72. M. K. Th. Clement: The chemical composition of optical glasses and its influence on the optical properties. In: The Properties of Optical Glass, ed. by H. Bach, N. Neuroth (Springer, Berlin, Heidelberg 1998) pp. 58–81

    Google Scholar 

  73. G. F. Brewster, N. J. Kreidl, T. G. Pett: Lanthanum and barium in glass-forming system, J. Soc. Glass Technol. 31, 153–169 (1947)

    Google Scholar 

  74. W. Jahn: Mehrstoffsysteme zum Aufbau Optischer Gläser, Glastechn. Ber. 43, 107–120 (1961)

    Google Scholar 

  75. W. H. Zachariasen: Die Struktur der Gläser, Glastechn. Ber. 11, 120–123 (1933)

    Google Scholar 

  76. W. H. Zachariasen: The atomic arrangement in glass, J. Am. Chem. Soc. 54, 3841–3851 (1932)

    Article  Google Scholar 

  77. B. E. Warren, A. D. Loring: X-ray diffraction study of the structure of soda–silica glasses, J. Am. Ceram. Soc. 18, 269–276 (1935)

    Article  Google Scholar 

  78. K. Fajans, N. J. Kreidl: Stability of lead glasses, polarization of ions, J. Am. Ceram. Soc. 31, 105–114 (1948)

    Article  Google Scholar 

  79. J. E. Stanworth: On the structure of glass, J. Soc. Glass Technol. 32, 154–172 (1948)

    Google Scholar 

  80. A. M. Bishay, P. Askalani: Properties of antimony glasses in relation to structure, C. R. VIIe Congrès International du Verre, Bruxelles 1965 (Maison dʼEdition, Marcinelle 1965) Part 1, Nr. 24

    Google Scholar 

  81. S. Wolff, U. Kolberg: Environmental friendly optical glasses. In: The Properties of Optical Glass, ed. by H. Bach, N. Neuroth (Springer, Berlin, Heidelberg 1998) pp. 144–148

    Google Scholar 

  82. H. Bach, N. Neuroth: The Properties of Optical Glass, Schott Ser. Glass (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  83. C. R. Bamford: Colour Generation and Control in Glass (Elsevier, Amsterdam 1977)

    Google Scholar 

  84. W. A. Weyl: Coloured Glasses (Society of Glass Technology, Sheffield 1951)

    Google Scholar 

  85. W. Vogel: Glaschemie (Springer, Berlin, Heidelberg 1992) pp. 51–313

    Google Scholar 

  86. K. Nassau: The varied causes of colour in glass, Mat. Res. Soc. Symp. Proc. 61, 427–439 (1986)

    Article  Google Scholar 

  87. T. Bates: Ligand field theory, absorption spectra of transition-metal ions in glasses, Vol. 2, ed. by J. D. Mackenzie (Butterworth, London 1962) pp. 195–254

    Google Scholar 

  88. L. E. Orgel: An Introduction to Transition Metal Chemistry and Ligand Field Theory (Methuen, London 1960)

    Google Scholar 

  89. H. L. Schläfer, G. Gliemann: Einführung in die Ligandenfeldtheorie (Akademische Verlagsgesellschaft, Frankfurt/Main 1967)

    Google Scholar 

  90. C. J. Ballhausen: Introduction to Ligand Field Theory (McGraw-Hill, New York 1962)

    MATH  Google Scholar 

  91. C. K. Jorgensen: Absorption Spectra and Chemical Bonding in Complexes (Pergamon, Oxford 1962)

    Google Scholar 

  92. A. Bishay, A. Kinawi: Absorption spectra of iron in phosphate glasses and ligand field theory, Phys. Non-Cryst. Solids 2, 589–605 (1965)

    Google Scholar 

  93. C. F. Bohren: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983)

    Google Scholar 

  94. M. Kerker: The Scattering of Light and Other Electromagnetic Radiation (Academic, New York 1969)

    Google Scholar 

  95. M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1986)

    Google Scholar 

  96. H. P. Rooksby: The colour of selenium ruby glasses, J. Soc. Glass Technol. 16, 171–181 (1932)

    Google Scholar 

  97. G. Schmidt: Optische Untersuchungen an Selenrubingläsern, Silikattechnik 14, 12–18 (1963) (in German)

    Google Scholar 

  98. A. Rehfeld, R. Katzschmann: Farbbildung und Kinetik von Steilkanten-Anlaufgläsern, Silikattechnik 29, 298–302 (1978) (in German)

    Google Scholar 

  99. G. Walter, R. Kranold, U. Lemke: Small angle X-ray scattering characterization of inorganic glasses, Makromol. Chem. Makromol. Symp. 15, 361–372 (1988)

    Article  Google Scholar 

  100. T. Yanagawa, Y. Sasaki, H. Nakano: Quantum size effects, observation of microcrystallites in coloured filter glasses, Appl. Phys. Lett. 54, 1495–1497 (1989)

    Article  ADS  Google Scholar 

  101. J. L. Emmett, W. F. Krupke, J. B. Trenholme: The Future Development of High-Power Solid State Laser Systems (Lawrence Livermore National Laboratory, Livermore 1982)

    Book  Google Scholar 

  102. A. H. Clauer: New life for laser shock processing, Ind. Laser Rev., 7–9 (March 1996)

    Google Scholar 

  103. E. Snitzer: Optical laser action of Nd3+ in a barium crown glass, Phys. Rev. Lett. 7, 444–446 (1961)

    Article  ADS  Google Scholar 

  104. S. E. Stokowski, R. A. Saroyan, M. J. Weber: Laser Glass Nd-Doped Glass Spectroscopic and Physical Properties (Lawrence Livermore National Laboratory, Livermore 1981) pp. 1–9 M-95, Rev. 2

    Google Scholar 

  105. J. H. Pitts: Modeling laser damage caused by platinum inclusions in laser glass, laser induced damage in optical materials, Techn. Dig. Boulder Damage Symp., Boulder 1985 (NBS, Boulder 1986) 537–542

    Google Scholar 

  106. J. H. Campbell, E. P. Wallerstein, J. S. Hayden, D. L. Sapak, D. E. Warrington, A. J. Marker III, H. Toratani, H. Meissner, S. Nakajima, T. Izumitani: Elimination of Platinum Inclusions in Phosphate Laser Glasses (Lawrence Livermore National Laboratory, Livermore 1989)

    Google Scholar 

  107. R. Wood: Laser Damage in Optical Materials (IOP Publishing Limited, Bristol, Great Britain 1986)

    Google Scholar 

  108. D. C. Brown: High-Peak-Power Nd:Glass Laser Systems (Springer, Berlin, Heidelberg 1981) Chap. 6

    Google Scholar 

  109. D. H. Roach, A. R. Cooper: The effect of etch depth on strength of indented soda lime glass rods. In: Strength of Inorganic Glass, ed. by C. R. Kurkjian (Plenum, New York 1985) pp. 185–195

    Google Scholar 

  110. W. C. LaCourse: The strength of glass. In: Introduction to Glass Science, ed. by L. D. Pye, H. J. Stevensand W. C. LaCourse (Plenum, New York 1972) pp. 451–512

    Google Scholar 

  111. P. W. McMillan: Glass-Ceramics (Academic, London 1979) p. 285

    Google Scholar 

  112. W. Holand, G. H. Beall: Glass-Ceramic Technology (The American Ceramic Society, Westerville 2002) p. 372

    Google Scholar 

  113. W. Pannhorst: Low expansion glass ceramics – current developments, Proc. 7th Int. Otto Schott Coll., Jena, Germany 2002, ed. by C. Ruessel, G. Volksch (Verlag der Deutschen Glastechnischen Gesellschaft, Frankfurt 2002) 78

    Google Scholar 

  114. S. Cramer von Clausbruch, M. Schweiger, W. Hoeland, V. Rheinberger: Effect of ZnO on the crystallization, microstructure, properties of glass-ceramics in the SiO2–Li2O–ZnO–K2O–P2O5 system, Glastech. Ber.-Glass Sci. Technol. 74, 223 (2001)

    Google Scholar 

  115. M. M. Layton, J. W. Smith: Pyroelectric response in transparent ferroelectric glass, J. Am. Ceram. Soc. 58, 435 (1975)

    Article  Google Scholar 

  116. T. Komatsu, J. Onuma, H. G. Kim, J. R. Kim: Formation of Rb-doped crystalline phase with second harmonic generation in transparent K2O–Nb2O5–TeO2 glass ceramics, J. Mater. Sci. Lett. 15, 2130 (1996)

    Article  Google Scholar 

  117. F. C. Guinhos, P. C. Nobrega, P. A. Santa-Cruz: Compositional dependence of up-conversion process in Tm3+–Yb3+ codoped oxyfluoride glasses and glass-ceramics, J. Alloy. Compd. 323, 358 (2001)

    Article  Google Scholar 

  118. M. Secu, S. Schweizer, J. M. Spaeth, A. Edgar, G. V. M. Williams, U. Rieser: Photostimulated luminescence from a fluorobromozirconate glass-ceramic and the effect of crystallite size and phase, J. Phys. Cond. Matter 15, 1097 (2003)

    Article  ADS  Google Scholar 

  119. G. H. Beall: Glass-ceramics for photonic applications, Glass Sci. Technol.-Glastech. Ber. 73, 3 (2000)

    Google Scholar 

  120. J. A. Tangeman, B. L. Phillips, A. Navrotsky, J. K. R. Weber, A. D. Hixson, T. S. Key: Vitreous forsterite (Mg2SiO4): Synthesis, structure, thermochemistry, Geophys. Res. Lett. 28, 2517 (2001)

    Article  ADS  Google Scholar 

  121. P. A. Tick, N. F. Borrelli, I. M. Reaney: The relationship between structure and transparency in glass-ceramic materials, Opt. Mater. 15, 81 (2000)

    Article  ADS  Google Scholar 

  122. K. Shioya, T. Komatsu, H. G. Kim, R. Sato, K. Matusita: Optical properties of transparent glass-ceramics in K2O–Nb2O5–TeO2 glasses, J. Non-Cryst. Solids 189, 16 (1995)

    Article  ADS  Google Scholar 

  123. H. A. Miska: Aerospace and military applications. In: Ceramics and Glasses, ed. by S. R. Lampman, M. S. Woods, T. B. Zorc (ASM Int., Materials Park 1991) p. 1016

    Google Scholar 

  124. H. Bach (Ed.): Low Thermal Expansion Glass Ceramics (Springer, Berlin, Heidelberg 1995) p. 223

    Google Scholar 

  125. P. F. James: Kinetics of crystal nucleation in lithium silicate glasses, Phys. Chem. Glasses 15, 95 (1974)

    Google Scholar 

  126. A. C. Lasaga: Kinetic Theory in the Earth Sciences (Princeton Univ. Press, Princeton 1998) p. 811

    Google Scholar 

  127. P. W. McMillan, G. Partridge: Dielectric properties of certain ZnO–Al2O3–SiO2 glass-ceramics, J. Mater. Sci. 7, 847 (1972)

    Article  ADS  Google Scholar 

  128. A. P. Tomsia, J. A. Pask, R. E. Loehman: Glass/metal and glass-ceramic/metal seals. In: Ceramics and Glasses, ed. by S. R. Lampman, M. S. Woods, T. B. Zorc (ASM Int., Materials Park 1991) p. 493

    Google Scholar 

  129. Ohara Corporation: Glass-Ceramic Substrates for Planar Light Circuits (SA-02), Commercial Literature (Ohara Corporation, Japan 2003)

    Google Scholar 

  130. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: Introduction to Ceramics, 2nd edn. (Wiley, New York 1976) p. 1032

    Google Scholar 

  131. R. B. Roberts, R. J. Tainsh, G. K. White: Thermal properties of Zerodur at low temperatures, Cryogenics 22, 566 (1982)

    Article  Google Scholar 

  132. S. W. Freiman, L. L. Hench: Effect of crystallization on mechanical properties of Li2O–SiO2 glass-ceramics, J. Am. Ceram. Soc. 55, 86 (1972)

    Article  Google Scholar 

  133. S. S. Bayya, J. S. Sanghera, I. D. Aggarwal, J. A. Wojcik: Infrared transparent germanate glass-ceramics, J. Am. Ceram. Soc. 85, 3114 (2002)

    Article  Google Scholar 

  134. Y. Tada, F. Kawano, M. Kon, N. Matsumoto, K. Asaoka: Influence of crystallization on strength and color of castable glass-ceramics containing two crystals, Biomed. Mater. Eng. 5, 233 (1995)

    Google Scholar 

  135. B. R. Lawn, T. R. Wilshaw, T. I. Barry, R. Morrell: Hertzian fracture of glass ceramics, J. Mater. Sci. 10, 179 (1975)

    Article  ADS  Google Scholar 

  136. R. Morena, K. Niihara, D. P. H. Hasselman: Effect of crystallites on surface damage and fracture-behavior of a glass-ceramic, J. Am. Ceram. Soc. 66, 673 (1983)

    Article  Google Scholar 

  137. T. J. Hill, J. J. Melchosky, K. J. Anusavice: Fractal analysis of toughening behavior in 3BaO.5SiO2 glass-ceramics, J. Am. Ceram. Soc. 83, 545 (2000)

    Article  Google Scholar 

  138. D. Mittleman (Ed.): Sensing with Terahertz Radiation (Springer, Berlin, Heidelberg 2003) p. 337

    Google Scholar 

  139. A. J. Moulson, J. M. Herbert: Electroceramics (Chapman Hall, London 1990) p. 464

    Google Scholar 

  140. A. Herczog: Microcrystalline BaTiO3 by crystallization from glass, J. Am. Ceram. Soc. 47, 107 (1964)

    Article  Google Scholar 

  141. N. F. Borrelli: Electrooptic effect in transparent niobate glass-ceramic systems, J. Appl. Phys. 38, 4243 (1967)

    Article  ADS  Google Scholar 

  142. O. P. Thakur, D. Kumar, O. M. Parkash, L. Pandey: Crystallization, microstructure development and dielectric behaviour of glass ceramics in the system SrO center dot TiO2–2SiO(2) center dot B2O3–La2O3, J. Mater. Sci. 37, 2597 (2002)

    Article  Google Scholar 

  143. F. Agullo-Lopez, J. M. Cabera, F. Agullo-Rueda: Electrooptics: Phenomena, Materials and Applications (Academic, London 1994) p. 345

    Google Scholar 

  144. H. Bach, N. Neuroth (Eds.): The Properties of Optical Glass (Springer, Berlin, Heidelberg 1995) p. 410

    Google Scholar 

  145. K. J. Anusavice, N.-Z. Zhang, J. E. Moorhead: Influence of P2O5, AgNO3, FeCl3 on color, translucency of lithia-based glass-ceramics, Dent. Mater. 10, 230 (1994)

    Article  Google Scholar 

  146. V. M. Khomenko, K. Langer, R. Wirth: On the influence of wavelength-dependent light scattering on the UV-VIS absorption spectra of oxygen-based minerals: A study on silicate glass ceramics as model substances, Phys. Chem. Min. 30, 98 (2003)

    Article  ADS  Google Scholar 

  147. G. H. Beall, D. A. Duke: Transparent glass ceramics, J. Mater. Sci. 4, 340 (1969)

    Article  ADS  Google Scholar 

  148. C. F. Bohren, D. R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983) p. 530

    Google Scholar 

  149. F. M. Modest: Radiative Heat Transfer (McGraw-Hill, New York 1993) p. 832

    Google Scholar 

  150. R. W. Hopper: Stochastic-theory of scattering from idealized spinodal structures 2 scattering in general and for the basic late stage model, J. Non-Cryst. Solids 70, 111 (1985)

    Article  ADS  Google Scholar 

  151. R. Menzel: Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer, Berlin, Heidelberg 2001) p. 873

    Google Scholar 

  152. S. Hendy: Light scattering in transparent glass ceramics, Appl. Phys. Lett. 81, 1171 (2002)

    Article  ADS  Google Scholar 

  153. W. Pannhorst: Zerodur – a low thermal expansion glass ceramic for optical precision applications. In: Low Thermal Expansion Glass Ceramics, ed. by H. Bach (Springer, Berlin, Heidelberg 1995) p. 107

    Google Scholar 

  154. P. Pernice, A. Aronne, V. N. Sigaev, P. D. Sarkisov, V. I. Molev, S. Y. Stefanovich: Crystallization behavior of potassium niobium silicate glasses, J. Am. Ceram. Soc. 82, 3447 (1999)

    Article  Google Scholar 

  155. G. S. Murugan, K. B. R. Varma: Dielectric, linear and non-linear optical properties of lithium borate–bismuth tungstate glasses and glass-ceramics, J. Non-Cryst. Solids 279, 1 (2001)

    Article  ADS  Google Scholar 

  156. N. F. Borrelli, M. M. Layton: Dielectric and optical properties of transparent ferroelectric glass-ceramic systems, J. Non-Cryst. Solids 6, 197 (1971)

    Article  ADS  Google Scholar 

  157. A. Halliyal, A. S. Bhalla, R. E. Newnham, L. E. Cross: Glass-ceramics for piezoelectric and pyroelectric devices. In: Glass and Glass Ceramics, ed. by M. H. Lewis (Chapman Hall, London 1989) p. 273

    Google Scholar 

  158. Y.-H. Kao, Y. Hu, H. Zheng, J. D. Mackenzie, K. Perry, G. Bourhill, J. W. Perry: Second harmonic generation in transparent barium borate glass-ceramics, J. Non-Cryst. Solids 167, 247 (1994)

    Article  ADS  Google Scholar 

  159. N. F. Borrelli, A. Herczog, R. D. Maurer: Electro-optic effect of ferroelectric microcrystals in a glass matrix, Appl. Phys. Lett. 7, 117 (1965)

    Article  ADS  Google Scholar 

  160. N. F. Borrelli: Electrooptic effect in transparent niobate glass, J. Appl. Phys. 38, 4243 (1967)

    Article  ADS  Google Scholar 

  161. S. Ito, T. Kokubo, M. Tashiro: Transparency of LiTaO3–SiO2–Al2O3 glass-ceramics in relation to their microstructure, J. Mater. Sci. 13, 930 (1978)

    Article  ADS  Google Scholar 

  162. A. Herczog: Phase distribution and transparency in glass-ceramics based on a study of the sodium niobate–silica system, J. Am. Ceram. Soc. 73, 2743 (1990)

    Article  Google Scholar 

  163. T. Kokubo, M. Tashiro: Fabrication of transparent lead titanate(IV) glass, Bull. Inst. Chem. Res. Kyoto Univ. 54, 301 (1976)

    Google Scholar 

  164. Y. Fujimoto, Y. Benino, T. Fujiwara, R. Sato, T. Komatsu: Transparent surface and bulk crystallized glasses with lanthanide tellurite nanocrystals, J. Ceram. Soc. Jpn. 109, 466 (2001)

    Article  Google Scholar 

  165. H. G. Kim, T. Komatsu, K. Shioya, K. Matusita, K. Tanaka, K. Hirao: Transparent tellurite-based glass-ceramics with second harmonic generation, J. Non-Cryst. Solids 208, 303 (1996)

    Article  ADS  Google Scholar 

  166. R. T. Hart, M. A. Anspach, B. J. Kraft, J. M. Zaleski, J. W. Zwanziger, P. J. DeSanto, B. Stein, J. Jacob, P. Thiyagarajan: Optical implications of crystallite symmetry and structure in potassium niobate tellurite glass ceramics, Chem. Mater. 14, 4422 (2002)

    Article  Google Scholar 

  167. N. S. Prasad, K. B. R. Varma: Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7–SrO–Bi2O3–Nb2O5, Mater. Sci. Eng. B 90, 246 (2002)

    Google Scholar 

  168. G. S. Murugan, K. B. R. Varma: Characterization of lithium borate–bismuth tungstate glasses, glass-ceramics by impedance spectroscopy, Solid State Ionics 139, 105 (2001)

    Article  Google Scholar 

  169. V. N. Sigaev, P. Pernice, A. Aronne, O. V. Akimova, S. Y. Stefanovich, A. Scaglione: KTiOPO4 precipitation from potassium titanium phosphate glasses, producing second harmonic generation, J. Non-Cryst. Solids 292, 59 (2001)

    Article  ADS  Google Scholar 

  170. Y. Balci, M. Ceylan, M. E. Yakinci: An investigation on the activation energy and the enthalpy of the primary crystallization of glass-ceramic Bi-rich BSCCOHTc superconductors, Mater. Sci. Eng. B 86, 83 (2001)

    Article  Google Scholar 

  171. A. Edgar, S. Schweizer, S. Assmann, J. M. Spaeth, P. J. Newman, D. R. MacFarlane: Photoluminescence and crystallization in europium-doped fluorobromozirconate glass-ceramics, J. Non-Cryst. Solids 284, 237 (2001)

    Article  ADS  Google Scholar 

  172. G. Muller, N. Neuroth: Glass ceramic as an active laser material, US Patent 3843551 (Jenaer Glaswerk Schott and Gen., USA 1974)

    Google Scholar 

  173. A. Lempicki, M. Edwards, G. H. Beall, D. Hall, L. J. Andrews: Transparent Glass Ceramics (Optical Society of America, Arlington, VA 1985) Laser Prospects, in Topical Meeting on Tunable Solid State Lasers

    Google Scholar 

  174. R. Reisfeld, C. K. Jorgensen: Excited-states of chromium(III) in translucent glass-ceramics as prospective laser materials, Struct. Bond. 69, 63 (1988)

    Google Scholar 

  175. R. Reisfeld: Potential uses of chromium(III)-doped transparent glass ceramics in tunable lasers and luminescent solar concentrators, Mater. Sci. Engin. 71, 375 (1985)

    Article  Google Scholar 

  176. P. A. Tick, N. F. Borrelli, L. K. Cornelius, M. A. Newhouse: Transparent glass ceramics for 1300 nm, J. Appl. Phys. 78, 6367 (1995)

    Article  ADS  Google Scholar 

  177. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, O. S. Dymshits, A. A. Zhilin, U. Kang: Cobalt-doped transparent glass ceramic as a saturable absorber Q switch for Er: Glass lasers, Appl. Opt. 40, 4322 (2001)

    Article  ADS  Google Scholar 

  178. C. F. Rapp, J. Chrysochoos: Neodymium-doped glass-ceramic laser material, J. Mater. Sci. Lett. 7, 1090 (1972)

    Article  ADS  Google Scholar 

  179. G. Muller, N. Neuroth: Glass ceramic – A new laser host material, J. Appl. Phys. 44, 2315 (1973)

    Article  ADS  Google Scholar 

  180. C. F. Rapp, J. Chrysochoos: Fluorescence lifetimes of Neodymium-doped glasses and glass ceramics, J. Phys. Chem. 77, 1016 (1973)

    Article  Google Scholar 

  181. Y. H. Wang, J. Ohwaki: New transparent vitroceramics codoped with Er3+, Yb3+ for efficient frequency up-conversion, Appl. Phys. Lett. 63, 3268 (1993)

    Article  ADS  Google Scholar 

  182. P. A. Tick, N. F. Borrelli, L. K. Cornelius, M. A. Newhouse: Transparent glass ceramics for 1300 nm amplifier applications, J. Appl. Phys. 78, 6367 (1995)

    Article  ADS  Google Scholar 

  183. M. J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149 (1998)

    Article  ADS  Google Scholar 

  184. Y. Kawamoto, R. Kanno, J. Qiu: Upconversion luminescence of Er3+ in transparent SiO2–PbF2–ErF3 glass ceramics, J. Mater. Sci. 33, 63 (1998)

    Article  Google Scholar 

  185. M. Takahashi, M. Izuki, R. Kanno, Y. Kawamoto: Up-conversion characteristics of Er3+ in transparent oxyfluoride glass-ceramics, J. Appl. Phys. 83, 3920 (1998)

    Article  ADS  Google Scholar 

  186. M. Mortier, G. Patriarche: Structural characterisation of transparent oxyfluoride glass ceramics, J. Mater. Sci. 35, 4849 (2000)

    Article  Google Scholar 

  187. L. L. Kukkonen, I. M. Reaney, D. Furniss, M. G. Pellatt, A. B. Seddon: Nucleation and crystallisation of transparent, erbium III-doped, oxyfluoride glass-ceramics, J. Non-Cryst. Solids 290, 25 (2001)

    Article  ADS  Google Scholar 

  188. M. Mortier, A. Monteville, G. Patriarche, G. Maze, F. Auzel: New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater. 16, 255 (2001)

    Article  ADS  Google Scholar 

  189. M. Mortier: Between glass and crystal: Glass-ceramics, a new way for optical materials, Philos. Mag. B 82, 745 (2002)

    Article  ADS  Google Scholar 

  190. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, R. Rolli: Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics, Appl. Phys. Lett. 81, 1937 (2002)

    Article  ADS  Google Scholar 

  191. J. Mendez-Ramos, V. Lavin, I. R. Martin, U. R. Rodriguez-Mendoza, V. D. Rodriguez, A. D. Lozano-Gorrin, P. Nunez: Optical properties of rare earth doped transparent oxyfluoride glass ceramics, Radiat. Eff. Defects Solids 158, 457 (2003)

    Article  ADS  Google Scholar 

  192. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, O. S. Dymshits, A. A. Zhilin: Optical absorption, luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics, J. Opt. Soc. Am. B 19, 1815 (2002)

    Article  ADS  Google Scholar 

  193. A. M. Malyarevich, I. A. Denisov, Y. V. Volk, K. V. Yumashev, O. S. Dymshits, A. A. Zhilin: Nanosized glass ceramics doped with transition metal ions: Nonlinear spectroscopy and possible laser applications, J. Alloy. Compd. 341, 247 (2002)

    Article  Google Scholar 

  194. C. Y. Li, Q. Su, S. B. Wang: Multi-color long-lasting phosphorescence in Mn2+-doped ZnO–B2O3–SiO2 glass ceramics, Mater. Res. Bull. 37, 1443 (2002)

    Article  Google Scholar 

  195. G. H. Beall: Glass-ceramics: Recent developments and applications. In: Nucleation and Crystallization in Liquids and Glasses, ed. by M. C. Weinberg (The American Ceramic Society, Westerville 1993)

    Google Scholar 

  196. G. H. Beall, L. R. Pinckney: Nanophase glass ceramics, J. Am. Ceram. Soc. 82, 5 (1999)

    Article  Google Scholar 

  197. I. Mitra, M. J. Davis, J. Alkemper, R. Mueller, H. Kohlmann, L. Aschke, E. Moersen, S. Ritter, H. Hack, W. Pannhorst: Thermal expansion behavior of proposed EUVL substrate materials, SPIE Proc. 4688–Emerging Lithographic Technologies VI, Santa Clara, CA 2002, ed. by R. L. Englestad (SPIE, Belham 2002) 462–468

    Google Scholar 

  198. N. Reisert: Application and machining of Zerodur for optical purposes, Proc. SPIE 1400, 171 (1991)

    Article  ADS  Google Scholar 

  199. L. N. Allen: Progress in ion figuring large optics, SPIE Proc. 2428–Laser-induced Damage in Optical Materials, Soileau 1995, ed. by H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau (SPIE, Belham 1995) 237–247

    Google Scholar 

  200. L. Noethe: Active optics in modern large optical telescopes, Prog. Opt. 43, 1 (2002)

    Article  Google Scholar 

  201. C. A. Haniff: High angular resolution studies of stellar atmospheres, IAU Symp.: Galaxies and their Constituents at the Highest Angular Resolutions, (2001) 288-295

    Google Scholar 

  202. S. D. Stookey: Catalyzed crystallization of glass in theory and practice, Ind. Eng. Chem. 51, 805 (1959)

    Article  Google Scholar 

  203. B. Rother, A. Mucha: Transparent glass-ceramic coatings: Property distribution on 3D parts, Surf. Coat. Technol. 124, 128 (2000)

    Article  Google Scholar 

  204. J. Hirao, T. Mitsuyu, J. Si, J. Qiu: Active Glasses for Photonic Devices (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  205. W. Nie: Optical nonlinearity phenomena, applications, materials, Adv. Mater. 5, 520–545 (1993) and cited papers

    Article  Google Scholar 

  206. E. M. Vogel, M. J. Weber, D. M. Krol: Nonlinear optical phenomena in glass, Phys. Chem. Glasses 32, 231–250 (1991) and cited papers

    Google Scholar 

  207. A. J. Hayden, A. J. Marker: Glass as a nonlinear optical material, SPIE Proc. 1327, 132–144 (1990)

    Article  ADS  Google Scholar 

  208. R. Shechter, E. Millul, Y. Amitai, A. A. Friesem, V. Weiss: Hybrid polymer-on-glass integrated optical diffractive structures for wavelength discrimination, Opt. Mater. 17, 165–167 (2001)

    Article  ADS  Google Scholar 

  209. Transparencies and oral communication J. Hayden: SCHOTT North America

    Google Scholar 

  210. Frost and Sullivan (study): Photonic Materials (2000)

    Google Scholar 

  211. V. G. Dmitriev, G. G. Gurzadya, D. N Nikogosyan: Handbook of Nonlinear Optical Crystals (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  212. P. Chakraborty: Metal nanoclusters in glasses as nonlinear photonic materials, J. Mater. Sci. 33, 2235–2249 (1998)

    Article  ADS  Google Scholar 

  213. H. R. Xia, J. H. Zou, H. C. Chen, D. L. Sun: Photorefractive properties of Co-doped potassium sodium strontium barium niobate crystals, Cryst. Res. Technol. 34, 403–407 (1999)

    Article  Google Scholar 

  214. H. R. Xia, C. J. Wang, H. C. Chen, X. L. Lu: Photorefractive properties of manganese-modified potassium sodium strontium barium niobate crystals, Phys. Rev. B 55, 1292–1294 (1997)

    Article  ADS  Google Scholar 

  215. S. Zhang, Z. Cheng, H. Chen: A new oxyborate crystal GdCa4O(BO3)3: Defects and optical properties, Defect Diff. Forum 186-187, 79–106 (2000)

    Article  Google Scholar 

  216. V. Berger: Photonic crystals for nonlinear optical frequency conversion, Confined Photon Systems 531, 366–392 (1999)Lect. Notes Phys.

    Article  Google Scholar 

  217. H. Nasu, J. D. MacKenzie: Nonlinear optical properties of glas and glas or gel based compositions, Opt. Eng. 26, 102–106 (1987)

    Google Scholar 

  218. F. Kajzar, J. Swalen: Organic Thin Films for Waveguiding Nonlinear Optics, Springer Ser. Adv. Nonlin. Opt., Vol. 3 (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  219. Hirao Active Glass Project NEWS, ʼ99.8 Final Rep. No. 3 (1999)

    Google Scholar 

  220. Hirao Active Glass Project NEWS, ʼ97.7 Final Rep. No. 2 (1997)

    Google Scholar 

  221. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton: Third order nonlinear integrated optics, J. Lightwave Technol. 6, 953–967 (1988) and cited papers

    Article  ADS  Google Scholar 

  222. R. W. Bryant: Nonlinear Optical Materials: New Technologies, Applications, Markets (Business and Coorporation Inc., Norwalk 1989)

    Google Scholar 

  223. Y. Kondo, Y. Kuroiwa, N. Sugimoto, T. Manabe, S. Ito, T. Tokizaki, A. Nakamura: Third-order optical nonlinearities of CuCl-doped glasses in a near resonance region, J. Non-Cryst. Solids 6, 90–94 (1996)

    Article  ADS  Google Scholar 

  224. D. M. Krol, D. J. DiGiovanni, W. Pleibel, R. H. Stolen: Observation of resonant enhancement of photoinduced second-harmonic generation in Tm-doped aluminosilicate glass fibers, Opt. Lett 18, 1220 (1993)

    Article  ADS  Google Scholar 

  225. N. M. Lawandy, R. L. MacDonald: Optically encoded phase-matched second-harmonic generation in semiconductor-microcrystallite-doped glasses, J. Opt. Soc. Am. B 8, 1307 (1991)

    Article  ADS  Google Scholar 

  226. E. M. Dianov, D. S. Starodubov, A. A. Izyneev: Photoinduced second-harmonic generation in fibers doped with rare-earth ions, Opt. Lett 19, 936 (1994)

    Article  ADS  Google Scholar 

  227. E. M. Dianov, L. S. Kornienko, V. I. Stupina, P. V. Chernov: Correlation of defect centers with photoinduced second-harmonic generation in Er- and Sm-doped aluminosilicate fibers, Opt. Lett. 20, 1253–1255 (1995)

    Article  ADS  Google Scholar 

  228. D. M. Krol, D. J. DiGiovanni, K. T. Nelson, W. Pleibel, R. H. Stolen: Observation of resonant enhancement of photoinduced second-harmonic generation in Tm-doped aluminosilicate glass fibers, Opt. Lett. 18, 1220–1222 (1993)

    Article  ADS  Google Scholar 

  229. I. S. Fogel, J. M. Bendickson, M. D. Tocci, M. J. Bloemer, M. Scalora, C. M. Bowden, J. P. Dowling: Spontaneous emission and nonlinear effects in photonic bandgap materials, Pure Appl. Opt. 7, 393–407 (1998)

    Article  ADS  Google Scholar 

  230. F. Oulette, K. O. Hill, D. C. Johnson: Enhancement of second-harmonic generation in optical fibres by hydrogen heat treatment, Appl. Phys. Lett 54, 1086 (1989)

    Article  ADS  Google Scholar 

  231. J. S. Aitchinson, J. D. Prohaska, E. M. Vogel: The nonlinear optical properties of glass, Met. Mater. Proc. 8, 277–290 (1996)

    Google Scholar 

  232. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, N. F. Borrelli: Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses, J. Opt. Soc. Am. B 12, 2053–2059 (1995)

    Article  ADS  Google Scholar 

  233. J. Fu, H. Yatsuda: New families of glasses based on Bi2O3, Phys. Chem. Glasses 36, 211–215 (1995)

    Google Scholar 

  234. N. F. Borrelli, B. G. Aitken, M. A. Newhouse, D. W. Hall: Electric field induced birefringence properties of high-refractive-index glasses exhibiting large Kerr nonlinearities, J. Appl. Phys. 70(5), 2774–2779 (1991)

    Article  ADS  Google Scholar 

  235. S. Santran, L. Canioni, T. Cardinal, E. Fargin, G. Le Flem, C. Rouyer, L. Sarger: Precise and absolute measurements of the complex third-order optical susceptibility, Proc. SPIE 4106, 349–359 (2000)

    Article  ADS  Google Scholar 

  236. E. Fargin, A. Berthereau, T. Cardinal, G. Le Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, A. Ducasse: Optical nonlinearity in oxide glasses, J. Non-Cryst. Solids 203, 96–101 (1996)

    Article  ADS  Google Scholar 

  237. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, A. Villeneuve: Nonlinear optical properties of chalcogenide doped glasses in the system As–S–Se, J. Non-Cryst. Solids 256,257, 353–360 (1999)

    Article  Google Scholar 

  238. B. Speit, K. E. Remitz, N. Neuroth: Semiconductor doped glass as a nonlinear material, SPIE Proc. 1361, 1128–1131 (1990)

    Article  ADS  Google Scholar 

  239. B. Danielzik, K. Nattermann, D. von der Linde: Nanosecond optical pulse shaping in cadmium-sulfide–selenide glasses, Appl. Phys. B 38, 31–36 (1985)

    ADS  Google Scholar 

  240. H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao: Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system, Phys. Rev. B 57, 11334 (1998)

    Article  ADS  Google Scholar 

  241. H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, H. Nakatsuka: Ultrafast optical switching in a silver nanoparticle system, Jpn. J. Appl. Phys. 39, 5132–5133 (2000)

    Article  ADS  Google Scholar 

  242. J. Khaled, T. Fujiwara, A. J. Ikushima: Optimization of second-order nonlinearity in UV-poled silica glass, Opt. Mater. 17, 275–278 (2001)

    Article  ADS  Google Scholar 

  243. B. G. Broome: The Design of Plastic Optical Systems, SPIE Short Course 384 (SPIE, San Diego 2001)

    Google Scholar 

  244. X. Ning, R. T. Hebert (Eds.): Design, Fabrication and Application of Precision Plastic Optics, SPIE Proc. 2600 (SPIE, Bellingham 1995)

    Google Scholar 

  245. Corning Precision Lens: The Handbook of Plastic Optics, 2nd edn. (Corning Precision Lens, OwensCorning 2000)

    Google Scholar 

  246. D. J. Butler: Plastic optics challenge glass, Photon. Spectra (May 2000) p. 168-171

    Google Scholar 

  247. Optical Coating Laboratory Inc. "An Introduction to the Design, Manufacture and Application of Plastic Optics" Technical Information, 2001

    Google Scholar 

  248. A. Ning: Plastic versus glass optics: Factors to consider, SPIE SC 384 (SPIE, San Diego 2001) short note

    Google Scholar 

  249. E. Bürkle, B. Klotz, P. Lichtinger: Durchblick im Spritzguss, KU Kunststoffe 11, 54–60 (2001)

    Google Scholar 

  250. S. Musikant: Optical Materials (Dekker, New York 1990)

    Google Scholar 

  251. M. J. Weber: Handbook of Optical Materials (CRC, Boca Raton 2002)

    Book  Google Scholar 

  252. K. S. Potter, J. Simmons: Optical Materials (Academic, New York 2000)

    Google Scholar 

  253. V. L. Ginzburg: Electromagnetic waves in isotropic and crystalline media characterized by dielectric permittivity with spatial dispersion, JETP 34, 1096 (1958)

    MathSciNet  Google Scholar 

  254. V. M. Agranovich, V. L. Ginzburg: Crystal Optics with Spatial Dispersion and Excitons (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  255. J. Pastrnak, K. Vedam: Optical anisotropy of silicon single crystals, Phys. Rev. B 3, 2567 (1971)

    Article  ADS  Google Scholar 

  256. P. Y. Yu, M. Cardona: Spatial dispersion in the dielectric constant of GaAs, Solid State Commun. 9, 1421 (1971)

    Article  ADS  Google Scholar 

  257. C. Zaldo, C. Lopez, F. Meseguer: Natural birefringence in alkali halide single crystals, Phys. Rev. B 33, 4283 (1986)

    Article  ADS  Google Scholar 

  258. E. G. Tsitsishvili: Optical anisotropy of cubic crystals induced by spatial dispersion, Sov. Phys. Semicond. 15, 1152 (1981)

    Google Scholar 

  259. J. H. Burnett, Z. H. Levine, E. L. Shirley: Intrinsic birefringence in calcium fluoride and barium fluoride, Phys. Rev. B 64, 241102R (2001)

    Article  ADS  Google Scholar 

  260. M. Letz, L. Parthier, A. Gottwald, M. Richter: Spatial anisotropy of the exciton level in CaF2 at 11.1 eV and its relation to the weak optical anisotropy at 157 nm, Phys. Rev. B 67, 233101 (2003)

    Article  ADS  Google Scholar 

  261. C. Bricot, M. Hareng, E. Spitz: Optical projection device and an optical reader incorporating this device, US Patent 4037929 (1977)

    Google Scholar 

  262. S. Sato: Liquid-crystal lens-cells with variable focal length, Jpn. J. Appl. Phys. 18, 1679–1684 (1979)

    Article  ADS  Google Scholar 

  263. S. Suyama, M. Date, H. Takada: Three-dimensional display system with dual-frequency liquid-crystal varifocal lens, Jpn J. Appl. Phys. 39, 480–484 (2000)

    Article  ADS  Google Scholar 

  264. L. G. Commander, S. E. Day, D. R. Selviah: Variable focal microlenses, Opt. Commun. 177, 157–170 (2000)

    Article  ADS  Google Scholar 

  265. Y. Choi, J. H. Park, J. H. Kim, S. D. Lee: Fabrication of a focal length variable microlens array based on a nematic liquid crystal, Opt. Mater. 21, 643–646 (2002)

    Article  Google Scholar 

  266. S. T. Kowel, D. S. Cleverly, P. G. Kornreich: Focusing by electrical modulation of refraction in aliquid crystal cell, Appl. Opt. 23, 278–289 (1984)

    Article  ADS  Google Scholar 

  267. T. Nose, S. Sato: A liquid crystal microlens with a nonuniform electric field, Liq. Cryst. 5, 1425–1433 (1989)

    Article  Google Scholar 

  268. W. Klaus, M. Ide, Y. Hayano, S. Morokawa, Y. Arimoto: Adaptive LC lens array and its application, SPIEProc. 3635, 66–73 (1999)

    ADS  Google Scholar 

  269. B. Wang, M. Ye, M. Honma, T. Nose, S. Sato: Liquid crystal lens with spherical electrode, Jpn. J. Appl. Phys. 41, L1232–1233 (2002)

    Article  ADS  Google Scholar 

  270. A. F. Naumov, M. Yu. Loktev, I. R. Guealnik, G. Vdovin: Liquid crystal adaptive lenses with modal control, Opt. Lett. 23, 992–994 (1998)

    Article  ADS  Google Scholar 

  271. A. F. Naumov, G. D. Love, M. Yu. Loktev, F. L. Vladimirov: Control optimization of spherical modal liquid crystal lenses, Opt. Express 4, 344–352 (1999)

    Article  ADS  Google Scholar 

  272. G. D. Love, A. F. Naumov: Modal liquid crystal lenses, Liq. Cryst. Today 10(1), 1–4 (2001)

    Article  Google Scholar 

  273. J. S. Patel, K. Rastani: Electrically controlled polarization-independent liquid crystal Fresnel lens arrays, Opt. Lett. 16, 532–534 (1991)

    Article  ADS  Google Scholar 

  274. G. Williams, N. J. Powell, A. Purvis, M. G. Clark: Electrically controllable liquid crystal Fresnel lens, SPIE Proc. 1168, 352–357 (1989)

    ADS  Google Scholar 

  275. H. Ren, Y. H. Fan, S. T. Wu: Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals, Appl. Phys. Lett. 83, 1515–1517 (2003)

    Article  ADS  Google Scholar 

  276. H. Ren, S. T. Wu: Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index, Appl. Phys. Lett. 81, 3537–3539 (2002)

    Article  ADS  Google Scholar 

  277. H. Ren, S. T. Wu: Tunable electronic lens using a gradient polymer network liquid crystal, Appl. Phys. Lett. 82, 22–24 (2003)

    Article  ADS  Google Scholar 

  278. V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, A. Tork: Polymer-stabilized liquid crystal for tunable microlens applications, Opt. Express 10, 865–870 (2002)

    ADS  Google Scholar 

  279. W. Helfrich, W. G. Schneider: Recombination radiation in anthracene crystals, Phys. Rev. Lett. 14, 229 (1965)

    Article  ADS  Google Scholar 

  280. M. Kawabe, K. Masuda, S. Nambu: Electroluminescence of green light region in doped anthracene, Jpn. J. Appl. Phys. 10, 527 (1971)

    Article  ADS  Google Scholar 

  281. C. Adachi, S. Tokito, S. Saito: Electroluminescence in organic films with three-layer structure, Jpn. J. Appl. Phys. 27, L269 (1988)

    Article  ADS  Google Scholar 

  282. C. W. Tang, S. A. van Slyke: Organic electroluminescent diodes, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  283. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Burns, A. B. Holmes: Light-emitting-diodes based on conjugated polymers, Nature 347, 539 (1990)

    Article  ADS  Google Scholar 

  284. D. Braun, A. J. Heeger: Visible-light emission from semiconducting polymer diodes, Appl. Phys. Lett. 58, 1982 (1991)

    Article  ADS  Google Scholar 

  285. N. C. Greenham, S. C. Moratti, D. C. C. Bradley, R. H. Friend, A. B. Holmes: Efficient light-emitting-diodes based on polymers with high electron-affinities, Nature 365, 628 (1993)

    Article  ADS  Google Scholar 

  286. L. S. Swanson, J. Shinar, Y. W. Ding, T. J. Barton: Photoluminescence, electroluminescence and optically detected magnetic resonance study of 2,5-dialkoxy derivatives of poly(p-phenylene-acetylene) (PPA), PPA-based light emitting diodes, Synth. Met. 55-57, 1–6 (1993)

    Article  Google Scholar 

  287. M. Remmers, D. Neher, J. Grüner, R. H. Friend, G. H. Gelinck, J. M. Warman, C. Quattrocchi, D. A dos Santos, J.-L. Brédas: The optical, electronic, and electroluminescent properties of novel poly(p-phenylene)-related polymers, Macromol. 29, 7432 (1996)

    Article  ADS  Google Scholar 

  288. M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Schott, R. D. Miller: Thermally stable blue-light-emitting copolymers of poly(alkylfluorene), Macromol. 31, 1099 (1998)

    Article  ADS  Google Scholar 

  289. M. M. Grell, D. D. C. Bradley, M. Inbasekaran, E. P. Woo: A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence, Adv. Mater. 9, 798 (1997)

    Article  Google Scholar 

  290. Y. Ohmori, M. Uchida, K. Muro, K. Yoshino: Blue electroluminescent diodes utilizing poly(alkylfluorene), Jpn. J. Appl. Phys. 30, 1941 (1991)

    Article  ADS  Google Scholar 

  291. G. Grem, G. Leising: Electroluminescence of wide-bandgap chemically tunable cyclic conjugated polymers, Synth. Met. 55-57, 4105 (1993)

    Article  Google Scholar 

  292. U. Scherf, K. Müllen: Polyarylenes and poly(arylenevinylenes) a soluble ladder polymer via bridging of functionalized poly(para-phenylene)-precursors, Makromol. Chem. Rapid Commun. 12, 489 (1991)

    Article  Google Scholar 

  293. V. Cimrovà, D. Neher, M. Remmers: Blue light-emitting devices based on novel polymer blends, Adv. Mater. 10, 676 (1998)

    Article  Google Scholar 

  294. G. Yu, H. Nishino, A. J. Heeger, T.-A. Chen, R. D. Rieke: Enhanced electroluminescence from semiconducting polymer blends, Synth. Met. 72, 249 (1995)

    Article  Google Scholar 

  295. I.-N. Kang, D.-H. Hwang, H.-K. Shim, T. Zyung, J.-J. Kim: Highly improved quantum efficiency in blend polymer LEDs, Macromol. 29, 165 (1996)

    Article  ADS  Google Scholar 

  296. Y. Ohmori, M. Uchida, K. Muro, K. Yoshino: Effects of alkyl chain length and carrier confinement layer on characteristics of poly(3-alkylthiophene) electroluminescent diodes, Solid State Commun. 80, 605 (1991)

    Article  ADS  Google Scholar 

  297. D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, L. B. Lin, T. L. Gustafson, H. L. Wang, T. M. Swager, A. G. MacDiarmid, A. J. Epstein: Blue electroluminescent devices based on soluble poly(p-pyridine), J. Appl. Phys. 78, 4264 (1995)

    Article  ADS  Google Scholar 

  298. Y. Shirota: Proc. SPIE-Int. Soc. Opt. Eng. 186, 3148 (1997)

    ADS  Google Scholar 

  299. J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama: Bright red-emitting organic electroluminescent devices having an europium complex as an emitter, Appl. Phys. Lett. 65, 2124 (1994)

    Article  ADS  Google Scholar 

  300. M. A. Abkowitz, D. M. Pai: Comparison of the drift mobility measured under transient and steady-state conditions in a prototypical hopping system, Philos. Mag. B 53, 193 (1986)

    Article  Google Scholar 

  301. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai: Multilayered organic electroluminscent devices using a novel starburst molecule 4,4ʼ,4"-tris(3-methylphenylphenylamine)triphenylamine, as a hole transport layer, Appl. Phys. Lett. 65, 807 (1994)

    Article  ADS  Google Scholar 

  302. N. Johansson, D. A. dos Santos, S. Guo, J. Cornil, M. Fahlman, J. Salbeck, H. Schenck, H. Arwin, J. L. Brédas, W. R. Salanek: Electronic structure and optical properties of electroluminescent spiro-type molecules, J. Chem. Phys. 107, 2542 (1997)

    Article  ADS  Google Scholar 

  303. S. A. van Slyke, P. S. Bryan, C. W. Tang: Inorganic and Organic Electroluminescence (W&T Verlag, Berlin 1996) p. 195

    Google Scholar 

  304. V. Bulovic, A. Shoustikow, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson, S. R. Forrest: Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts, Chem. Phys. Lett. 287, 455 (1998)

    Article  ADS  Google Scholar 

  305. J. Kido: Recent advances in organic electroluminescent devices, Bull. Electrochem. 10, 1 (1994)

    Google Scholar 

  306. J. Shi, C. W. Tang: Doped organic electroluminescent devices with improved stability, Appl. Phys. Lett. 70, 1665 (1997)

    Article  ADS  Google Scholar 

  307. S. F. Lim, L. Ke, W. Wang, S. J. Chua: Correlation between dark spot growth and pinhole size in organic light-emitting diodes, Appl. Phys. Lett. 78, 2116 (2001)

    Article  ADS  Google Scholar 

  308. L. J. Rothberg, M. Yan, F. Papadimitrikapoulos, M. E. Galvin, E. W. Kwock, T. M. Miller: Photophysics of phenylenevinylene polymers, Synth. Met. 80, 41 (1996)

    Article  Google Scholar 

  309. B. H. Cumpston, K. F. Jensen: Photo-oxidation of polymers used in electroluminescent devices, Synth. Met. 73, 195–199 (1995)

    Article  Google Scholar 

  310. M. Yan, L. J. Rothberg, F. Papadimitrikapoulos, M. E. Galvin, T. M. Miller: Defect quenching of conjugated polymer luminescence, Phys. Rev. Lett. 73, 744 (1994)

    Article  ADS  Google Scholar 

  311. J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, J. A. Goitia: Degradation and failure of MEH-PPV light-emitting diodes, J. Appl. Phys. 79, 2745 (1996)

    Article  ADS  Google Scholar 

  312. S. A. van Slyke, C. H. Chen, C. W. Tang: Organic electroluminescent devices with improved stability, Appl. Phys. Lett. 69, 2160 (1996)

    Article  ADS  Google Scholar 

  313. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau: Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3, Appl. Phys. Lett. 9, 72 (1966)

    Article  ADS  Google Scholar 

  314. F. S. Chen, J. T. LaMacchia, D. B. Fraser: Holographic storage in lithium niobate, Appl. Phys. Lett. 13, 223 (1968)

    Article  ADS  Google Scholar 

  315. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei: Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3, Appl. Phys. Lett. 26, 182 (1975)

    Article  ADS  Google Scholar 

  316. R. Orlowski, E. Krätzig: Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals, Solid State Commun. 27, 1351 (1978)

    Article  ADS  Google Scholar 

  317. G. E. Peterson, A. M. Glass, T. J. Negran: Control of the susceptibility of lithium niobate to laser-induced refractive index change, Appl. Phys. Lett. 19, 130 (1971)

    Article  ADS  Google Scholar 

  318. J. J. Amodei, W. Phillips, D. L. Staebler: Improved electrooptic materials and fixing techniques for holographic recording, Appl. Opt. 11, 390 (1972)

    Article  ADS  Google Scholar 

  319. P. Günter, J.-P. Huignard (Eds.): Photorefractive Materials, Their Applications I, II, Top. Appl. Phys., Vol. 61, 62 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  320. P. Boffi, D. Piccinin, M. C. Ubaldi: Infrared Holography for Optical Communications, Top. Appl. Phys., Vol. 86 (Springer, Berlin, Heidelberg 2003)

    Book  Google Scholar 

  321. H. J. Coufal, D. Psaltis, G. Sincerbox (Eds.): Holographic Data Storage (Springer, Berlin, Heidelberg 2000)

    MATH  Google Scholar 

  322. A. M. Glass, D. von der Linde, T. J. Negran: High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3, Appl. Phys. Lett. 25, 233 (1974)

    Article  ADS  Google Scholar 

  323. K. Buse: Thermal gratings and pyroelectically produced charge redistribution in BaTiO3 and KNbO3, J. Opt. Soc. Am. B 10, 1266 (1993)

    Article  ADS  Google Scholar 

  324. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii: Holographic storage in electrooptic crystals, Ferroelectrics 22, 949–961 (1979)

    Article  Google Scholar 

  325. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber: Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods, Appl. Phys. 12, 355 (1977)

    Article  ADS  Google Scholar 

  326. G. C. Valley: Simultaneous electron/hole transport in photorefractive materials, J. Appl. Phys. 59, 3363 (1986)

    Article  ADS  Google Scholar 

  327. F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth: Hole–electron competition in photorefractive gratings, Opt. Lett. 11, 312 (1986)

    Article  ADS  Google Scholar 

  328. D. L. Staebler, W. Phillips: Hologram storage in photochromic LiNbO3, Appl. Phys. Lett. 24, 268 (1974)

    Article  ADS  Google Scholar 

  329. G. A. Brost, R. A. Motes, J. R. Rotgé: Intensity-dependent absorption and photorefractive effects in barium titanate, J. Opt. Soc. Am. B 5, 1879 (1988)

    Article  ADS  Google Scholar 

  330. K. Buse, E. Krätzig: Three-valence charge-transport model for explanation of the photorefractive effect, Appl. Phys. B 61, 27 (1995)

    Article  ADS  Google Scholar 

  331. L. Holtmann: A model for the nonlinear photoconductivity of BaTiO3, Phys. Stat. Solidi (a) 113, K89 (1989)

    Article  ADS  Google Scholar 

  332. F. Jermann, J. Otten: The light-induced charge transport in LiNbO3:Fe at high light intensities, J. Opt. Soc. Am. B 10, 2085 (1993)

    Article  ADS  Google Scholar 

  333. I. Nee, M. Müller, K. Buse, E. Krätzig: Role of iron in lithium-niobate crystals for the dark storage time of holograms, J. Appl. Phys. 88, 4282 (2000)

    Article  ADS  Google Scholar 

  334. Y. P. Yang, I. Nee, K. Buse, D. Psaltis: Ionic and electronic dark decay of holograms in LiNbO3 crystals, Appl. Phys. Lett. 78, 4076 (2001)

    Article  ADS  Google Scholar 

  335. K. Buse: Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods, Appl. Phys. B 64, 273 (1997)

    Article  ADS  Google Scholar 

  336. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Krätzig: Origin of thermal fixing in photorefractive lithium niobate crystals, Phys. Rev. B 56, 1225 (1997)

    Article  ADS  Google Scholar 

  337. R. Magnusson, T. K. Gaylord: Laser scattering induced holograms in lithium niobate, Appl. Opt. 13, 1545 (1974)

    Article  Google Scholar 

  338. J. F. Nye: Physical Properties of Crystals (Oxford Univ. Press, London 1979)

    Google Scholar 

  339. O. Madelung (Ed.): Landolt–Börnstein – Numerical Data, Condensed Matter, Vol. III/11, III/16, III/18, III/28 (Springer, Berlin, Heidelberg 1979, 1981, 1984)

    Google Scholar 

  340. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, E. Krätzig: Refractive indices of single domain BaTiO3 for different wavelengths and temperatures, Phys. Stat. Solidi (a) 135, K87 (1993)

    Article  ADS  Google Scholar 

  341. M. Zgonik, K. Nakagawa, P. Günter: Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3, J. Opt. Soc. Am. B 12, 1416 (1995)

    Article  ADS  Google Scholar 

  342. M. Simon, F. Mersch, C. Kuper, S. Mendricks, S. Wevering, J. Imbrock, E. Krätzig: Refractive indices of photorefractive bismuth titanate, barium-calcium titanate, bismuth germanium oxide, and lead germanate, Phys. Stat. Solidi (a) 159, 559 (1997)

    Article  ADS  Google Scholar 

  343. K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, E. Krätzig: Electrooptic and photorefractive properties of ferroelectric barium-calcium titanate crystals, Ferroelectrics 208, 213 (1998)

    Article  Google Scholar 

  344. R. Pankrath, H. Hesse: Growth and dielectric properties of congruently melting Ba1-x Ca x TiO3 crystals, Appl. Phys. A 65, 301 (1997)

    Article  ADS  Google Scholar 

  345. S. Loheide, S. Riehemann, F. Mersch, R. Pankrath, E. Krätzig: Refractive indices, permittivities, and linear electrooptic coefficients of tetragonal potassium tantalate-niobate crystals, Phys. Stat. Solidi (a) 137, 257 (1993)

    Article  ADS  Google Scholar 

  346. S. Loheide, S. Riehemann, R. Pankrath, E. Krätzig: Influence of Fe doping on the photorefractive properties of KTa1-x Nb x O3, Ferroelectrics 160, 213 (1994)

    Article  Google Scholar 

  347. D. Kip, S. Aulkemeyer, K. Buse, F. Mersch, R. Pankrath, E. Krätzig: Refractive indices of Sr0.61Ba0.39Nb2O6 single crystals, Phys. Stat. Solidi (a) 154, K5 (1996)

    Article  ADS  Google Scholar 

  348. S. Ducharme, J. Feinberg, R. R. Neurgaonkar: Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate, IEEE J. Quantum Electron. 23, 2116 (1987)

    Article  ADS  Google Scholar 

  349. F. Mersch, K. Buse, W. Sauf, H. Hesse, E. Krätzig: Growth and characterization of undoped and doped Bi12TiO20 crystals, Phys. Stat. Solidi (a) 140, 273 (1993)

    Article  ADS  Google Scholar 

  350. J. P. Wilde, L. Hesselink: Measurement of the electrooptic and electrogyratory effects in Bi12TiO20, J. Appl. Phys. 67, 2245 (1990)

    Article  ADS  Google Scholar 

  351. D. T. F. Marple: Refractive index of GaAs, J. Appl. Phys. 35, 1241 (1964)

    Article  ADS  Google Scholar 

  352. D. Psaltis, D. Brady, K. Wagner: Adaptive optical networks using photorefractive crystals, Appl. Opt. 27, 1752 (1988)

    Article  ADS  Google Scholar 

  353. H. Kogelnik: Coupled wave theory for thick hologram gratings, Bell Syst. Tech. J. 48, 2909 (1969)

    Google Scholar 

  354. F. H. Mok, G. W. Burr, D. Psaltis: System metric for holographic memory systems, Opt. Lett. 21, 896 (1996)

    Article  ADS  Google Scholar 

  355. E. Krätzig, R. Orlowski: LiTaO3 as holographic storage material, Appl. Phys. 15, 133 (1978)

    Article  ADS  Google Scholar 

  356. R. Sommerfeldt, L. Holtmann, E. Krätzig, B. C. Grabmaier: Influence of Mg doping and composition on the light-induced charge transport in LiNbO3, Phys. Stat. Solidi (a) 106, 89 (1988)

    Article  ADS  Google Scholar 

  357. G. D. Bacher, M. P. Chiao, G. J. Dunning, M. B. Klein, C. C. Nelson, B. A. Wechsler: Ultralong dark decay measurements in BaTiO3, Opt. Lett. 21, 18 (1996)

    Article  ADS  Google Scholar 

  358. D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, B. A. Wechsler: High-efficiency fast response in photorefractive BaTiO3 at 120 °C, Appl. Phys. Lett. 52, 1759 (1988)

    Article  ADS  Google Scholar 

  359. N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, E. Krätzig: Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate, Opt. Commun. 160, 98–102 (1999)

    Article  ADS  Google Scholar 

  360. L. A. Boatner, E. Krätzig, R. Orlowski: KTN as a holographic storage material, Ferroelectrics 27, 247 (1980)

    Article  Google Scholar 

  361. S. Loheide, D. Sabbert, F. Mersch, H. Hesse, E. Krätzig: Influence of annealing treatments on photorefractive properties of KTa1-x Nb x O3:Fe crystals, Ferroelectrics 166, 99 (1995)

    Article  Google Scholar 

  362. R. J. Reeves, M. G. Jani, B. Jassemnejad, R. C. Powell, G. J. Mizell, W. Fay: Photorefractive properties of KNbO3, Phys. Rev. B 43, 71 (1991)

    Article  ADS  Google Scholar 

  363. M. Ewart, M. Ryf, C. Medrano, H. Wüest, M. Zgonik, P. Günter: High photorefractive sensitivity at 860 nm in reduced rhodium-doped KNbO3, Opt. Lett. 22, 781 (1997)

    Article  ADS  Google Scholar 

  364. C. Medrano, M. Zgonik, N. Sonderer, S. Krucker, J. Seglins, H. Wüest, P. Günter: Photorefractive effect in Cu-, Ni-doped KNbO3 in the visible and near infrared, J. Appl. Phys. 76, 5640 (1994)

    Article  ADS  Google Scholar 

  365. K. Buse, U. van Stevendaal, R. Pankrath, E. Krätzig: Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals, J. Opt. Soc. Am. B 13, 1461 (1996)

    Article  ADS  Google Scholar 

  366. K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata: High-sensitive holographic storage in Ce-doped SBN, Appl. Phys. Lett. 30, 631 (1977)

    Article  ADS  Google Scholar 

  367. P. Tayebati, D. Mahgerefteh: Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps, J. Opt. Soc. Am. B 8, 1053 (1991)

    Article  ADS  Google Scholar 

  368. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov: Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors, J. Appl. Phys. 68, 2216 (1990)

    Article  ADS  Google Scholar 

  369. Y. Fainman, J. Ma, S. H. Lee: Non-linear optical materials and applications, Mater. Sci. Rep. 9, 53 (1993)

    Article  Google Scholar 

  370. S. Bian, J. Frejlich: Photorefractive response time measurement in GaAs crystals by phase modulation in two-wave mixing, Opt. Lett. 19, 1702 (1994)

    Article  ADS  Google Scholar 

  371. D. Fluck, P. Amrhein, P. Günter: Photorefractive effect in crystals with a nonlinear recombination of charge carriers: Theory and observation in KNbO3, J. Opt. Soc. Am. B 8, 2196 (1991)

    Article  ADS  Google Scholar 

  372. E. Krätzig, R. A. Rupp: Holographic storage properties of electrooptic crystals, SPIE Proc. 673, 483 (1986)

    ADS  Google Scholar 

  373. U. van Stevendaal, K. Buse, H. Malz, H. Veenhuis, E. Krätzig: Reduction of light-induced refractive-index changes by decreased modulation of light patterns in photorefractive crystals, J. Opt. Soc. Am. B 15, 2868 (1998)

    Article  ADS  Google Scholar 

  374. K. Buse, A. Adibi, D. Psaltis: Non-volatile holographic storage in doubly doped lithium niobate crystals, Nature 393, 665 (1998)

    Article  ADS  Google Scholar 

  375. K. Buse: Light-induced charge transport processes in photorefractive crystals II: Materials, Appl. Phys. B 64, 391 (1997)

    Article  ADS  Google Scholar 

  376. D. Dirksen, F. Matthes, S. Riehemann, G. von Bally: Phase shifting holographic double exposure interferometry with fast photorefractive crystals, Opt. Commun. 134, 310 (1997)

    Article  ADS  Google Scholar 

  377. K. Buse, A. Gerwens, S. Wevering, E. Krätzig: Charge transport parameters of photorefractive strontium-barium niobate crystals doped with cerium, J. Opt. Soc. Am. B 15, 1674 (1998)

    Article  ADS  Google Scholar 

  378. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, M. Cronin-Golomb: Femtosecond temporal encoding in barium titanate, Opt. Lett. 16, 1984 (1991)

    Article  ADS  Google Scholar 

  379. Q. N. Wang, D. D. Nolte, M. R. Melloch: Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells, Appl. Phys. Lett. 59, 256 (1991)

    Article  ADS  Google Scholar 

  380. Q. N. Wang, R. M. Brubaker, D. D. Nolte: Photorefractive phase-shift induced by hot-electron transport – multiple-quantum-well structures, J. Opt. Soc. Am. B 11, 1773 (1994)

    Article  ADS  Google Scholar 

  381. J. J. Amodei, D. L. Staebler: Holographic pattern fixing in electrooptic crystals, Appl. Phys. Lett. 18, 540 (1971)

    Article  ADS  Google Scholar 

  382. H. Vormann, G. Weber, S. Kapphan, E. Krätzig: Hydrogen as origin of thermal fixing in LiNbO3:Fe, Solid State Commun. 40, 543 (1981)

    Article  ADS  Google Scholar 

  383. F. Micheron, G. Bismuth: Electrical control of fixation and erasure of holographic patterns in ferroelectric materials, Appl. Phys. Lett. 20, 79 (1972)

    Article  ADS  Google Scholar 

  384. J. Ma, T. Chang, J. Hong, R. Neurgaonkar: Electrical fixing of 1000 angle-multiplexed holograms in SBN:75, Opt. Lett. 22, 1116 (1997)

    Article  ADS  Google Scholar 

  385. D. von der Linde, A. M. Glass, K. F. Rodgers: Multiphoton photorefractive processes for optical storage in LiNbO3, Appl. Phys. Lett. 25, 155 (1974)

    Article  ADS  Google Scholar 

  386. H. Vormann, E. Krätzig: Two step excitation in LiTaO3:Fe for optical data storage, Solid State Commun. 49, 843 (1984)

    Article  ADS  Google Scholar 

  387. K. Buse, L. Holtmann, E. Krätzig: Activation of BaTiO3 for infrared holographic recording, Opt. Commun. 85, 183 (1991)

    Article  ADS  Google Scholar 

  388. M. P. Petrov, S. I. Stepanov, A. A. Kamshilin: Holographic storage of information and peculiarities of light-diffraction in birefringent electrooptic crystals, Opt. Laser Technol. 11, 149 (1979)

    Article  ADS  Google Scholar 

  389. H. C. Külich: Reconstructing volume holograms without image field losses, Appl. Opt. 30, 2850 (1991)

    Article  ADS  Google Scholar 

  390. E. Chuang, D. Psaltis: Storage of 1000 holograms with use of a dual-wavelength method, Appl. Opt. 36, 8445 (1997)

    Article  ADS  Google Scholar 

  391. S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, Y. Yacoby: Spatial frequency mixing in lithium niobate, Opt. Commun. 84, 251 (1991)

    Article  ADS  Google Scholar 

  392. S. Fries: Spatial frequency mixing in electrooptic crystals – application to nondestructive read-out of optically erasable volume holograms, Appl. Phys. A 55, 104 (1992)

    ADS  Google Scholar 

  393. R. A. Paquin: Metal mirrors. In: Handbook of Optomechanical Engineering, ed. by A. Ahmad (CRC, Boca Raton 1996) p. 92

    Google Scholar 

  394. ULETM is a registered trademark of the Corning Glass Works, Corning, New York, USA for their ultra low expansion fused silica

    Google Scholar 

  395. Zerodur® is a registered trademark of Schott Glaswerke, Mainz, Germany, for their zero expansion glass ceramic

    Google Scholar 

  396. R. A. Paquin: Properties of metals. In: Handbook of Optics, Devices, Measurements, and Properties, Vol. II, 2nd edn., ed. by M. Bass (McGraw-Hill, New York 1994) pp. 35.1–35.78

    Google Scholar 

  397. R. A. Paquin: Materials for Optical Systems and Metal Mirrors. In: Handbook of Optomechanical Engineering, ed. by A. Ahmad (CRC, Boca Raton 1997) pp. 69–110

    Google Scholar 

  398. M. A. Ealey, R. A. Paquin, T. B. Parsonage (Eds.): Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67 (SPIE, Bellingham 1997)

    Google Scholar 

  399. I. Kh. Lokshin: Heat treatment to reduce internal stresses in beryllium, Metal. Sci. Heat Treat. 426, 426 (1970)

    Article  Google Scholar 

  400. R. A. Paquin: Advanced materials: An overview. In: Advanced materials for optics and precision structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by M. A. Ealey, R. A. Paquin, T. B. Parsonage (SPIE, Bellingham 1997) p. 10

    Google Scholar 

  401. R. G. Ohl, M. P. Barthelmy, S. W. Zewari, R. W. Toland, J. C. McMann, D. F. Puckett, J. G. Hagopian, J. E. Hylan, J. E. Mentzell, R. G. Mink, L. M. Sparr, M. A. Greenhouse, J. W. Mac Kenty: Cryogenic optical systems and instruments IX, comparison of stress relief procedures for cryogenic aluminum mirrors, Proc. SPIE. 4822, 51 (2002)

    Article  Google Scholar 

  402. H. Y. Hunsicker: The metallurgy of heat treatment. In: Aluminum 1:Properties, Physical Metallurgy and Phase Diagrams, ed. by J. E. Hatch (American Society for Metals, Metals Park 1967)

    Google Scholar 

  403. J. B. C. Fuller Jr., P. Forney, C. M. Klug: Design and fabrication of aluminum mirrors for a large aperture precision collimator operating at cryogenic temperatures, Los Alamos Conference on Optics ʼ81, Proc. SPIE 288, 104 (1981)

    ADS  Google Scholar 

  404. D. Vukobratovich, K. Don, R. Sumner: Improved cryogenic aluminum mirrors, Cryogenic Optical Systems and Instruments VIII, Proc SPIE 3435, 9–18 (1998)

    Article  ADS  Google Scholar 

  405. R. A. Paquin: Hot isostatic pressed beryllium for large optics, Opt. Eng 25, 1003 (1986)

    Google Scholar 

  406. D. Saxton, T. Parsonage: Advances in near net shape beryllium manufacturing technologies, Optical design, materials, fabrication, and maintenance, Proc. SPIE 4003, 80 (2000)

    Article  ADS  Google Scholar 

  407. M. Cayrel, R. A. Paquin, T. B. Parsonage, S. Stanghellini, K. H. Dost: Use of beryllium for the VLT secondary mirror, Advanced Materials for Optics and Precision Structures, Proc. SPIE 2857, 86 (1996)

    Article  ADS  Google Scholar 

  408. D. R. Coulter, S. A. Macenka, M. T. Stier, R. A. Paquin: ITTT: A state-of-the-art ultra-lightweight all-beryllium telescope. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by M. A. Ealey, R. A. Paquin, T. B. Parsonage (SPIE, Bellingham 1997) p. 277

    Google Scholar 

  409. G. Gould: Method and means for making a beryllium mirror, US Patent 4,492,669 (1985)

    Google Scholar 

  410. R. A. Paquin: New technology for beryllium mirror production, Current Developments in Optical Engineering and Commercial Optics, Proc. SPIE 1168, 83 (1989)

    ADS  Google Scholar 

  411. T. Parsonage, J. Benoit: Advances in beryllium and AlBeMet® optical materials, Optomechanical Design And Engineering 2002, Proc. SPIE 4771, 222 (2002)

    Article  ADS  Google Scholar 

  412. C. A. Swenson: HIP beryllium: Thermal expansivity from 4 to 300 K and heat capacity from 1 to 108 K, J. Appl. Phys. 70, 3046 (1991)

    Article  ADS  Google Scholar 

  413. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, P. D. Desai: Thermal expansion, metallic elements and alloys, Thermophys. Prop. Matter, Vol. 12 (IFI/Plenum, New York 1977) p. 23

    Google Scholar 

  414. R. A. Paquin, D. R. Coulter, D. D. Norris, A. C. Augason, M. T. Stier, M. Cayrel, T. Parsonage: New fabrication processes for dimensionally stable beryllium mirrors, Specification, Production, and Testing of Optical Components and Systems, Proc. SPIE 2775, 480 (1996)

    Article  ADS  Google Scholar 

  415. T. B. Parsonage: Development of aluminum beryllium for structural applications. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T. B. Parsonage M. A. Ealey, R. A. Paquin (SPIE, Bellingham 1997) p. 236

    Google Scholar 

  416. www.brushwellman.com

    Google Scholar 

  417. M. R. Howells, R. A. Paquin: Optical substrate materials for synchrotron radiation beam lines. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T. B. Parsonage M. A. Ealey, R. A. Paquin (SPIE, Bellingham 1997) p. 339

    Google Scholar 

  418. R. Valdiviez, D. Schrage, F. Martinez, W. Clark: The use of dispersion strengthened copper in accelerator designs, Proc. XX Intʼl Linac Conf., Monterey 2000) 956

    Google Scholar 

  419. B. S. Lement, B. L. Averback, M. Cohen: The dimensional behavior of Invar, Trans. Am Soc. Met. 43, 1072 (1951)

    Google Scholar 

  420. W. J. Spawr: Standard industrial polishing of high energy laser optics, NBS Spec. Pub. 435, 10–12 (1975)

    Google Scholar 

  421. P. A. Temple, D. K. Burge, J. M. Bennett: Optical properties of mirrors prepared by ultraclean dc sputter deposition, NBS Spec. Pub. 462, 195–202 (1976)

    Google Scholar 

  422. G. E. Carver, B. O. Seraphin: CVD molybdenum films for high power laser mirrors. In: Laser Induced Damage in Optical Materials (NBS, Bolder 1979) pp. 287–292

    Google Scholar 

  423. H. Okamoto, M. Matsusue, K. Kitazima, K. Yoshida, Y. Ichikawa, M. Yamanaka, T. Yamanaka, Y. Tsunawaki: Laser-induced Mo mirror damage for high power CO2 laser. In: Laser Induced Damage in Optical Materials (NBS, Bolder 1985) pp. 248–260

    Google Scholar 

  424. M. Yamashita, S. Hara, H. Matsunaga: Ultrafine polishing of tungsten and molybdenum mirrors for CO2 laser. In: Laser-Damage in Optical Materials: Collected Papers, 1969-1998, Vol. 08 (SPIE, Bellingham 1999)

    Google Scholar 

  425. D. L. Hibbard: Electroless nickel for optical applications. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T. B. Parsonage M. A. Ealey, R. A. Paquin (SPIE, Bellingham 1997) p. 179

    Google Scholar 

  426. K. Parker, H. Shah: Residual stresses in electroless nickel plating, Plating 58, 230 (1971)

    Google Scholar 

  427. K. Parker: Internal stress measurements of electroless nickel coatings by the rigid strip method. In: Testing of Metallic and Inorganic Coatings, Vol. STP 947, ed. by W. B. Hardig, G. D. di Ban (American Society for Testing and Materials, Philadelphia 1987) p. 111

    Chapter  Google Scholar 

  428. AlumiplateTM is a registered trademark of Alumiplate, Inc., Coon Rapids, MN, USA for their aluminium plating process and coating

    Google Scholar 

  429. D. Vukobratovich, A. Gerzoff, M. K. Cho: Thermooptic analysis of bi-metallic mirrors, Optomechanical Design and Precision Instruments, Proc. SPIE 3132, 12–23 (1997)

    Article  ADS  Google Scholar 

  430. C. J. Shih, A. Ezis: Application of hot-pressed silicon carbide to large high-precision optical structures, Silicon Carbide Materials for Optics and Precision Structures, Proc. SPIE 2543, 24 (1995)

    Article  ADS  Google Scholar 

  431. J. S. Goela, M. A. Pickering: Optics applications of chemical vapor deposited β-SiC. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T. B. Parsonage M. A. Ealey, R. A. Paquin (SPIE, Bellingham 1997) p. 71

    Google Scholar 

  432. V. Rehn, J. L. Stanford, A. D. Behr, V. O. Jones, W. J. Choyke: Total optical integrated scatter in the vacuum ultraviolet: Polished CVD SiC, Appl. Opt. 16, 111 (1977)

    Article  Google Scholar 

  433. V. Rehn, W. J. Choyke: Total optical integrated scatter in the vacuum ultraviolet: Polished CVD SiC, Nucl. Instrum. Methods 117, 173 (1980)

    Article  Google Scholar 

  434. E. Sein, F. Safa, D. Castel, P. Deny: Silicon carbide, a sound solution for space optics, Proc. 52Intʼl Astronautical Congress Toulouse (2001)Paper IAF-01-I.1.06

    Google Scholar 

  435. M. A. Ealey, J. A. Wellman, G. Weaver: CERAFORM SiC: Roadmap to 2 meters and 2 kg/m2 areal density. In: Advanced Materials for Optics and Precision Structures, Crit. Rev. Opt. Sci. Technol., Vol. 67, ed. by T. B. Parsonage M. A. Ealey, R. A. Paquin (SPIE, Bellingham 1997) p. 53

    Google Scholar 

  436. E. Tobin, M. Magida, S. Kishner, M. Krim: Design, fabrication, and Test of a meter-class reaction bonded sic mirror blank, Silicon Carbide Materials for Optics and Precision Structures, Proc. SPIE 2543, 12 (1995)

    Article  ADS  Google Scholar 

  437. R. A. Paquin, M. B. Magida: Low scatter surfaces on silicon carbide, Laser Induced Damage in Optical Materials: 1989, NIST Spec. Publ. 801, 256 (1990)

    Google Scholar 

  438. M. Krödel, G. S. Kutter, M. Deyerler, N. Pailer: Short carbon-fiber reinforced ceramic – Cesic® – for optomechanical applications, Optomechanical Design And Engineering 2002, Proc. SPIE 4771, 230 (2002)

    Article  ADS  Google Scholar 

  439. R. Plummer, D. Bray: Guidelines for design of SuperSiC® silicon carbide mirror substrates, precision components, Optomechanical Design and Engineering 2002, Proc. SPIE 4771, 265 (2002)

    Article  ADS  Google Scholar 

  440. S. Musikant: Optical Materials (Dekker, New York 1985) p. 1985

    Google Scholar 

  441. Hoya Optical Glass Catalog

    Google Scholar 

  442. Ohara Optical Glass Catalog (Ohara, Brandsburg 1995)

    Google Scholar 

  443. Schott Optical Glass Catalog (Schott, Mainz 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Brinkmann Prof. , Joseph Hayden Dr. , Martin Letz Dr. , Steffen Reichel Dr. , Carol Click Dr. , Wolfgang Mannstadt Dr. , Bianca Schreder Dr. , Silke Wolff , Simone Ritter Dr. , Mark Davis Ph.D. , Thomas Bauer Dr. , Hongwen Ren Dr. , Yun-Hsing Fan , Shin-Tson Wu Prof. , Klaus Bonrad Dr. , Eckhard Krätzig Prof. , Karsten Buse Prof. or Roger Paquin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Brinkmann, M. et al. (2007). Optical Materials and Their Properties. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30420-5_5

Download citation

Publish with us

Policies and ethics