Holography and Optical Storage

  • Mirco Imlau
  • Martin Fally
  • Hans Coufal†
  • Geoffrey Burr
  • Glenn Sincerbox
Part of the Springer Handbooks book series (SHB)


The term holography is composed of the Greek words holos (= whole) and graphein (= to record, to write), and thus summarizes the key aspects of its underlying principle: recording the complete wavefront of an object, i.e., its intensity as well as its phase. Interference and diffraction phenomena are employed to record and retrieve the full information, a technique pioneered by Dennis Gabor in 1948. He was honored with the Nobel prize in Physics in 1971, reflecting the general impact of holography on modern physics.

Holography plays an essential role in todayʼs science and industry. Relevant applications making use of its principle have been developed, including three-dimensional (3-D) displays and holographic cameras, interferometers for nondestructive material analysis, archival data storage systems, diffractive optical systems, and embossed display holograms for security features. The success of holography was made possible in particular by the availability of coherent laser-light sources. In the meantime holography has even been performed using microwaves, neutrons, electrons, X-rays, and acoustic waves.

The first part of this chapter is devoted to holography itself. It provides an introduction to the historical development and reviews the principle of wavefront reconstruction. This section also includes an overview of hologram classification, recording/read-out geometries, holographic techniques and recording materials. Special emphasis is given to explaining the principles of some of the most important holographic applications, finishing with a brief insight into a few of the latest discoveries making use of Gaborʼs principle, such as holographic scattering and neutron diffractive optics.

The second part of this chapter addresses trends in optical storage, focussing on holographic data storage. It highlights different approaches to achieving increased optical storage density. This section also discusses the historical development of optical storage, the need for increased storage densities (and hence storage capacities) and the role of optical storage systems in todayʼs life.

Various approaches to increasing the areal density of optical storage systems are introduced. Next, the advantages of and approaches to volume optical recording that are currently under consideration for future generations of optical storage systems are presented. The state of the art as well as physical and technical attempts to realize holographic data storage are discussed in detail.


Spatial Light Modulator Reference Wave Holographic Interferometry Digital Holography Data Page 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



charge-coupled device


computer generated hologram


continuous wave


United States Defense Advanced Research Projects Agency


first-in first-out


holographic data storage system


multilayer fluorescent disk


magnetic super-resolution


numerical aperture


National Storage Industry Consortium


polymer-dispersed liquid crystal








solid-immersion lens


spatial light modulator


signal-to-noise ratio




write-once, read-many times


  1. 20.1.
    D. Gabor: A new microscopic principle, Nature 161, 777 (1948)ADSGoogle Scholar
  2. 20.2.
    E. N. Leith, J. Upatnieks: Reconstructed wavefronts and communication theory, J. Opt. Soc. Am. 52, 1123 (1962)ADSGoogle Scholar
  3. 20.3.
    Y. N. Denisyuk: On the reproduction of the optical properties of an object by the wave field of its scattered radiation, Opt. Spectrosc. (USSR) 15, 279 (1963)Google Scholar
  4. 20.4.
    N. L. Hartmann: Wavefront reconstruction with incoherent light, US Patent 3532406 (1965)Google Scholar
  5. 20.5.
    R. L. Powell, J. H. Hemmye: Holography and hologram interferometry using photochromic recording materials, J. Opt. Soc. Am. 56, 1540 (1966)Google Scholar
  6. 20.6.
    T. A. Shankoff: Phase holograms in dichromated gelatin, Appl. Opt. 7, 2101 (1968)ADSGoogle Scholar
  7. 20.7.
  8. 20.8.
    L. Siebert: Front-lighted pulse laser holography, Appl. Phys. Lett. 11, 326 (1967)ADSGoogle Scholar
  9. 20.9.
    S. Benton: Hologram reconstructions with extended incoherent sources, J. Opt. Soc. Am. 59, 1545 (1969)Google Scholar
  10. 20.10.
    W. Odelberg (ed.): From Les Prix Nobel en 1971 (Nobel Foundation, Stockholm 1972)Google Scholar
  11. 20.11.
    V. G. Komar, V. I. Mandrosov, G. Sobolev, D. A. Tsyrulnikov: Image projection onto a holographic screen, Kvantovaya Elektron. 2, 193 (1975)Google Scholar
  12. 20.12.
    E. N. Leith, J. Upatnieks: Wavefront reconstruction with continuous-tone objects, J. Opt. Soc. Am. 53, 1377 (1963)ADSGoogle Scholar
  13. 20.13.
    E. N. Leith, J. Upatnieks: Wavefront reconstruction with diffused illumination and three-dimensional objects, J. Opt. Soc. Am. 54, 1295 (1964)ADSGoogle Scholar
  14. 20.14.
    Nobel Foundation: Nobel Lectures: Physics 1901-1921 (Elsevier, Amsterdam 1967)Google Scholar
  15. 20.15.
    S. F. Johnston: Reconstructing the history of holography, SPIE Proc. 5005, 455 (2003)Google Scholar
  16. 20.16.
    P. Hariharan: Optical holography, 2 edn. (Cambridge Univ. Press, Cambridge 1996)Google Scholar
  17. 20.17.
    G. Groh: Holographie (Berliner Union, Stuttgart 1973)Google Scholar
  18. 20.18.
    T. K. Gaylord, M. G. Moharam: Thin and thick gratings: Terminology clarification, Appl. Opt. 20, 3271 (1981)ADSGoogle Scholar
  19. 20.19.
    P. Yeh: Introduction to Photorefractive Nonlinear Optics (Wiley, New York 1993)Google Scholar
  20. 20.20.
    F. Laeri, T. Tschudi, J. Albers: Coherent CW image amplifier and oscillator using two-wave interaction in a BaTiO3-crystal, Opt. Commun. 47, 387 (1983)ADSGoogle Scholar
  21. 20.21.
    M. Kaczmarek, R. W. Eason: Very-high-gain single-pass two-beam coupling in blue Rh:BaTiO3, Opt. Lett. 20, 1850 (1995)ADSGoogle Scholar
  22. 20.22.
    S. A. Benton: White light transmission/reflection holographic imaging. In: Applications of Holography and Optical Data Processing, ed. by E. Marom, A. A. Friesem, E. Wiener-Avnaer (Pergamon, Oxford 1977) p. 401Google Scholar
  23. 20.23.
    S. D. Kakichashvili: Method of recording phase polarization holograms, Kvantovaya Elektron 1, 1435 (1974)Google Scholar
  24. 20.24.
    T. Todorov, L. Nikolova, N. Tomova: Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence, Appl. Opt. 23, 4309 (1984)ADSGoogle Scholar
  25. 20.25.
    S. G. Odulov: Spatially oscillating photo-voltaic current in iron-doped lithium-niobate crystals, Sov. Phys. JETP Lett. 35, 10 (1982)ADSGoogle Scholar
  26. 20.26.
    M. Imlau, T. Woike, R. Schieder, R. A. Rupp: Holographic recording with orthogonally polarized waves in centrosymmetric Na2[Fe(CN)5NO] ⋅ 2H2O, Europhys. Lett. 53, 471 (2001)ADSGoogle Scholar
  27. 20.27.
    J. T. McCrickerd, N. George: Holographic stereogram from sequential component photographs, Appl. Phys. Lett. 12, 10 (1968)ADSGoogle Scholar
  28. 20.28.
    D. J. DeBitetto: Holographic panoramic stereograms synthesized from white light recordings, Appl. Opt. 8, 1740 (1969)ADSGoogle Scholar
  29. 20.29.
    J. D. Redman, W. P. Wolton, E. Shuttleworth: Use of holography to make truly 3-dimensional X-ray images, Nature 220, 58 (1968)ADSGoogle Scholar
  30. 20.30.
    N. D. Haig: 3-dimensional holograms by rotational multiplexing of 2-dimensional films, Appl. Opt. 12, 419 (1973)ADSGoogle Scholar
  31. 20.31.
    M. C. King: Multiple exposure hologram recording of a 3-d image with a 360 degree view, Appl. Opt. 7, 1641 (1968)ADSGoogle Scholar
  32. 20.32.
    M. Born, E. Wolf: Principles of Optics, 7 edn. (Cambridge Univ. Press, Cambridge 2002)Google Scholar
  33. 20.33.
    B. J. Thompson: Fraunhofer diffraction patterns of opaque objects with coherent background, J. Opt. Soc. Am. 53, 1350 (1963)Google Scholar
  34. 20.34.
    A. Vanderlugt: Signal-detection by complex spatial-filtering, IEEE T. Inform. Theory 10, 139 (1964)Google Scholar
  35. 20.35.
    J. W. Goodman: Introduction to Fourier Optics (McGraw-Hill, San Francisco 1968)Google Scholar
  36. 20.36.
    L. Rosen: Focused-image holography with extended sources, Appl. Phys. Lett. 9, 337 (1966)ADSGoogle Scholar
  37. 20.37.
    G. W. Stroke: White-light reconstruction of holographic images using transmission holograms recorded with conventionally-focused images and in-line background, Phys. Lett. 23, 325 (1966)ADSGoogle Scholar
  38. 20.38.
    G. B. Brandt: Image plane holography, Appl. Opt. 8, 1421 (1969)ADSGoogle Scholar
  39. 20.39.
    H. Kogelnik: Coupled wave theory for thick hologram gratings, AT&T Tech. J. 48, 2909–2947 (1969)Google Scholar
  40. 20.40.
    R. Hioki, T. Suzuki: Reconstruction of wavefronts in all directions, Jpn. J. Appl. Phys. 4, 816 (1965)ADSGoogle Scholar
  41. 20.41.
    T. H. Jeong, P. Rudolf, A. Luckett: 360° holography, J. Opt. Soc. Am. 56, 1263 (1966)Google Scholar
  42. 20.42.
    L. H. Lin: Edge-illuminated hologram, J. Opt. Soc. Am. 60, 714 (1970)Google Scholar
  43. 20.43.
    R. J. Collier, C. B. Burckhardt, L. H. Lin: Optical Holography (Academic, Orlando 1971)Google Scholar
  44. 20.44.
    D. L. Staebler, J. J. Amodei, W. Phillips: Multiple storage of thick holograms in LiNbO3, IEEE J. Quantum Elect. 8, 611 (1972)ADSGoogle Scholar
  45. 20.45.
    E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, N. Massey: Holographic data storage in three-dimensional media, Appl. Opt. 5, 1303 (1966)ADSGoogle Scholar
  46. 20.46.
    G. A. Rakuljic, V. Leyva, A. Yariv: Optical data storage using orthogonal wavelength multiplexed volume holograms, Opt. Lett. 17, 1471 (1992)ADSGoogle Scholar
  47. 20.47.
    S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu: Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using visible-light tunable diode laser, Opt. Commun. 101, 317 (1993)ADSGoogle Scholar
  48. 20.48.
    C. Denz, G. Pauliat, G. Roosen, T. Tschudi: Volume hologram multiplexing using a deterministic phase encoding method, Opt. Commun. 85, 171 (1991)ADSGoogle Scholar
  49. 20.49.
    G. Barbastathis, M. Levene, D. Psaltis: Shift multiplexing with spherical reference waves, Appl. Opt. 35, 2403 (1996)ADSGoogle Scholar
  50. 20.50.
    Y. N. Denisyuk: Photographic reconstruction of the optical properties of an object in its own scattered radiation field, Sov. Phys. Doklady 7, 543 (1962)ADSGoogle Scholar
  51. 20.51.
    P. J. Van Heerden: Theory of optical information storage in solids, Appl. Opt. 2, 393 (1963)ADSGoogle Scholar
  52. 20.52.
    L. H. Lin: Hologram formation in hardened dichromated gelatin films, Appl. Opt. 8, 963 (1969)ADSGoogle Scholar
  53. 20.53.
    A. A. Friesem: Holograms in thick emulsions, Appl. Phys. Lett. 7, 102 (1965)ADSGoogle Scholar
  54. 20.54.
    G. W. Stroke, A. E. Labeyrie: White-light reconstruction of holographic images using Lippmann-Bragg diffraction effect, Phys. Lett. 20, 368 (1966)ADSGoogle Scholar
  55. 20.55.
    K. S. Pennington, L. H. Lin: Multicolor wavefront reconstruction, Appl. Phys. Lett. 7, 56 (1965)ADSGoogle Scholar
  56. 20.56.
    A. A. Friesem, R. J. Fedorowicz: Recent advances in multicolor wavefront reconstruction, Appl. Opt. 5, 1085 (1966)ADSGoogle Scholar
  57. 20.57.
    G. Barbastathis, D. Psaltis: Volume Holographic Multiplexing Methods, Springer Ser. Opt. Sci., Vol. 76 (Springer, Berlin, Heidelberg 2000) pp. 21–62Google Scholar
  58. 20.58.
    H.-Y. S. Li, D. Psaltis: Three-dimensional holographic disks, Appl. Opt. 33, 3764 (1994)ADSGoogle Scholar
  59. 20.59.
    D. Psaltis: Parallel optical memories, Byte 17, 179 (1992)Google Scholar
  60. 20.60.
    H. Lee, X.-G. Gu, D. Psaltis: Volume holographic interconnections with maximal capacity and minimal cross talk, J. Appl. Phys. 65, 2191 (1989)ADSGoogle Scholar
  61. 20.61.
    F. H. Mok, G. W. Burr, D. Psaltis: Angle and space multiplexed holographic random access memory (HRAM), Opt. Memory Neural Networks 3, 119 (1994)Google Scholar
  62. 20.62.
    G. Burr, F. Mok, D. Psaltis: Angle and space multiplexed holographic storage using the 90-degrees geometry, Opt. Commun. 117, 49 (1995)ADSGoogle Scholar
  63. 20.63.
    K. Curtis, A. Pu, D. Psaltis: Method for holographic storage using peristrophic multiplexing, Opt. Lett. 19, 993 (1994)ADSGoogle Scholar
  64. 20.64.
    G. Barbastathis, A. Pu, M. Levene, D. Psaltis: Holographic 3D Disks Using Shift Multiplexing, SPIE Proc. 2514, 355 (1995)ADSGoogle Scholar
  65. 20.65.
    F. H. Mok, M. C. Tackitt, H. M. Stoll: Storage of 500 high-resolution holograms in a LiNbO3 crystal, Opt. Lett. 16, 605 (1991)ADSGoogle Scholar
  66. 20.66.
    A. Pu, K. Curtis, D. Psaltis: A new method for holographic data storage in polymer films. In: Nonlinear Optics: Materials, Fundamentals and Applications Meeting (IEEE, New York 1994) p. 433Google Scholar
  67. 20.67.
    S. Campbell, X. Yi, P. Yeh: Hybrid sparse-wavelength angle-multiplexed optical data storage system, Opt. Lett. 19, 2161 (1994)ADSGoogle Scholar
  68. 20.68.
    D. Psaltis, F. Mok: Holographic memories, Sci. Am. 273, 70 (1995)ADSGoogle Scholar
  69. 20.69.
    A. Pu, D. Psaltis: High-density recording in photopolymer-based holographic three-dimensional disks, Appl. Opt. 35, 2389 (1996)ADSGoogle Scholar
  70. 20.70.
    A. Pu, D. Psaltis: Holographic 3D disks using shift multiplexing, CLEO96, Vol. 9 (OSA, Washington 1996) p. 165Google Scholar
  71. 20.71.
    A. Pu, D. Psaltis: Holographic data storage with 100 bits/μ m2 density. Optical Data Storage Topical Meeting (IEEE, New York 1997) p. 48Google Scholar
  72. 20.72.
    S. Matthews: A light touch, Laser Focus World 40, 137 (2004)Google Scholar
  73. 20.73.
    U. Schnars, W. Jüptner: Direct recording of holograms by a CCD target and numerical reconstruction, Appl. Opt. 33, 179 (1994)ADSGoogle Scholar
  74. 20.74.
    I. Yamaguchi, T. Zhang: Phase-shifting digital holography, Opt. Lett. 22, 1268 (1997)ADSGoogle Scholar
  75. 20.75.
    H. M. Smith: Holographic recording Materials, Top. Appl. Phys., Vol. 20 (Springer, Berlin, Heidelberg 1977)Google Scholar
  76. 20.76.
    P. Hariharan: Holographic recording materials – recent developments, Opt. Eng. 19, 636 (1980)Google Scholar
  77. 20.77.
    R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin: Diffraction from optically written persistent plasma gratings in doped compound semiconductors, Appl. Phys. Lett. 65, 16 (1994)ADSGoogle Scholar
  78. 20.78.
    A. I. Ryskin, A. S. Shcheulin, B. Koziarska, J. M. Langer, A. Suchocki, I. I. Buczinskaya, P. P. Fedorov, B. P. Sobolev: CdF2:In: A novel material for optically written storage of information, Appl. Phys. Lett. 67, 31 (1995)ADSGoogle Scholar
  79. 20.79.
    B. Sugg, H. Nürge, B. Faust, R. Niehüser, H.-J. Reyher, R. A. Rupp, L. Ackermann: The photorefractive effect in terbium gallium garnet, Opt. Mater. 4, 343 (1995)Google Scholar
  80. 20.80.
    T. Woike, S. Haussühl, B. Sugg, R. A. Rupp, J. Beckers, M. Imlau, R. Schieder: Phase gratings in the visible and near-infrared spectral range realized by metastable electronic states in Na2[Fe(CN)5NO] ⋅ 2H2O, Appl. Phys. B 63, 243–248 (1996)ADSGoogle Scholar
  81. 20.81.
    M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, K. Schwarz: Holographic recording by excitation of metastable electronic states in Na2[Fe(CN)5NO] ⋅ 2H2O, A new photorefractive effect, Appl. Phys. B 68, 877 (1999)ADSGoogle Scholar
  82. 20.82.
    M. A. Ellabban, M. Fally, R. A. Rupp, L. Kovács: Light-induced phase and amplitude gratings in centrosymmetric Gadolinium Gallium garnet doped with Calcium, Opt. Express 14, 593 (2006)ADSGoogle Scholar
  83. 20.83.
    C. C. Bowley, G. P. Crawford: Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials, Appl. Phys. Lett. 76, 2235 (2000)ADSGoogle Scholar
  84. 20.84.
    M. J. Escuti, J. Qi, G. P. Crawford: Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals, Opt. Lett. 28, 522 (2003)ADSGoogle Scholar
  85. 20.85.
    G. P. Crawford: Electrically switchable Bragg gratings, Opt. Photon. News 14, 54 (2003)ADSGoogle Scholar
  86. 20.86.
    E. Völkl, H. Lichte: Electron holograms for subangstrom point resolution, Ultramicrosc. 32, 177 (1990)Google Scholar
  87. 20.87.
    B. Javidi, E. Tajahuerce: Three-dimensional object recognition by use of digital holography, Opt. Lett. 25, 610 (2000)ADSGoogle Scholar
  88. 20.88.
    W. D. Rau, P. Schwander, F. H. Baumann, W. Höppner, A. Ourmazd: Two-dimensional mapping of the electrostatic potential in transistors by electron holography, Phys. Rev. Lett. 82, 2614 (1999)ADSGoogle Scholar
  89. 20.89.
    M. R. McCartney, M. A. Gribelyuk, J. Li, P. Ronsheim, J. S. McMurray, D. J. Smith: Quantitative analysis of one-dimensional dopant profile by electron holography, Appl. Phys. Lett. 80, 3213 (2002)ADSGoogle Scholar
  90. 20.90.
    E. Völkl, L. F. Allard, D. Joy: Introduction to Electron Holography (Kluwer Academic, Dordrecht 1999)Google Scholar
  91. 20.91.
    A. Tonomura: Electron Holography, Springer Ser. Opt. Sci., Vol. 70, 2 edn. (Springer, Berlin, Heidelberg 1999)zbMATHGoogle Scholar
  92. 20.92.
    R. A. London, M. D. Rosen, J. E. Trebes: Wavelength choice for soft X-ray laser holography of biological samples, Appl. Opt. 28, 3397 (1989)ADSGoogle Scholar
  93. 20.93.
    M. Howells, C. Jacobsen, J. Kirz: X-ray holograms at improved resolution: a study of zymogen granules, Science 238, 514 (1987)ADSGoogle Scholar
  94. 20.94.
    J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan: Demonstration of X-ray holography with an X-ray laser, Science 238, 517 (1987)ADSGoogle Scholar
  95. 20.95.
    E. N. Leith: Quasi-holographic techniques in the microwave region, Proc. IEEE 59, 1305 (1971)Google Scholar
  96. 20.96.
    A. Andreoni, M. Bondani, M. A. C. Potenza, Y. N. Denisyuk: Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields, J. Opt. Soc. Am. B 17, 966 (2000)ADSGoogle Scholar
  97. 20.97.
    Y. N. Denisyuk, A. Andreoni, M. Bondani, M. A. C. Potenza: Real-time holograms generated by second-harmonic cross correlation of object and reference optical wave fields, Opt. Lett. 25, 890 (2000)ADSGoogle Scholar
  98. 20.98.
    M. Bondani, A. Andreoni: Holographic nature of three-wave mixing, Phys. Rev. A 66, 33805 (2002)ADSGoogle Scholar
  99. 20.99.
    M. Bondani, A. Allevi, A. Brega, E. Puddu, A. Andreoni: Difference-frequency-generated holograms of two-dimensional objects, J. Opt. Soc. Am. B 21, 280 (2004)ADSGoogle Scholar
  100. 20.100.
    M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield: Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53 (2000)ADSGoogle Scholar
  101. 20.101.
    Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, M. Wegener: Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations, Appl. Phys. Lett. 82, 1284 (2003)ADSGoogle Scholar
  102. 20.102.
    N. Huot, J. M. Jonathan, G. Pauliat, P. Georges, A. Brun, G. Roosen: Laser mode manipulation by intracavity dynamic holography: application to mode selection, Appl. Phys. B 69, 155 (1999)ADSGoogle Scholar
  103. 20.103.
    S. Y. Lam, M. Damzen: Self-adaptive holographic solid-state dye laser, Opt. Commun. 218, 365 (2003)ADSGoogle Scholar
  104. 20.104.
    L. DʼAuria, J. P. Huignard, E. Spitz: Holographic read-write memory and capacity enhancement by 3D storage, IEEE Trans. Magn. 9, 83 (1973)ADSGoogle Scholar
  105. 20.105.
    J. Heanue, M. Bashaw, L. Hesselink: Volume holographic storage and retrieval of digital data, Science 265, 749 (1994)ADSGoogle Scholar
  106. 20.106.
    M. P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann: A precision tester for studies of holographic optical storage materials and recording physics, Appl. Opt. 35, 2360 (1996)ADSGoogle Scholar
  107. 20.107.
    I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong: Compact holographic storage demonstrator with rapid access, Appl. Opt. 35, 2375 (1996)ADSGoogle Scholar
  108. 20.108.
    G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus: Modulation coding for pixel-matched holographic data storage, Opt. Lett. 22, 639 (1997)ADSGoogle Scholar
  109. 20.109.
    M. Imlau, T. Bieringer, S. G. Odoulov, T. Woike: Holographic data storage. In: Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, ed. by R. Waser (Wiley-VCH, Weinheim 2003) Chap. 27, pp. 661–686Google Scholar
  110. 20.110.
    H. J. Coufal, D. Psaltis, G. T. Sincerbox (eds.): Holographic Data Storage, Springer Ser. Opt. Sci., Vol. 76 (Springer, Berlin, Heidelberg 2000)zbMATHGoogle Scholar
  111. 20.111.
    F. Dreesen, G. von Bally: High resolution color-holography for archaeological and medical applications,optics within life sciences. In: Optics within Life Science, ed. by C. Fotakis, T. G. Papazoglou, C. Kapouzos (Springer, Berlin, Heidelberg 2000) p. 349Google Scholar
  112. 20.112.
    F. Dreesen, G. von Bally: Color rendering in reflection holography. In: Optical Technologies in the Humanities, Ser. Opt. Within Life Sci., Vol. 4, ed. by D. Dirksen, G. von Bally (Elsevier, Amsterdam 1996) p. 79Google Scholar
  113. 20.113.
    G. von Bally, F. Dreesen, V. B. Markov, A. Roskhop, E. V. de Haller: Recording of color holograms on PFG-03Ts, Tech. Phys. Lett. 21, 76 (1995)Google Scholar
  114. 20.114.
    G. von Bally, D. Dreesen, A. Roshop, E. de Haller, G. Wernicke, N. Demoli, U. Dahms, H. Gruber, W. Sommerfeld: Holographic methods in cultural heritage preservation and evaluation. In: Optical Methods in Biomedical and Environmental Sciences, Ser. Opt. Within Life Sci., Vol. 3, ed. by H. Ohzu, S. Komatsu (Elsevier, Amsterdam 1994) p. 297Google Scholar
  115. 20.115.
    Y. I. Ostrovsky, M. Butusov, G. V. Ostrovskaya: Interferometry by Holography, Springer Ser. Opt. Sci., Vol. 20 (Springer, Berlin, Heidelberg 1980)Google Scholar
  116. 20.116.
    C. M. Vest: Holographic Interferometry (Wiley Interscience, New York 1979)Google Scholar
  117. 20.117.
    G. Wernicke, W. Osten: Holografische Interferometrie (Physik-Verlag, Weinheim 1982)Google Scholar
  118. 20.118.
    T. Kreis: Holographic interferometry, Akad. Ser. Opt. Metrol., Vol. 1 (Akademie, Berlin 1996)Google Scholar
  119. 20.119.
    K. A. Stetson, R. L. Powell: Interferometric hologram evaluation and real-time vibration analysis of diffuse objects, J. Opt. Soc. Am. 55, 1694 (1965)Google Scholar
  120. 20.120.
    R. J. Collier, E. T. Doherty, K. S. Pennington: Application of Moiré techniques to holography, Appl. Phys. Lett. 7, 223 (1965)ADSGoogle Scholar
  121. 20.121.
    R. E. Brooks, L. O. Heflinger, R. F. Wuerker: Interferometry with a holographically reconstructed comparsion beam, Appl. Phys. Lett. 7, 248 (1965)ADSGoogle Scholar
  122. 20.122.
    M. H. Horman: An application of wavefront reconstruction to interferometry, Appl. Opt. 4, 333 (1965)ADSGoogle Scholar
  123. 20.123.
    B. P. Hildebrand, K. A. Haines: Interferometric measurements using the wavefront reconstruction technique, Appl. Opt. 5, 172 (1966)ADSGoogle Scholar
  124. 20.124.
    K. A. Haines, B. P. Hildebrand: Surface-deformation measurement using the wavefront reconstruction technique, Appl. Opt. 5, 595 (1966)ADSGoogle Scholar
  125. 20.125.
    L. O. Heflinger, R. F. Wuerker, R. E. Brooks: Holographic interferometry, J. Appl. Phys. 37, 642 (1966)ADSGoogle Scholar
  126. 20.126.
    N. Abramson: The holo-diagram: A practical device for making and evaluating holograms, Appl. Opt. 8, 1235 (1969)ADSGoogle Scholar
  127. 20.127.
    J. E. Sollid: Holographic interferometry applied to measurements of small static displacements of diffusely reflecting surfaces, Appl. Opt. 8, 1587 (1969)ADSGoogle Scholar
  128. 20.128.
    K. A. Stetson: Method of vibration measurements in heterodyne interferometry, Opt. Lett. 7, 233 (1982)ADSGoogle Scholar
  129. 20.129.
    R. J. Pryputniewicz: Pulsed laser holography in studied of bone motions and deformations, Opt. Eng. 24, 832 (1985)Google Scholar
  130. 20.130.
    R. Thalmann: Heterodyne and quasi-heterodyne holographic-interferometry, Opt. Eng. 24, 824 (1985)Google Scholar
  131. 20.131.
    T. Tsuruta, N. Shiotake, Y. Itoh: Hologram interferometry using 2 reference beams, Jpn. J. Appl. Phys. 7, 1092 (1968)ADSGoogle Scholar
  132. 20.132.
    G. S. Ballard: Double-exposure holographic interferometry, J. Appl. Phys. 39, 4846 (1968)ADSGoogle Scholar
  133. 20.133.
    E. Marom, F. M. Mottier: 2-reference-beam holographic interferometry, J. Opt. Soc. Am. 66, 23 (1976)ADSGoogle Scholar
  134. 20.134.
    G. M. Brown, R. M. Grant, G. W. Stroke: Theory of holographic interferometry, J. Acoust. Soc. Am. 45, 1166 (1969)ADSGoogle Scholar
  135. 20.135.
    E. Jansson, N. E. Molin, H. Sundin: Resonances of a violin body studied by hologram interferometry and acoustical methods, Phys. Scr. 2, 243 (1970)ADSGoogle Scholar
  136. 20.136.
    A. D. Wilson, D. H. Strope: Time-average holographic interferometry of a circular plate vibrating simultaneously in 2 rationally related modes, J. Opt. Soc. Am. 60, 1162 (1970)ADSGoogle Scholar
  137. 20.137.
    R. Tonin, D. A. Bies: Time-averaged holography for study of 3-dimensional vibrations, J. Sound Vibrat. 52, 315 (1977)ADSGoogle Scholar
  138. 20.138.
    C. C. Aleksoff: Time average holography extended, Appl. Phys. Lett. 14, 23 (1969)ADSGoogle Scholar
  139. 20.139.
    F. M. Mottier: Time-averaged holography with triangular phase modulation of the reference wave, Appl. Phys. Lett. 15, 285 (1969)ADSGoogle Scholar
  140. 20.140.
    E. Archbold, A. E. Ennos: Observation of surface vibration modes by stroboscopic hologram interferometry, Nature 217, 942 (1968)ADSGoogle Scholar
  141. 20.141.
    B. M. Watrasiewicz, P. Spicer: Vibration analysis by stroboscopic holography, Nature 217, 1142 (1968)ADSGoogle Scholar
  142. 20.142.
    P. Shajenko, C. D. Johnson: Stroboscopic holographic interferometry, Appl. Phys. Lett. 13, 44 (1968)ADSGoogle Scholar
  143. 20.143.
    D. Hadbawnik: Holographische Endoskopie, Optik 45, 21 (1976)Google Scholar
  144. 20.144.
    M. Yonemura, T. Nishisaka, H. Machida: Endoscopic hologram interferometry using fiber optics, Appl. Opt. 20, 1664 (1981)ADSGoogle Scholar
  145. 20.145.
    G. von Bally, W. Schmidthaus, H. Sakowski, W. Mette: Gradient-index optical systems in holographic endoscopy, Appl. Opt. 23, 1725 (1984)ADSGoogle Scholar
  146. 20.146.
    G. von Bally, E. Brune, W. Mette: Holographic endoscopy with gradient-index optical imaging system and optical fibers, Appl. Opt. 25, 3425 (1986)ADSGoogle Scholar
  147. 20.147.
    O. Coquoz, R. Conde, F. Taleblou, C. Depeursinge: Performances of endoscopic holography with a multicore optical fiber, Appl. Opt. 34, 7186 (1995)ADSGoogle Scholar
  148. 20.148.
    D. B. Sheffer, W. Loughry, K. Somasundaram, S. K. Chawla, P. J. Wesolowski: Phase-shifting holographic interferometry for breast cancer detection, Appl. Opt. 33, 5011 (1994)ADSGoogle Scholar
  149. 20.149.
    S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggarwal: Comparative study of various endoscopes for pulsed digital holographic interferometry, Appl. Opt. 40, 2692 (2001)ADSGoogle Scholar
  150. 20.150.
    M. d. S. Hernández-Montes, C. Pérez-López, F. Mendoza Santoyo, L. M. Muñoz Guevara: Detection of biological tissue in gels using pulsed digital holography, Opt. Express 12, 853 (2004)ADSGoogle Scholar
  151. 20.151.
    H. Chen, M. Shih, E. Arons, E. Leith, J. Lopez, D. Dilworth, P. C. Sun: Electronic holographic imaging through living human tissue, Appl. Opt. 33, 3630 (1994)ADSGoogle Scholar
  152. 20.152.
    N. H. Abramson, K. G. Spears: Single pulse light-in-flight recording by holography, Appl. Opt. 28, 1834 (1989)ADSGoogle Scholar
  153. 20.153.
    I. Bukosza: Three-dimensional representation of ventriculography using contour-line holography, Appl. Opt. 31, 2485 (1992)ADSGoogle Scholar
  154. 20.154.
    C. Liu, C. Yan, S. Gao: Digital holographic method for tomography-image reconstruction, Appl. Phys. Lett. 84, 1010 (2004)ADSGoogle Scholar
  155. 20.155.
    M.-K. Kim: Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography, Opt. Express 7, 305 (2000)ADSGoogle Scholar
  156. 20.156.
    S.-R. Kothapalli, P. Wu, C. S. Yelleswarapu, D. V. G. L. N. Rao: Medical image processing using transient Fourier holography in bacteriorhodopsin films, Appl. Phys. Lett. 85, 5836 (2004)ADSGoogle Scholar
  157. 20.157.
    D. Carl, B. Kemper, G. Wernicke, G. von Bally: Parameter-optimized digital holographic microscope for high-resolution living-cell analysis, Appl. Opt. 43, 6536 (2004)ADSGoogle Scholar
  158. 20.158.
    P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge: Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy, Opt. Lett. 30, 468 (2005)ADSGoogle Scholar
  159. 20.159.
    A. Kozma, D. L. Kelly: Spatial filtering for detection of signals submerged in noise, Appl. Opt. 4, 387 (1965)ADSGoogle Scholar
  160. 20.160.
    A. W. Lohmann, D. P. Paris: Binary Fraunhofer holograms, generated by computer, Appl. Opt. 6, 1739 (1967)ADSGoogle Scholar
  161. 20.161.
    W. H. Lee: Sampled Fourier transform hologram generated by computer, Appl. Opt. 9, 639 (1970)ADSGoogle Scholar
  162. 20.162.
    W.-H. Lee: Binary synthetic holograms, Appl. Opt. 13, 1677 (1974)ADSGoogle Scholar
  163. 20.163.
    H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, D. McGloin: Optical trapping of three-dimensional structures using dynamic holograms, Opt. Express 11, 3562 (2003)ADSGoogle Scholar
  164. 20.164.
    W. J. Hossack, E. Theofanidou, J. Crain: High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay, Opt. Express 11, 2053 (2003)ADSGoogle Scholar
  165. 20.165.
    E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, D. G. Grier: Computer-generated holographic optical tweezer arrays, Rev. Sci. Instrum. 72, 1810 (2001)ADSGoogle Scholar
  166. 20.166.
    D. G. Grier, A. A. Sawchuk: Dynamic holographic optical tweezers: transforming mesoscopic matter with light, Trends Opt. Photon. (OSA) 90, 84 (2003)Google Scholar
  167. 20.167.
    A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte: Diffractive optical tweezers in the Fresnel regime, Opt. Express 12, 2243 (2004)ADSGoogle Scholar
  168. 20.168.
    A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu: Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288 (1986)ADSGoogle Scholar
  169. 20.169.
    A. Vasara, J. Turunen, A. T. Friberg: Realization of general nondiffracting beams with computer-generated holograms, J. Opt. Soc. Am. A 6, 1748 (1989)ADSGoogle Scholar
  170. 20.170.
    J. Durnin: Exact solutions for nondiffracting beams. I. the scalar theory, J. Opt. Soc. Am. A 4, 651 (1987)ADSGoogle Scholar
  171. 20.171.
    N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White: Generation of optical phase singularities by computer-generated holograms, Opt. Lett. 17, 221 (1992)ADSGoogle Scholar
  172. 20.172.
    A. R. Agachev, N. P. Larionov, A. V. Lukin, T. A. Mironova, A. A. Nyushkin, D. V. Protasevich, R. A. Rafikov: Computer-generated holographic optics, J. Opt. Technol. 69, 871 (2002)Google Scholar
  173. 20.173.
    I. M. Lancaster: Holograms and authentication: meeting future demands. In: Practical Holography XVIII, Mater. Appl., Vol. 5290, ed. by T. H. Jeong, H. I. Bjelkhagen (SPIE, Bellingham 2003) p. 318Google Scholar
  174. 20.174.
    D. Weber, J. Trolinger: Novel implementation of nonlinear joint transform correlators in optical security and validation, Opt. Eng. 38, 62 (1999)ADSGoogle Scholar
  175. 20.175.
    P. Réfrégier, B. Javidi: Optical image encryption based on input plane and Fourier plane random encoding, Opt. Lett. 20, 767 (1995)ADSGoogle Scholar
  176. 20.176.
    B. Javidi, T. Nomura: Securing information by use of digital holography, Opt. Lett. 25, 28 (2000)ADSGoogle Scholar
  177. 20.177.
    E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi: Optoelectronic information encryption with phase-shifting interferometry, Appl. Opt. 39, 2313 (2000)ADSGoogle Scholar
  178. 20.178.
    J. F. Heanue, M. C. Bashaw, L. Hesselink: Encrypted holographic data storage based on orthogonal-phase-code multiplexing, Appl. Opt. 34, 6012 (1995)ADSGoogle Scholar
  179. 20.179.
    N. Yoshikawa, M. Itoh, T. Yatagai: Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography, Opt. Lett. 23, 1483 (1998)ADSGoogle Scholar
  180. 20.180.
    O. Matoba, B. Javidi: Encrypted optical storage with angular multiplexing, Appl. Opt. 38, 7288 (1999)ADSGoogle Scholar
  181. 20.181.
    S. Kishk, B. Javidi: Watermarking of three-dimensional objects by digital holography, Opt. Lett. 28, 167 (2003)ADSGoogle Scholar
  182. 20.182.
    M. A. Ellabban, M. Fally, R. A. Rupp, T. Woike, M. Imlau: Holographic Scattering and its Applications. In: Recent Developments in Applied Physics, Vol. 4, ed. by S. G. Pandalay (Transworld Publishing, Trivandrum 2001) pp. 241–275Google Scholar
  183. 20.183.
    M. Imlau, M. Goulkov, M. Fally, T. Woike: Characterization of polar oxides by photo-induced light scattering. In: Polar Oxides: Properties, Characterization and Imaging, ed. by U. Böttger, S. Tiedke, R. Waser (Wiley, New York 2005) Chap. 9, pp. 163–188Google Scholar
  184. 20.184.
    M. Goulkov, M. Imlau, R. Pankrath, T. Granzow, U. Dörfler, T. Woike: Temperature study of photoinduced wide-angle scattering in cerium-doped strontium barium niobate, J. Opt. Soc. Am. B 20, 307–313 (2003)ADSGoogle Scholar
  185. 20.185.
    M. Goulkov, T. Granzow, U. Dörfler, T. Woike, M. Imlau, R. Pankrath, W. Kleemann: Temperature dependent determination of the linear electrooptic coefficient r 33 in Sr0.61Ba0.39Nb2O6 single crystals by means of light-induced scattering, Opt. Commun. 218, 173–182 (2003)ADSGoogle Scholar
  186. 20.186.
    M. Y. Goulkov, T. Granzow, U. Dörfler, T. Woike, M. Imlau, R. Pankrath: Study of beam-fanning hysteresis in photo- refractive SBN:Ce: light-induced and primary scattering as functions of polar structure, Appl. Phys. B 76, 407–416 (2003)ADSGoogle Scholar
  187. 20.187.
    M. Goulkov, M. Imlau, T. Granzow, T. Woike: Beam fanning reversal in the ferroelectric relaxor Sr0.61Ba0.39Nb2O6 at high external electric fields, J. Appl. Phys. 94, 4763 (2003)ADSGoogle Scholar
  188. 20.188.
    S. Hausfeld, M. Imlau, T. Weisemöller, M. Fally, T. Woike: Parametric scattering upon light-induced generation of metastable molecular states. In: Trends in Optics and Photonics, Vol. 99, ed. by G. Zhang, D. Kip, D. Nolte, J. Xu (OSA, Washington 2005) p. 405Google Scholar
  189. 20.189.
    M. Imlau, R. Schieder, R. A. Rupp, T. Woike: Anisotropic holographic scattering in centrosymmetric sodium nitroprusside, Appl. Phys. Lett. 75, 16 (1999)ADSGoogle Scholar
  190. 20.190.
    M. Goulkov, S. Odoulov, T. Woike, J. Imbrock, M. Imlau, H. Hesse: Holographic light scattering in photorefractive crystals with local response, Phys. Rev. B 65, 195111 (2002)ADSGoogle Scholar
  191. 20.191.
    A. Szöke: X-ray and electron holography using a local reference beam. In: Short Wavelength coherent radiation: Generation and Applications, Vol. 147, ed. by D. T. Attwood, J. Boker (AIP, New York 1986) pp. 361–367Google Scholar
  192. 20.192.
    G. R. Harp, D. K. Saldin, B. P. Tonner: Atomic-resolution electron holography in solids with localized sources, Phys. Rev. Lett. 65, 1012 (1990)ADSGoogle Scholar
  193. 20.193.
    G. Faigel, M. Tegze: X-ray holography, Rep. Prog. Phys. 62, 355 (1999)ADSGoogle Scholar
  194. 20.194.
    L. Cser, G. Krexner, G. Török: Atomic-resolution neutron holography, Europhys. Lett. 54, 747 (2001)ADSGoogle Scholar
  195. 20.195.
    T. Gog, P. M. Len, G. Materlik, D. Bahr, C. S. Fadley, C. Sanchez-Hanke: Multiple-energy X-ray holography: Atomic images of hematite (Fe2O3), Phys. Rev. Lett. 76, 3132 (1996)ADSGoogle Scholar
  196. 20.196.
    S. Y. Tong, H. Huang, X. Q. Guo: Low-energy electron and low-energy positron holography, Phys. Rev. Lett. 69, 3654 (1992)ADSGoogle Scholar
  197. 20.197.
    A. Hamza, P. Asoka-Kumar, W. Stoeffl, R. Howell, D. Miller, A. Denison: Development of positron diffraction and holography at LLNL, Radiat. Phys. Chem. 68, 635 (2003)ADSGoogle Scholar
  198. 20.198.
    J. J. Barton: Photoelectron holography, Phys. Rev. Lett. 61, 1356 (1988)ADSGoogle Scholar
  199. 20.199.
    P. M. Len, J. D. Denlinger, E. Rotenberg, S. D. Kevan, B. P. Tonner, Y. Chen, M. A. van Hove, C. S. Fadely: Holographic atomic images from surface and bulk W(110) photoelectron diffraction data, Phys. Rev. B 59, 5857 (1999)ADSGoogle Scholar
  200. 20.200.
    S. Omori, Y. Nihei, E. Rotenberg, J. D. Denlinger, S. Marchesini, S. D. Kevan, B. P. Tonner, M. A. van Hove, C. S. Fadley: Differential photoelectron holography: A new approach for three-dimensional atomic imaging, Phys. Rev. Lett. 88, 055504 (2002)ADSGoogle Scholar
  201. 20.201.
    D. K. Saldin, P. L. de Andres: Holographic LEED, Phys. Rev. Lett. 64, 1270 (1990)ADSGoogle Scholar
  202. 20.202.
    H. Wu, S. Xu, S. Ma, W. P. Lau, M. H. Xie, S. Y. Tong: Surface atomic arrangement visualization via reference-atom-specific holography, Phys. Rev. Lett. 89, 216101 (2002)ADSGoogle Scholar
  203. 20.203.
    H. Li, B. P. Tonner: Real-space interpretation of X-ray-excited Auger-electron diffraction from Cu(001), Phys. Rev. B 37, 3959 (1988)ADSGoogle Scholar
  204. 20.204.
    M. Tegze, G. Faigel: X-ray holography with atomic resolution, Nature 380, 49 (1996)ADSGoogle Scholar
  205. 20.205.
    G. Tegze, M. Faigel, S. Marchesini, M. Belakhovsky, A. I. Chumakov: Three dimensional imaging of atoms with isotropic 0.5 Å resolution, Phys. Rev. Lett. 82, 4847 (1999)ADSGoogle Scholar
  206. 20.206.
    M. Tegze, G. Faigel, S. Marchesini, M. Belakhovsky, O. Ulrich: Imaging light atoms by X-ray holography, Nature 407, 38 (2000)ADSGoogle Scholar
  207. 20.207.
    P. Korecki, J. Korecki, T. Ślȩzak: Atomic resolution γ-ray holography using the Mössbauer effect, Phys. Rev. Lett. 79, 3518 (1997)ADSGoogle Scholar
  208. 20.208.
    P. Korecki, M. Szymnoński, J. Korecki, T. Ślȩzak: Site-selective holographic imaging of iron arrangements in magnetite, Phys. Rev. Lett. 92, 205501 (2004)ADSGoogle Scholar
  209. 20.209.
    B. Sur, R. B. Rogge, R. P. Hammond, V. N. P. Anghel, J. Katsaras: Atomic structure holography using thermal neutrons, Nature 414, 525 (2001)ADSGoogle Scholar
  210. 20.210.
    L. Cser, G. Török, G. Krexner, M. Prem, I. Sharkov: Neutron holographic study of palladium hydride, Appl. Phys. Lett. 85, 1149 (2004)ADSGoogle Scholar
  211. 20.211.
    L. Cser, G. Török, G. Krexner, I. Sharkov, B. Faragó: Holographic imaging of atoms using thermal neutrons, Phys. Rev. Lett. 89, 175504 (2002)ADSGoogle Scholar
  212. 20.212.
    P. Korecki, G. Materlik, P. Korecki: Complex γ-ray hologram: Solution to twin images problem in atomic resolution imaging, Phys. Rev. Lett. 86, 1534 (2001)ADSGoogle Scholar
  213. 20.213.
    Y. Takahashi, K. Hayashi, E. Matsubara: Complex X-ray holography, Phys. Rev. B 68, 052103 (2003)ADSGoogle Scholar
  214. 20.214.
    R. A. Rupp, J. Hehmann, R. Matull, K. Ibel: Neutron diffraction from photoinduced gratings in a PMMA matrix, Phys. Rev. Lett. 64, 301 (1990)ADSGoogle Scholar
  215. 20.215.
    M. Fally: The photo-neutronrefractive effect, Appl. Phys. B 75, 405–426 (2002)ADSGoogle Scholar
  216. 20.216.
    U. Schellhorn, R. A. Rupp, S. Breer, R. P. May: The first neutron interferometer built of holographic gratings, Physica B 234-236, 1068–1070 (1997)ADSGoogle Scholar
  217. 20.217.
    C. Pruner, M. Fally, R. A. Rupp, R. P. May, J. Vollbrandt: Interferometer for cold neutrons, Nucl. Instrum. Meth. A 560, 598 (2006)ADSGoogle Scholar
  218. 20.218.
    M. Fally, C. Pruner, R. A. Rupp, G. Krexner: Neutron physics with photorefractive materials, Springer Ser. Opt. Sci., Vol. 115 (Springer, Berlin, New York 2007) pp. 317–349Google Scholar
  219. 20.219.
    NSIC: NSIC-OIDA Optical Disk Storage Roadmap (National Storage Industry Consortium and Optoelectronics Industry Development Association, San Diego 1997)Google Scholar
  220. 20.220.
    NSIC: NSIC Optical Disk Storage Roadmap (National Storage Industry Consortium, San Diego 2000)Google Scholar
  221. 20.221.
    NSIC: NSIC Optical Disk Storage Roadmap (National Storage Industry Consortium, San Diego 2003)Google Scholar
  222. 20.222.
  223. 20.223.
  224. 20.224.
  225. 20.225.
    A. B. Marchant: Optical Recording (Addison-Wesley, Boston 1990)Google Scholar
  226. 20.226.
    M. Mansuripur, G. Sincerbox: Principles and Techniques of Optical Data Storage, Proc IEEE 85(11), 1780–1796 (1997)Google Scholar
  227. 20.227.
    ECMA-267 Standard: 120 mm DVD – Read-only disk,, Dec. 1999
  228. 20.228.
    W. S. Oakley: A novel digital optical tape recorder, Proc. SPIE 2604, 265 (1995)Google Scholar
  229. 20.229.
    D. A. Thompson, J. S. Best: The future of magnetic data storage technology, IBM J. R. Devel. 44(3), 311–322 (2000)Google Scholar
  230. 20.230.
    T. L. Wong, M. P. OʼNeill: Multilevel optical recording, J. Magn. Soc. Jpn. 25(3), 433–436 (2001)Google Scholar
  231. 20.231.
    M. Mansuripur: The Physical Principles of Magneto-optical Recording (Cambridge Univ. Press, Cambridge 1995)Google Scholar
  232. 20.232.
    B. D. Terris, H. J. Mamin, D. Rugar: Near-field optical data storage, Appl. Phys. Lett. 68(2), 141–143 (1996)ADSGoogle Scholar
  233. 20.233.
    M. Kaneko, K. Aratani, M. Ohta: Multilayered Magnetooptical Disks for Magnetically Induced Superresolution, Jpn. J. Appl. Phys. 31(2B), 568 (1992)ADSGoogle Scholar
  234. 20.234.
    H. Awano, S. Ohnuki, H. Shirai, N. Ohta: Magnetic amplifying magneto-optical system. In: Optical Data Storage, Proc. SPIE, Vol. 3109, ed. by H. Birecki, J. Kwiecien (SPIE, Bellingham 1997) p. 83Google Scholar
  235. 20.235.
    Y. V. Martynov, H. A. Wierenga: Migration path of optical storage drives and media, J. Inf. Storage Proces. Syst. 2(1), 93–100 (2000)Google Scholar
  236. 20.236.
    C3D, White paper, Constellation 3D, (Jun 2000),
  237. 20.237.
    S. Hunter, F. Kiamilev, S. Esener, D. A. Parthenopoulos, P. M. Rentzepis: Potentials of two-photon based 3D optical memories for high performance computing, Appl. Opt. 29(14), 2058–2066 (1990)ADSGoogle Scholar
  238. 20.238.
    S. Kawata, Y. Kawata: Three-dimensional optical data storage using photochromic materials, Chem. Rev. 100(5), 1777–1788 (2000)Google Scholar
  239. 20.239.
    K. Yamasaki, S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, H. Misawa: Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films, Appl. Phys. Lett. 76(8), 1000–1002 (2000)ADSGoogle Scholar
  240. 20.240.
    F. B. McCormick, H. Zhang, A. Dvomikov, E. Walker, C. Chapman, N. Kim, J. Costa, S. Esener, P. Rentzepis: Parallel access 3D multilayer optical storage using 2-photon recording. In: Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, Proc. SPIE, Vol. 3802, ed. by P. A. Mitkas, Z. U. Hasan, H. J. Coufal, G. T. Sincerbox (SPIE, Bellingham 1999) pp. 173–182Google Scholar
  241. 20.241.
    I. Cokgor, F. B. McCormick, A. S. Dvornikov, M. M. Wang, N. Kim, K. Coblentz, S. C. Esener, P. M.  Rentzepis: Multilayer disk recording using 2-photon absorption and the numerical simulation of the recording process. In: Optical Data Storage, Proc. SPIE, Vol. 3109, ed. by H. Birecki, J. Kwiecien (SPIE, Bellingham 1997) pp. 54–55Google Scholar
  242. 20.242.
    S. R. Chinn, E. A. Swanson: Multilayer optical storage by low-coherence reflectometry, Opt. Lett. 21(12), 899–901 (1996)ADSGoogle Scholar
  243. 20.243.
    D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto: Optical Coherence Tomography, Science 254(5035), 1178–1181 (1991)ADSGoogle Scholar
  244. 20.244.
    W. E. Moerner: Molecular electronics for frequency domain optical storage: persistent spectral hole-burning a review, J. Molec. Electr. 1(1), 55–71 (1985)ADSGoogle Scholar
  245. 20.245.
    W. E. Moerner (ed.): Persistent Spectral Hole Burning: Science and Applications (Springer, New York 1988)Google Scholar
  246. 20.246.
    T. W. Mossberg: Time-domain frequency-selective optical data storage, Opt. Lett. 7(2), 77–79 (1982)ADSGoogle Scholar
  247. 20.247.
    E. S. Maniloff, A. E. Johnson, T. W. Mossberg: Spectral data storage using rare-earth-doped crystals, MRS Bulletin 24(9), 46–50 (1999)Google Scholar
  248. 20.248.
    G. Sincerbox (ed.): Selected papers on holographic data storage, SPIE Milestone Series, Vol. MS95 (SPIE, Bellingham 1994)Google Scholar
  249. 20.249.
    H. J. Coufal, D. Psaltis, G. Sincerbox (eds.): Holographic Data Storage (Springer, Berlin 2000)zbMATHGoogle Scholar
  250. 20.250.
    J. W. Goodman: Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, New York 1996)Google Scholar
  251. 20.251.
    F. Ito, K. Kitayama, H. Oguri: Holographic Image Storage in LiNbO3 Fibers with Compensation for Intrasignal Photorefractive Coupling, J. Opt. Soc. Am. B 9(8), 1432–1439 (1992)ADSGoogle Scholar
  252. 20.252.
    A. Aharoni, M. C. Bashaw, L. Hesselink: Distortion-Free Multiplexed Holography in Striated Photorefractive Media, Appl. Opt. 32(11), 1973–1982 (1993)ADSGoogle Scholar
  253. 20.253.
    J. J. P. Drolet, E. Chuang, G. Barbastathis, D. Psaltis: Compact, integrated dynamic holographic memory with refreshed holograms, Opt. Lett. 22(8), 552–554 (1997)ADSGoogle Scholar
  254. 20.254.
    F. Zhao, K. Sayano: High density phase-conjugate holographic memory with phase-only image compressors, Opt. Mem. Neur. Net. 6(4), 261–264 (1997)Google Scholar
  255. 20.255.
    G. W. Burr, I. Leyva: Multiplexed phase-conjugate holographic data storage with a buffer hologram, Opt. Lett. 25(7), 499–501 (2000)ADSGoogle Scholar
  256. 20.256.
    D. Psaltis, D. Brady, K. Wagner: Adaptive optical networks using photorefractive crystals, Appl. Opt. 27(9), 1752–1759 (1988)ADSGoogle Scholar
  257. 20.257.
    B. J. Goertzen, P. A. Mitkas: Volume holographic storage for large relational databases, Opt. Eng. 35(7), 1847–1853 (1995)ADSGoogle Scholar
  258. 20.258.
    G. W. Burr, S. Kobras, H. Hanssen, H. Coufal: Content–addressable data storage by use of volume holograms, Appl. Opt. 38(32), 6779–6784 (1999)ADSGoogle Scholar
  259. 20.259.
    P. A. Mitkas, G. W. Burr: Volume holographic optical correlators. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 429–445Google Scholar
  260. 20.260.
    J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox: Holographic data storage, IBM J. Res. Dev. 44(3), 341–368 (May 2000)Google Scholar
  261. 20.261.
    P. J. van Heerden: Theory of optical information storage in solids, Appl. Opt. 2(4), 393–401 (1963)ADSGoogle Scholar
  262. 20.262.
    D. Psaltis, F. Mok: Holographic Memories, Scient. Amer 273(5), 70–76 (1995)ADSGoogle Scholar
  263. 20.263.
    J. F. Heanue, M. C. Bashaw, L. Hesselink: Volume holographic storage and retrieval of digital data, Science 265(5173), 749–752 (1994)ADSGoogle Scholar
  264. 20.264.
    J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek: Volume holographic memory systems: techniques and architectures, Opt. Eng. 34(8), 2193–2203 (1995)ADSGoogle Scholar
  265. 20.265.
    D. Psaltis, G. W. Burr: Holographic data storage, Computer 31(2), 52 (1998)Google Scholar
  266. 20.266.
    W. C. Stewart, R. S. Mezrich, L. S. Cosentin, E. M. Nagle, F. S. Wendt, R. D. Lohman: Experimental Read-Write Holographic Memory, RCA Review 34(1), 3–44 (1973)Google Scholar
  267. 20.267.
    L. DʼAuria, J. P. Huignard, C. Slezak, E. Spitz: Experimental holographic read-write memory using 3D storage, Appl. Opt. 13(4), 808–818 (1974)ADSGoogle Scholar
  268. 20.268.
    G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, R. M. Shelby: Volume holographic data storage at areal density of 250 gigapixels/in2, Opt. Lett. 26(7), 444–446 (2001)ADSGoogle Scholar
  269. 20.269.
    S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, R. Snyder: High-transfer-rate high-capacity holographic disk data-storage system, Appl. Opt. 43(25), 4902–4914 (2004)ADSGoogle Scholar
  270. 20.270.
    J. A. Ma, T. Chang, S. Choi, J. Hong: Ruggedized digital holographic data storage with fast access, Opt. Quant. Electr. 32(3), 383–392 (2000)Google Scholar
  271. 20.271.
    G. Barbastathis, D. Psaltis: Volume holographic multiplexing methods. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 21–62Google Scholar
  272. 20.272.
    D. L. Staebler, J. J. Amodei, W. Phillips: Multiple storage of thick holograms in LiNbO3, IEEE J. Quantum Elect. 8(6), 611 (1972)ADSGoogle Scholar
  273. 20.273.
    F. H. Mok, M. C. Tackitt, H. M. Stoll: Storage of 500 high-resolution holograms in a LiNbO3 crystal, Opt. Lett. 16(8), 605–607 (1991)ADSGoogle Scholar
  274. 20.274.
    G. A. Rakuljic, V. Leyva, A. Yariv: Optical data storage by using orthogonal wavelength-multiplexed volume holograms, Opt. Lett. 17(20), 1471–1473 (1992)ADSGoogle Scholar
  275. 20.275.
    J. E. Ford, Y. Fainman, S. H. Lee: Array interconnection by phase-coded optical correlation, Opt. Lett. 15(19), 1088–1090 (1990)ADSGoogle Scholar
  276. 20.276.
    C. Denz, G. Pauliat, G. Roosen, T. Tschudi: Volume hologram multiplexing using a deterministic phase encoding method, Opt. Commun. 85(2–3), 171–176 (1991)ADSGoogle Scholar
  277. 20.277.
    Z. Q. Wen, Y. Tao: Orthogonal codes and cross-talk in phase-code multiplexed volume holographic data storage, Opt. Commun. 148(1–3), 11–17 (1998)ADSGoogle Scholar
  278. 20.278.
    K. T. Kim, B. C. Cho, E. S. Kim, S. K. Gil: Performance analysis of phase-code multiplexed holographic memory, Appl. Opt. 39(23), 4160–4167 (2000)ADSGoogle Scholar
  279. 20.279.
    D. Psaltis, X. Gu, D. Brady: Fractal sampling grids for holographic interconnections, Proc. SPIE 963, 468–474 (1988)ADSGoogle Scholar
  280. 20.280.
    G. W. Burr: Volume holographic storage using the 90° geometry, PhD thesis (California Institute of Technology, Pasadena, Calif. 1996)Google Scholar
  281. 20.281.
    X. An, D. Psaltis, G. W. Burr: Thermal fixing of 10000 holograms in LiNbO3:Fe, Appl. Opt. 38(2), 386–393 (1999)ADSGoogle Scholar
  282. 20.282.
    W. S. Colburn, K. A. Haines: Volume hologram formation in photopolymer materials, Appl. Opt. 10(7), 1636–1641 (1971)ADSGoogle Scholar
  283. 20.283.
    R. T. Ingwall, M. Troll: Mechanism of Hologram Formation in DMP-128 Photopolymer, Opt. Eng. 28(6), 586–591 (1989)Google Scholar
  284. 20.284.
    L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd: Temperature-induced changes in photopolymer volume holograms, Appl. Phys. Lett. 73(10), 1337–1339 (1998)ADSGoogle Scholar
  285. 20.285.
    R. T. Ingwall, D. Waldman: Photopolymer systems. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 171–198Google Scholar
  286. 20.286.
    L. Dhar, M.,G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, A. L. Harris: Photopolymers for digital holographic data storage. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 199–208Google Scholar
  287. 20.287.
    L. Paraschis, Y. Sugiyama, A. Akella, T. Honda, L. Hesselink: Properties of compositional volume grating formation with photoinitiated cationic-ring-opening polymerization. In: Conference on Advanced Optical Memories and Interfaces to Computer Storage, Proc. SPIE, Vol. 3468 (SPIE, Bellingham 1998) pp. 55–61Google Scholar
  288. 20.288.
    T. Bieringer, R. Wuttke, D. Haarer: Relaxation of Holographic Gratings in Liquid-Crystalline Side-Chain Polymers with Azo Chromophores, Macr. Chem. Phys. 196(5), 1375–1390 (1995)Google Scholar
  289. 20.289.
    G. J. Steckman, I. Solomatine, G. Zhou, D. Psaltis: Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory, Opt. Lett. 23(16), 1310–1312 (1998)ADSGoogle Scholar
  290. 20.290.
    R. M. Shelby, D. A. Waldman, R. T. Ingwall: Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media, Opt. Lett. 25(10), 713–715 (2000)ADSGoogle Scholar
  291. 20.291.
    G. W. Burr, T. Weiss: Compensation for pixel misregistration in volume holographic data storage, Opt. Lett. 26(8), 542–544 (2001)ADSGoogle Scholar
  292. 20.292.
    G. W. Burr: Holographic data storage with arbitrarily misaligned data pages, Opt. Lett. 27(7), 542–544 (2002)ADSGoogle Scholar
  293. 20.293.
    J. A. Hoffnagle, C. M. Jefferson: Design and performance of a refractive optical system that converts a Gaussian to a flattop beam, Appl. Opt. 39(30), 5488–5499 (2000)ADSGoogle Scholar
  294. 20.294.
    K. Curtis, A. Pu, D. Psaltis: Method for holographic storage using peristrophic multiplexing, Opt. Lett. 19(13), 993–994 (1994)ADSGoogle Scholar
  295. 20.295.
    D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis: Holographic storage using shift multiplexing, Opt. Lett. 20(7), 782–784 (1995)ADSGoogle Scholar
  296. 20.296.
    V. B. Markov: Spatial-angular selectivity of 3D speckle-wave holograms and information storage, J. Imag. Sci. Tech. 41(4), 383–388 (1997)Google Scholar
  297. 20.297.
    D. Von der Linde, A. M. Glass: Photorefractive effects for reversible holographic storage of information, Appl. Phys. 8, 85–100 (1975)ADSGoogle Scholar
  298. 20.298.
    P. Gunter: Holography, coherent light amplification and optical phase conjugation with photorefractive materials, Phys. Rep. 4, 199–299 (1982)ADSGoogle Scholar
  299. 20.299.
    T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote: The photorefractive effect – a review, Progress Quantum Electron. 10, 77–146 (1985)ADSGoogle Scholar
  300. 20.300.
    K. Buse, E. Kratzig: Inorganic photorefractive materials. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 113–126Google Scholar
  301. 20.301.
    S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner: Observation of the Photorefractive Effect in a Polymer, Phys. Rev. Lett. 66(14), 1846–1849 (1991)ADSGoogle Scholar
  302. 20.302.
    B. Kippelen, L. P. H. O. N. Sanda, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall: New Highly Efficient Photorefractive Polymer Composite for Optical-Storage and Image-Processing Applications, Electr. Lett. 29(21), 1873–1874 (1993)Google Scholar
  303. 20.303.
    K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian: A photorefractive polymer with high optical gain and diffraction efficiency near 100 %, Nature 371(6497), 497–500 (1994)ADSGoogle Scholar
  304. 20.304.
    W. E. Moerner, S. M. Silence: Polymeric Photorefractive Materials, Chem. Rev. 94(1), 127–155 (1994)Google Scholar
  305. 20.305.
    D. Oesterhelt, C. Brauchle, N. Hampp: Bacteriorhodopsin – a Biological-Material for Information-Processing, Quart. Rev. Biophys. 24(4), 425–478 (1991)Google Scholar
  306. 20.306.
    J. D. Downie, D. T. Smithey: Red–shifted photochromic behavior of a bacteriorhodopsin film made from the L93t genetic variant, Opt. Lett. 21(9), 680–682 (1996)ADSGoogle Scholar
  307. 20.307.
    N. Hampp: Bacteriorhodopsin as a photochromic retinal protein for optical memories, Chem. Rev. 100(5), 1755–1776 (2000)Google Scholar
  308. 20.308.
    R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin: Diffraction from Optically Written Persistent Plasma Gratings in Doped Compound Semiconductors, Appl. Phys. Lett. 65(1), 16–18 (1994)ADSGoogle Scholar
  309. 20.309.
    P. Gunter, J.-P. Huignard (eds.): Topics in Applied Physics: Photorefractive Materials and Their Applications I – Fundamental Phenomena, Vol. 61 (Springer, Berlin 1988)Google Scholar
  310. 20.310.
    Y. P. Yang, I. Nee, K. Buse, D. Psaltis: Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals, Appl. Phys. Lett. 78(26), 4076–4078 (2001)ADSGoogle Scholar
  311. 20.311.
    F. H. Mok, G. W. Burr, D. Psaltis: System metric for holographic memory systems, Opt. Lett. 21(12), 896–898 (1996)ADSGoogle Scholar
  312. 20.312.
    K. Curtis, D. Psaltis: Characterization of the DuPont photopolymer for three-dimensional holographic storage, Appl. Opt. 33(23), 5396–5399 (1994)ADSGoogle Scholar
  313. 20.313.
    J. J. Amodei, D. L. Staebler: Holographic Pattern Fixing in Electro-Optic Crystals, Appl. Phys. Lett. 18(12), 540–542 (1971)ADSGoogle Scholar
  314. 20.314.
    D. L. Staebler, J. J. Amodei: Thermally fixed holograms in LiNbO3, Ferroelectrics 3, 107–113 (1972)Google Scholar
  315. 20.315.
    K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Kratzig: Origin of thermal fixing in photorefractive lithium niobate crystals, Phys. Rev. B 56(3), 1225–1235 (1997)ADSGoogle Scholar
  316. 20.316.
    G. A. Rakuljic: Prescription for long-lifetime, high-diffraction-efficiency fixed holograms in Fe-doped LiNbO3, Opt. Lett. 22(11), 825–827 (1997)ADSGoogle Scholar
  317. 20.317.
    L. Arizmendi, E. M. de Miguel-Sanz, M. Carrascosa: Lifetimes of thermally fixed holograms in LiNbO3:Fe crystals, Opt. Lett. 23(12), 960–962 (1998)ADSGoogle Scholar
  318. 20.318.
    F. Micheron, G. Bismuth: Electrical Control of Fixation and Erasure of Holographic Patterns in Ferroelectric Materials, Appl. Phys. Lett. 20(2), 79 (1972)ADSGoogle Scholar
  319. 20.319.
    S. Orlov, D. Psaltis, R. R. Neurgaonkar: Dynamic Electronic Compensation of Fixed Gratings in Photorefractive Media, Appl. Phys. Lett. 63(18), 2466–2468 (1993)ADSGoogle Scholar
  320. 20.320.
    Y. Qiao, D. Psaltis, C. Gu, J. Hong, P. Yeh, R. R. Neurgaonkar: Phase-locked sustainment of photorefractive holograms using phase conjugation, J. Appl. Phys. 70(8), 4646–4648 (1991)ADSGoogle Scholar
  321. 20.321.
    H. C. Kulich: Transfer function for image formation of objects reconstructed from volume holograms with different wavelengths, Appl. Opt. 31(14), 2461–2477 (1992)ADSGoogle Scholar
  322. 20.322.
    D. Psaltis, F. Mok, H. S. Li: Nonvolatile storage in photorefractive crystals, Opt. Lett. 19(3), 210–212 (1994)ADSGoogle Scholar
  323. 20.323.
    D. Von der Linde, A. M. Glass, K. F. Rodgers: Multiphoton photorefractive processes for optical storage in LiNbO3, Appl. Phys. Lett. 25(3), 155–157 (1974)ADSGoogle Scholar
  324. 20.324.
    H. Guenther, G. Wittmann, R. M. Macfarlane, R. R. Neurgaonkar: Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3, Opt. Lett. 22(17), 1305–1307 (1997)ADSGoogle Scholar
  325. 20.325.
    K. Buse, A. Adibi, D. Psaltis: Non-volatile holographic storage in doubly doped lithium niobate crystals, Nature 393(6686), 665–668 (1998)ADSGoogle Scholar
  326. 20.326.
    L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar: Photorefractive materials for nonvolatile volume holographic data storage, Science 282(5391), 1089–1094 (1998)ADSGoogle Scholar
  327. 20.327.
    R. Macfarlane, H. Guenther, Y. Furukawa, L. Kitamura: Two-color holography in lithium niobate. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 149–158Google Scholar
  328. 20.328.
    S. S. Orlov: Volume holographic data storage, Communications of the ACM 43(11), 46–54 (2000)Google Scholar
  329. 20.329.
    W. H. Liu, D. Psaltis: Pixel size limit in holographic memories, Opt. Lett. 24(19), 1340–1342 (1999)ADSGoogle Scholar
  330. 20.330.
    H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar: Two-color holography in reduced near-stoichiometric lithium niobate, Appl. Opt. 37(32), 7611–7623 (1998)ADSGoogle Scholar
  331. 20.331.
    L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, F. C. Schilling: Recording media that exhibit high dynamic range for digital holographic data storage, Opt. Lett. 24(7), 487–489 (1999)ADSGoogle Scholar
  332. 20.332.
    G. Zhou, F. Mok, D. Psaltis: Beam deflectors and spatial light modulators for holographic storage applications. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 241–258Google Scholar
  333. 20.333.
    K. Curtis, W. L. Wilson, M. C. Tackitt, A. J. Hill, S. Campbell: High-density, high-performance data storage via volume holography: the Lucent Technologies hardware platform. In: Holographic Data Storage, ed. by H. J. Coufal, D. Psaltis, G. T. Sincerbox (Springer, Berlin 2000) pp. 359–368Google Scholar
  334. 20.334.
    G. W. Burr, H. Hanssen, S. Kobras, H. Coufal: Analog optical correlation of volume holograms for searching digital databases (Optics in Computing ʼ99, Snowmass 1999)Google Scholar
  335. 20.335.
    H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt: High-density disk storage by multiplexed microholograms, IEEE J. Sel. Top. Quant. Electr. 4(5), 840–848 (1998)Google Scholar
  336. 20.336.
    A. Labeyrie, J. P. Huignard, B. Loiseaux: Optical data storage in microfibers, Opt. Lett. 23(4), 301–303 (1998)ADSGoogle Scholar
  337. 20.337.
    G. W. Burr: Optical processing using optical memories, 12nd LEOS Ann. Meeting (IEEE, Piscataway 1999) pp. 564–565Google Scholar

Copyright information

© Springer Science+Business Media, LLC New York 2007

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OsnabrückOsnabrückGermany
  2. 2.Faculty of Physics, Department for Experimental PhysicsUniversity of ViennaViennaAustria
  3. 3.IBM Research DivisionSan JoseUSA
  4. 4.IBM Almaden Research CenterSan JoseUSA
  5. 5.Optical SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations