Skip to main content

Geometrical Optics

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter shall discuss the basics and the applications of geometrical optical methods in modern optics. Geometrical optics has a long tradition and some ideas are many centuries old. Nevertheless, the invention of modern personal computers which can perform several million floating-point operations in a second also revolutionized the methods of geometrical optics and so several analytical methods lost importance whereas numerical methods such as ray tracing became very important. Therefore, the emphasis in this chapter is also on modern numerical methods such as ray tracing and some other systematic methods such as the paraxial matrix theory.

We will start with a section showing the transition from wave optics to geometrical optics and the resulting limitations of the validity of geometrical optics. Then, the paraxial matrix theory will be used to introduce the traditional parameters such as the focal length and the principal points of an imaging optical system. Also, an extension of the paraxial matrix theory to optical systems with non-centered elements will be briefly discussed. After a section about stops and pupils the next section will treat ray tracing and several extensions to analyze imaging and non-imaging optical systems. A section about aberrations of optical systems will give a more vivid insight into this matter than a systematic treatment. At the end a section about the most important optical instruments generally described with geometrical optics will be given. These are the achromatic lens, the camera, the human eye, the telescope, and the microscope.

For more information about the basics of geometrical optics we refer to text books such as [2.1,2,3,4,5,6,7,8].

This is a preview of subscription content, log in via an institution.

Abbreviations

CCD:

charge-coupled device

DOE:

diffractive optical element

EUV:

extreme ultraviolet

GRIN:

gradient index

NA:

numerical aperture

PSF:

point spread function

References

  1. M. Born, E. Wolf: Principles of Optics, 6th edn. (Cambridge Univ. Press, Cambridge 1997)

    Google Scholar 

  2. R. Ditteon: Modern Geometrical Optics (Wiley, New York 1998)

    Google Scholar 

  3. H. Haferkorn: Optik, 4th edn. (Wiley–VCH, Weinheim 2003)

    Google Scholar 

  4. E. Hecht: Optics, 3rd edn. (Addison–Wesley, Reading 1998)

    Google Scholar 

  5. R. S. Longhurst: Geometrical and Physical Optics, 3rd edn. (Longman, New York 1973)

    Google Scholar 

  6. V. N. Mahajan: Optical Imaging and Aberrations, Part I: Ray Geometrical Optics (SPIE, Bellingham 1998)

    Google Scholar 

  7. D. Marcuse: Light Transmission Optics, 2nd edn. (Van Nostrand, New York 1982)

    Google Scholar 

  8. H. Naumann, G. Schröder: Bauelemente der Optik, 5th edn. (Hanser, München 1987)

    Google Scholar 

  9. I. N. Bronstein, K. A. Semendjajew: Taschenbuch der Mathematik, 23rd edn. (Thun, Frankfurt/Main 1987)

    Google Scholar 

  10. R. A. Chipman: Mechanics of polarization ray tracing, Opt. Eng. 34, 1636–1645 (1995)

    Article  ADS  Google Scholar 

  11. E. Waluschka: Polarization ray trace, Opt. Eng. 28, 86–89 (1989)

    ADS  Google Scholar 

  12. W. Brouwer: Matrix Methods in Optical Instrument Design (Benjamin, New York 1964)

    Google Scholar 

  13. A. Gerrard, J. M. Burch: Introduction to Matrix Methods in Optics (Wiley, London 1975)

    Google Scholar 

  14. H. Kogelnik, T. Li: Laser beams and resonators, Appl. Opt. 5, 1550–1567 (1966)

    Article  ADS  Google Scholar 

  15. A. E. Siegman: Lasers (Univ. Science Books, Mill Valley 1986)

    Google Scholar 

  16. R. Kingslake: Lens Design Fundamentals (Academic, San Diego 1978)

    Google Scholar 

  17. R. Kingslake: Optical System Design (Academic, New York 1983)

    Google Scholar 

  18. D. Malacara, Z. Malacara: Handbook of Lens Design (Dekker, New York 1994)

    Google Scholar 

  19. D. C. OʼShea: Elements of Modern Optical Design (Wiley, New York 1985)

    Google Scholar 

  20. M. V. Klein, Th. E. Furtak: Optics, 2nd edn. (Wiley, New York 1986)

    Google Scholar 

  21. R. Riekher: Fernrohre und ihre Meister, 2nd edn. (Verlag Technik, Berlin 1990)

    Google Scholar 

  22. H. J. Levinson: Principles of Lithography (SPIE, Bellingham 2001)

    Google Scholar 

  23. H. P. Herzig: Micro-Optics (Taylor Francis, London 1997)

    Google Scholar 

  24. B. Kress, P. Meyrueis: Digital Diffractive Optics (Wiley, Chicester 2000)

    Google Scholar 

  25. S. Sinzinger, J. Jahns: Microoptics (Wiley–VCH, Weinheim 1999)

    Google Scholar 

  26. B. Dörband: Abbildungsfehler und optische Systeme. In: Technische Optik in der Praxis, ed. by G. Litfin (Springer, Berlin Heidelberg New York 1997) pp. 73–101

    Google Scholar 

  27. G. H. Spencer, M. V. R. K. Murty: General ray tracing procedure, J. Opt. Soc. Am. 52, 672–678 (1962)

    Article  ADS  Google Scholar 

  28. O. N. Stavroudis: The Optics of Rays, Wavefronts, and Caustics (Academic, New York 1972)

    Google Scholar 

  29. A. Sharma, D. V. Kumar, A. K. Ghatak: Tracing rays through graded-index media: a new method, Appl. Opt. 21, 984–987 (1982)

    Article  ADS  Google Scholar 

  30. A. Sharma: Computing optical path length in gradient-index media: a fast and accurate method, Appl. Opt. 24, 4367–4370 (1985)

    Article  ADS  Google Scholar 

  31. R. W. Smith: A note on practical formulae for finite ray tracing through holograms and diffractive optical elements, Opt. Commun. 55, 11–12 (1985)

    Article  ADS  Google Scholar 

  32. W. T. Welford: A vector raytracing equation for hologram lenses of arbitrary shape, Opt. Commun. 14, 322–323 (1975)

    Article  ADS  Google Scholar 

  33. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling: Root Finding and Nonlinear Sets of Equations, Numerical Recipes in C (Cambridge Univ. Press, Cambridge 1988) pp. 255–289

    Google Scholar 

  34. J. N. Latta: Computer-based analysis of holography using ray tracing, Appl. Opt. 10, 2698–2710 (1971)

    Article  ADS  Google Scholar 

  35. N. Lindlein, J. Schwider: Local wave fronts at diffractive elements, J. Opt. Soc. Am. A 10, 2563–2572 (1993)

    Article  ADS  Google Scholar 

  36. I. Ghozeil: Hartmann and other screen tests. In: Optical Shop Testing, ed. by D. Malacara (Wiley, New York 1978) pp. 323–349

    Google Scholar 

  37. Z. Chen, W. Yu, R. Ma, X. Deng, X. Liang: Uniform illumination of large targets using a lens array, Appl. Opt. 25, 377 (1986)

    Article  ADS  Google Scholar 

  38. N. Lindlein, F. Simon, J. Schwider: Simulation of micro-optical array systems with RAYTRACE, Opt. Eng. 37, 1809–1816 (1998)

    Article  ADS  Google Scholar 

  39. N. Lindlein: Simulation of micro-optical systems including microlens arrays, J. Opt. A: Pure Appl. Opt. 4, S1–S9 (2002)

    Article  ADS  Google Scholar 

  40. A. Büttner, U. D. Zeitner: Wave optical analysis of light-emitting diode beam shaping using microlens array, Opt. Eng. 41, 2393–2401 (2002)

    Article  ADS  Google Scholar 

  41. J. A. Kneisly: Local curvature of wavefronts in an optical system, J. Opt. Soc. Am. 54, 229–235 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  42. W. T. Welford: Aberrations of Optical Systems (Hilger, Bristol 1986)

    Google Scholar 

  43. J. L. Rayces: Exact relation between wave aberration and ray aberration, Opt. Acta 11, 85–88 (1964)

    ADS  Google Scholar 

  44. C.-J. Kim, R. R. Shannon: Catalog of Zernike Polynomials, Applied Optics and Optical Engineering, Vol. X, ed. by R. R. Shannon, J. C. Wyant (Academic, San Diego 1987) pp. 193–221

    Google Scholar 

  45. F. M. Küchel, Th. Schmieder, H. J. Tiziani: Beitrag zur Verwendung von Zernike–Polynomen bei der automatischen Interferenzstreifenauswertung, Optik 65, 123–142 (1983)

    Google Scholar 

  46. W. N. Charman: Optics of the Eye, Handbook of Optics, Vol. I, 2nd edn., ed. by M. Bass (McGraw-Hill, New York 1995) pp. 24.3–24.54

    Google Scholar 

  47. W. S. Geisler, M. S. Banks: Visual Performance, Handbook of Optics, Vol. I, 2nd edn., ed. by M. Bass (McGraw-Hill, New York 1995) pp. 25.1–25.55

    Google Scholar 

  48. P. L. Kaufman, A. Alm: Adlerʼs Physiology of the Eye, 10th edn. (Mosby, St. Louis 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Norbert Lindlein Ph.D. or Gerd Leuchs Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Lindlein, N., Leuchs, G. (2007). Geometrical Optics. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30420-5_2

Download citation

Publish with us

Policies and ethics