Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 6695 Accesses

Abstract

Nanooptics deals with optical near fields, the electromagnetic fields that mediate the interaction between nanometric particles located in close proximity to each other. The projection-operator method is a theoretical description of how a virtual exciton–polariton is exchanged between these particles, corresponding to the nonresonant interaction. The optical near field mediates this interaction, and is represented by a Yukawa function, which means that the optical near-field energy is localized around the nanometric particles like an electron cloud around an atomic nucleus. Its decay length is proportional to the particle size. This chapter is primarily a review of nanophotonics, a leading branch of nanooptics, which is the technology utilizing the optical near field. The true nature of nanophotonics is to realize qualitative innovation in photonic devices, fabrication, and systems by utilizing novel functions and phenomena caused by optical near-field interactions, which are impossible as long as conventional propagating light is used. As evidence of such qualitative innovation, this chapter describes novel nanophotonic devices, nanophotonic fabrication, nanophotonic systems, and extensions related to science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DEZn:

diethylzinc

FDTD:

finite-difference time domain

References

  1. M. Ohtsu: Progress in Nano-Electro-Optics V, ed. by M. Ohtsu (Spinger, Berlin, Heidelberg 2006) Preface to Volume V: Based on “nanophotonics” proposed by Ohtsu in 1993, OITDA (Optical Industry Technology Development Association, Japan) organized the nanophotonics technical group in 1994, and discussions on the future direction of nanophotonics were started in collaboration with academia and industry

    Google Scholar 

  2. E.Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  3. V. A. Podolskiy, A. K. Sarychev, V. M. Shalaev: Plasmon modes and negative refraction in metal nanowire composites, Opt. Exp. 11, 735 (2003)

    Article  ADS  Google Scholar 

  4. R. A. Shelby, D. R. Smith, S. Schultz: Experimental verification of a negative index of refraction, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  5. J. B. Pendry: Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  6. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia: Raman gain and nonlinear optical absorption measurements in a low-loss silicon awveguide, Appl. Phys. Lett. 85, 2196 (2004)

    Article  ADS  Google Scholar 

  7. Y. Arakawa, H. Sakaki: Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  8. E. A. Synge: A suggested method for extending microscopic resolution into the ultra-microscopic region, Philos. Mag. 6, 356 (1928)

    Google Scholar 

  9. M. Ohtsu: Near-Field Nano/Atom Optics and Technology (Spinger, Berlin, Heidelberg 1998) pp. 31–69

    Book  Google Scholar 

  10. M. Ohtsu, H. Hori: Near-Field Nano-Optics (Kluwer Academic Plenum, New York 1999) pp. 113–142

    Book  Google Scholar 

  11. M. Ohtsu, K. Kobayashi: Optical Near Fields (Springer, Berlin, Heidelberg 2004) pp. 88–108

    Google Scholar 

  12. M. Ohtsu, K. Kobayashi: Optical Near Fields (Springer, Berlin, Heidelberg 2004) pp. 109–120

    Google Scholar 

  13. S. Sangu, K. Kobayashi, A. Shojiguchi, M. Ohtsu: Logic and functional operations using a near-field optically coupled quantum-dot system, Phys. Rev. B 69, 115334 (2004)

    Article  ADS  Google Scholar 

  14. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, V. I. Klimov: Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well, Nature 429, 642 (2004)

    Article  ADS  Google Scholar 

  15. T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu: Demonstration of nanophotonic NOT gate using near-field optically coupled quantum dots, Appl. Phys. B 84, 243 (2006)

    Article  ADS  Google Scholar 

  16. M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu: Nanometric summation architecture based on optical near-field interaction between quantum dots, Opt. Lett. 30, 201 (2005)

    Article  ADS  Google Scholar 

  17. M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, M. Ohtsu: Nanophotnic computing based on optical near-field interactions between quantum dots, IEICE Trans. Electron. E88-C, 1817 (2005)

    Article  Google Scholar 

  18. A. Shojiguchi, S. Sangu, K. Kitahara, M. Ohtsu: Superradiance and dipole ordering of an n two-level system interacting with optical near fields, J. Phys. Soc. Jpn. 72, 2984 (2003)

    Article  ADS  MATH  Google Scholar 

  19. T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu: Demonstration of a nanophotonic switching operation by optical near-field energy transfer, Appl. Phys. Lett. 82, 2957 (2003)

    Article  ADS  Google Scholar 

  20. T. Kawazoe, K. Kobayashi, M. Ohtsu: Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region, Appl. Phys. Lett. 86, 103102 (2005)

    Article  ADS  Google Scholar 

  21. V. V. Polonski, Y. Yamamoto, M. Kourogi, H. Fukuda, M. Ohtsu: Nanometric patterning of zinc by optical near-field photochemical vapour deposition, J. Microsc. 194, 545 (1999)

    Article  Google Scholar 

  22. Y. Yamamoto, M. Kourogi, M. Ohtsu, V. Polonski, G. H. Lee: Fabrication of nanometric zinc pattern with photodissociated gas-phase diethylzinc by optical near field, Appl. Phys. Lett. 76, 2173 (2000)

    Article  ADS  Google Scholar 

  23. T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoto, M. Kourogi, M. Ohtsu: Fabrication of nanometric single zinc and zinc oxide dots by the selective photodissociation of adsorption-phase diethylzinc using a nonresonant optical field, Appl. Phys. Lett. 81, 3651 (2002)

    Article  ADS  Google Scholar 

  24. J. Lim, T. Yatsui, M. Ohtsu: Observation of size-dependent resonance of near-field coupling between a deposited Zn dot and the probe apex during near-field optical chemical vapor deposition, IEICE Trans. Electron. E 88-C, 1832 (2005)

    Article  Google Scholar 

  25. Y. Yamamoto, M. Kourogi, M. Ohtsu, G. H. Lee, T. Kawazoe: Lateral integration of Zn and Al dots with nanometer-scale precision by near field optical chemical vapor deposition using a sharpened optical fiber probe, IEICE Trans. Electron. E85-C, 2081 (2002)

    Google Scholar 

  26. T. Kawazoe, Y. Yamamoto, M. Ohtsu: Fabrication of a nanometric Zn dot by nonresonant near-field optical chemical-vapor deposition, Appl. Phys. Lett. 79, 1184 (2001)

    Article  ADS  Google Scholar 

  27. T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu: Nonadiabatic photodissociation process using an optical near field, J. Chem. Phys. 122, 024715 (2005)

    Article  ADS  Google Scholar 

  28. T. Kawazoe, K. Kobayashi, M. Ohtsu: Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process, Appl. Phys. B 84, 247 (2006)

    Article  ADS  Google Scholar 

  29. M. Naya, I. Tsurusawa, T. Tani, A. Mukai, S. Sakaguchi, S. Yasutani: Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist, Appl. Phys. Lett. 86, 201113 (2005)

    Article  ADS  Google Scholar 

  30. T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, A. Neogi: Unique Properties of Optical Near Field and their Applications to Nanophotonics. In: Progress in Nano-Electro-Optics V, ed. by M. Ohtsu (Springer, Berlin, Heidelberg 2006) pp. 109–162

    Chapter  Google Scholar 

  31. T. Yatsui, W. Nomura, M. Ohtsu: Self-assembly of size- and position-controlled ultralong nanodot chains using near-field optical desorption, Nano Lett. 5, 2548 (2005)

    Article  ADS  Google Scholar 

  32. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann: Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88, 077402 (2002)

    Article  ADS  Google Scholar 

  33. K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, V. I. Emelʼyanov: Optical control of gallium nanoparticle growth, Appl. Phys. Lett. 80, 1643 (2002)

    Article  ADS  Google Scholar 

  34. T. Yatsui, S. Takubo, J. Lim, W. Nomura, M. Kourogi, M. Ohtsu: Regulating the size and position of deposited Zn nanoparticles by optical near-field desorption using size-dependent resonance, Appl. Phys. Lett. 83, 1716 (2003)

    Article  ADS  Google Scholar 

  35. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou: Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography, Appl. Phys. Lett. 84, 5299 (2004)

    Article  ADS  Google Scholar 

  36. T. Yatsui, Y. Nakajima, W. Nomura, M. Ohtsu: High-resolution capability of optical near-field imprint lithography, Appl. Phys. B 84, 265 (2006)

    Article  ADS  Google Scholar 

  37. M. Naruse, T. Kawazoe, S. Sangu, K. Kobayashi, M. Ohtsu: Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting, Opt. Exp. 14, 306 (2006)

    Article  ADS  Google Scholar 

  38. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, T. Nishida: Writing 40 nm marks by using a beaked metallic plate near-field optical probe, Opt. Lett. 31, 259 (2006)

    Article  ADS  Google Scholar 

  39. M. Naruse, T. Yatsui, W. Nomura, N. Hirose, M. Ohtsu: Hierarchy in optical near-fields and its application to memory retrieval, Opt. Exp. 13, 9265 (2005)

    Article  ADS  Google Scholar 

  40. M. Ohtsu: Near-Field Nano/Atom Optics and Technology (Spinger, Berlin, Heidelberg 1998) pp. 218–293

    Book  Google Scholar 

  41. K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu: Near-field optical potential for a neutral atom, Phys. Rev. A 63, 013806 (2001)

    Article  ADS  Google Scholar 

  42. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, W. Jhe: Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers, Phys. Rev. Lett. 76, 4500 (1996)

    Article  ADS  Google Scholar 

  43. K. Totsuka, H. Ito, T. Kawamura, M. Ohtsu: High spatial resolution atom detector with two-color optical near fields, Jpn. J. Appl. Phys. 41, 1566 (2002)

    Article  ADS  Google Scholar 

  44. K. Totsuka, H. Ito, K. Suzuki, K. Yamamoto, M. Ohtsu, T. Yatsui: A slit-type atom deflector with near-field light, Appl. Phys. Lett. 82, 1616 (2003)

    Article  ADS  Google Scholar 

  45. A. Takamizawa, H. Ito, S. Yamada, M. Ohtsu: Observation of cold atom output from an evanescent-light funnel, Appl. Phys. Lett. 85, 1790 (2004)

    Article  ADS  Google Scholar 

  46. C. E. Shannon: The bandwagon, IRE Trans. Inform. Theory 2, 3 (1956)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoichi Ohtsu Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Ohtsu, M. (2007). Nanooptics. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30420-5_15

Download citation

Publish with us

Policies and ethics