Skip to main content

Neuroendocrinology of Behavioral Rhythms

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

1 Introduction

From ancient times, humans have appreciated the role of specific organs in regulating behavior and physiological function, particularly the reproductive organs. The practice of castration of animals and men has been used to control behavior and fertility since earliest written records exist. In this chapter, we briefly review some history of how we came to appreciate the influence of hormones on behavior, the control of many of those hormonal systems by the brain, and how the exquisite timing of many behavioral events involves an interaction between the circadian mechanism (described in Chapter 22) and the neural control of hormones.

1.1 Historical Background on Neuroendocrine Relationship to Behavior

The earliest record of manipulation of behavior by manipulating hormones is described in ancient texts such as the Bible and writings of Aristotle (384–322 BCE). Aristotle compared the effects of castration of birds and of mammals (including humans). He noted that removal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, et al. 2002. Circadian rhythms in isolated brain regions. J Neurosci 22: 350–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrahamson EE, Moore RY. 2001. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916: 172–191.

    Article  CAS  PubMed  Google Scholar 

  • Abizaid A, Horvath B, Keefe DL, Leranth C, Horvath TL. 2004. Direct visual and circadian pathways target neuroendocrine cells in primates. Eur J Neurosci 20: 2767–2776.

    Article  PubMed  Google Scholar 

  • Adler NT. (ed.) 1981. Neuroendocrinology of Reproduction: Physiology and Behavior. New York: Plenum Press.

    Google Scholar 

  • Adler N, Pfaff D, Goy RW. (eds.) 1985. Handbook of Behavioral Neurobiology, Vol 7: Reproduction. New York: Plenum Press.

    Google Scholar 

  • Aguilar-Roblero R, Vega-Gonzalez A. 1993. Splitting of locomotor circadian rhythmicity in hamsters is facilitated by pinealectomy. Brain Res 605: 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Akema T, Hashimoto R, Kimura F. 1988. Preoptic injection of VIP, but not of secretin or PHI, inhibits LH and stimulates prolactin secretion in the ovariectomized rat. Brain Research 441: 367–370.

    Article  CAS  PubMed  Google Scholar 

  • Albers HE, Davis FC, Darrow JM, Menaker M. 1981. Gonadal hormones organize and modulate the circadian system of the rat. Am J Physiol 241: R62–R66.

    CAS  PubMed  Google Scholar 

  • Albers H, Gerall A, Axelson J. 1981. Effects of reproductive state on circadian periodicity in the rat. Physiol Behav 26: 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Alexander MJ, Clifton DK, Steiner RA. 1985. Vasoactive intestinal polypeptide effects a central inhibition of pulsatile luteinizing hormone secretion in ovariectomized rats. Endocrinology 117: 2134–2139.

    Article  CAS  PubMed  Google Scholar 

  • Alleva J, Waleski M, Alleva F. 1971. A biological clock controlling the estrous cycle of the hamster. Endocrinology 88: 1368–1379.

    Article  CAS  PubMed  Google Scholar 

  • Amir S, Lamont EW, Robinson B, Stewart J. 2004. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci 24: 781–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews RV. 1968. Temporal secretory responses of cultured hamster adrenals. Comp Biochem Physiol 26: 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Antoni FA. 1993. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 14: 76–122.

    Article  CAS  PubMed  Google Scholar 

  • Aschoff J. 1979. Circadian rhythms: general features and endocrinological aspects. Endocrine Rhythms. Krieger DT, editor. Raven Press; New York: pp. 1–61.

    Google Scholar 

  • Aschoff J. (ed.) 1981. Handbook of Behavioral Neurobiology, Vol 4: Biological Rhythms. New York: Plenum Press.

    Google Scholar 

  • Atkinson HC, Waddell BJ. 1997. Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 138: 3842–3848.

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J. 1974. The pineal gland: a neurochemical transducer. Science 184: 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  • Baker JR, Ranson RM. 1932. Facotrs affecting the breeding of the field mouse (Microtus agrestis). I Light Proc R Soc Lond (Biol) 110: 313–322.

    Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, et al. 2000. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289: 2344–2347.

    Article  CAS  PubMed  Google Scholar 

  • Barrington J, Jarvis H, Redman JR, Armstrong SM. 1993. Limited effect of three types of daily stress on rat free-running locomotor rhythms. Chronobiol Int 10: 410–419.

    Article  CAS  PubMed  Google Scholar 

  • Bayliss WM, Starling EH. 1902. The mechanism of pancreatic secretion. J Physiol 28: 325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beach FA. 1971. Hormonal factors controlling the differentiation, development, and display of copulatory behavior in the ramstergig and related species. The Biopsychology of Development. Tobach E, Aronson LR, Shaw E, editors. Academic Press; New York: pp. 249–296.

    Google Scholar 

  • Becker JB, Breedlove SM, Crews D, McCarthy MM. (eds.) 2002. Behavioral Endocrinology, 2nd edition. Cambridge, MA: MIT Press.

    Google Scholar 

  • Berthold AA. 1849. Transplantation der Hoden. Arch Anat Physiol Wiss Med 16: 42.

    Google Scholar 

  • Bhatnagar S, Dallman M. 1998. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84: 1025–1039.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Dallman MF. 1999. The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner. Brain Res 851: 66–75.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Huber R, Nowak N, Trotter P. 2002. Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint. J Neuroendocrinol 14: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Meaney MJ. 1995. Hypothalamic-pituitary-adrenal function in chronic intermittently cold-stressed neonatally handled and non handled rats. J Neuroendocrinol 7: 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Vining C, Denski K. 2004. Regulation of chronic stress-induced changes in hypothalamic-pituitary-adrenal activity by the basolateral amygdala. Ann NY Acad Sci 1032: 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Bissonette TH. 1932. Modification of mammalian sexual cycles; reactions of ferrets (Putorius vulgaris) of both sexes to electric light added after dark in November and December. Proc R Soc Lond (Biol) 110: 322–336.

    Google Scholar 

  • Bonnefond C, Monnerie R, Richard JP, Martinet L. 1993. Melatonin and the circadian clock in mink: Effects of daily injections of melatonin on circadian rhythm of locomotor activity and autoradiographic localization of melatonin binding sites. J Neruoendocrinol 5: 241–246.

    Article  CAS  Google Scholar 

  • Briski KP, Di Pasquale BM, Gillen E. 1997. Induction of immediate-early gene expression in preoptic and hypothalamic neurons by the glucocorticoid receptor agonist, dexamethasone. Brain Res 768: 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Bronson F, Vom Saal F. 1979. Control of the preovulatory release of luteinizing hormone by steroids in the mouse. Endocrinology 104: 1247–1255.

    Article  CAS  PubMed  Google Scholar 

  • Brown-Grant K, JM D, F G. 1973. Induced ovulation in albino rats exposed to constant light. J Endocrin 57: 7–22.

    Article  CAS  Google Scholar 

  • Buijs R, van Eden C, Goncharuk V, Kalsbeek A. 2003. The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. Journal of Endocrinology 177: 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM, Kalsbeek A. 2001. Hypothalamic integration of central and peripheral clocks. Nature Rev Neurosci 2: 521–526.

    Article  CAS  Google Scholar 

  • Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, et al. 1999. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11: 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  • Butler J, Donovan B. 1971. The effect of surgical isolation of the hypothalamus upon reproductive function in the femalee guinea pig. J Endocrinol 50: 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Campmany L, Pol O, Armario A. 1996. The effects of two chronic intermittent stressors on brain monoamines. Pharmacol Biochem Behav 53: 517–523.

    Article  CAS  PubMed  Google Scholar 

  • Cassone VM. 1992. The pineal gland influences rat circadian activity rhythms in constant light. J Biol Rhythms 7: 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Cassone VM, Chesworth MJ, Armstrong SM. 1986. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav 36: 1111–1121.

    Article  CAS  PubMed  Google Scholar 

  • Caufriez A, Moreno-Reyes R, Leproult R, Vertongen F, Van Cauter E, et al. 2002. Immediate effects of an 8-h advance shift of the rest-activity cycle on 24-h profiles of cortisol. Am J Physiol Endocrinol Metab 282: E1147–E1153.

    Article  CAS  PubMed  Google Scholar 

  • Chappell PE. 2005. Clocks and the black box: Circadian invluences on gonadotropin-releasing hormone secretion. J Neuroendocrin 17: 119–130.

    Article  CAS  Google Scholar 

  • Chappell PE, White RS, Mellon PL. 2003. Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1–7 cell line. J Neurosci 23: 11207–11213.

    Article  Google Scholar 

  • Charmandari E, Kino T, Chrousos GP. 2004. Glucocorticoids and their actions: an introduction. Ann NY Acad Sci 1024: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Cho K. 2001. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 4: 567–568.

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Ennaceur A, Cole JC, Suh CK. 2000. Chronic jet lag produces cognitive deficits. J Neurosci 20: RC66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullinan WE, Helmreich DL, Watson SJ. 1996. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J Comp Neurol 368: 88–99.

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. 1995. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64: 477–505.

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE, Herman JP, Watson SJ. 1993. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332: 1–20.

    Article  CAS  PubMed  Google Scholar 

  • D'Agostino J, Vaeth GF, Henning SJ. 1982. Diurnal rhythm of total and free concentrations of serum corticosterone in the rat. Acta Endocrinol (Copenh) 100: 85–90.

    Article  CAS  Google Scholar 

  • Davidson AJ, Tataroglu A, Menaker M. 2005. Circadian effects of timed meals (and other rewards). Methods in Enzymology 393: 509–523.

    Article  PubMed  Google Scholar 

  • Davis FC, Darrow JM, Menaker M. 1983. Sex differences in the circadian control of hamster wheel-running activity. Am J Physiol 244: R93–R105.

    CAS  PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. 1998. Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269–301.

    CAS  PubMed  Google Scholar 

  • De La Iglesia H, Blaustien J, Bittman E. 1995. The Suprachiasmatic Area in the Female Hamster Projects to Neurons Containing estrogen receptors and GnRH. Neuroreport Abstract.

    Google Scholar 

  • de la Iglesia HO, Blaustein JD, Bittman EL. 1995. The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport 6: 1715–1722.

    Article  CAS  PubMed  Google Scholar 

  • de la Iglesia HO, JMeyer J, Schwartz WJ. 2003. Lateralization of circadian pacemaker output: Activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. J Neurosci 23: 7412–7414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desir D, Van Cauter E, Fang VS, Martino E, Jadot C, et al. 1981. Effects of “jet lag” on hormonal patterns. I. Procedures, variations in total plasma proteins, and disruption of adrenocorticotropin-cortisol periodicity. J Clin Endocrinol Metab 52: 628–641.

    Article  CAS  PubMed  Google Scholar 

  • Doan A, Urbanski H. 1994. Diurnal expression of Fos in luteinizing hormone-releasing hormone neurons of Syrian hamsters. Biol Reprod 50: 301–308.

    Article  CAS  PubMed  Google Scholar 

  • Dobrakovova M, Kvetnansky R, Oprsalova Z, Jezova D. 1993. Specificity of the effect of repeated handling on sympathetic-adrenomedullary and pituitary-adrenocortical activity in rats. Psychoneuroendocrinology 18: 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Doecke F, Luno D, Rohde W, Dorner G. 1982. Perisuprachiasmatic lesions enhonce the increase in gonadotropin secretion in acutely ovariectomized rats. Endokrinologie 78: 311–314.

    Google Scholar 

  • Edwards RG. 1981. Test-tube babies, 1981. Nature 293: 253–256.

    Article  CAS  PubMed  Google Scholar 

  • Elliott JA, Bartness TJ, Goldman BD. 1989. Effect of melatonin infusion duration and frequency on gonad, lipid, and body mass in pinealectomized male Siberian hamsters. J Biol Rhythms 4: 439–455.

    Article  CAS  PubMed  Google Scholar 

  • Erskine M, Marcus J, Baum M. 1980. Absence of a diurnal rhythm in lordosis behavior induced by oestrogen in gonadectomized rats. J Endocrin 86: 127–134.

    Article  CAS  Google Scholar 

  • Eskes GA. 1984. Neural control of the daily rhythm of sexual behavior in the male golden hamster. Brain Res 293: 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Everett J, Sawyer C. 1950. A 24 hour periodicity in the LH release apparatus of female rats, disclosed by barbituate sedation. Endocrinology 47: 198–218.

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JS, Baum FR, Campbell CS. 1978. Entrainment of the female hamster to reversed photoperiod: Role of the pineal gland. Physiol Behav 21: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald K, Zucker I. 1976. Circadian organization of the estrous cycle in the golden hamster. Proc Nat Acad Sci 78: 2923–2927.

    Article  Google Scholar 

  • Fox M, Smith m. 1984. Postpartum preovualatory surge of gonadotropin secretion in the rat may be initiated by the labor process. Biol Reprod 31: 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Freeman M, Kanyicska B, Lerant A, Nagy G. 2000. Prolactin: Structure, function, and regulation of secretion. Physiol Rev 80: 1523–1585.

    Article  CAS  PubMed  Google Scholar 

  • Funabashi T, Shinohara K, Mitsushima D, Kimura F. 2000a. Estrogen increases arginine-vasopression V1a receptor mRNA in the preoptic area of young but not of middle-aged female rats. Neurosci Lett 285: 205–208.

    Article  CAS  PubMed  Google Scholar 

  • Funabashi T, Shinohara K, Mitsushima D, Kimura F. 2000b. Gonadotropin-releasing hormone exhibits circadian rhythm in phase with arginine-vasopressin in co-cultures of the female rat preoptic area and suprachiasmatic nucleus. J Neuroendocrin 12: 521–528.

    Article  CAS  Google Scholar 

  • Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U. 2004. The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113: 103–112.

    Article  PubMed  Google Scholar 

  • Gauer F, Masson-Pevet M, Pevet BP. 1994a. Daily variations in melatonin receptor density of rat pars tuberalis and suprachiasmatic nuclei are distinctly regulated. Brain Res 641: 92–98.

    Article  CAS  PubMed  Google Scholar 

  • Gauer F, Masson-Pevet M, Pevet BP. 1994b. Seasonal regulation of melatonin receptors in rodent pars tuberalis: Correlation with reproductive state. J Neural Transm Gen Sect 96: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Gauer F, Masson-Pevet M, Skene DJ, Vivien-Roels B, Pevet BP. 1993. Daily rhythms of melatonin binding-sites in the rat pars tuberalis and suprachiasmatic nuclei: Evidence for a regulation of melatonin receptors by melatonin itself. Neuroendocrinology 57: 120–126.

    Article  CAS  PubMed  Google Scholar 

  • Gerhold L, Horvath T, Freeman M. 2001. Vasoactive intestinal polypeptide fibers innervate neuroendocrine dopaminergic neurons. Brain Res 919: 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Gerhold L, Sellix M, Freeman M. 2002. Antagonism of vasoactive intestinal polypeptide mRNA in the suprachiasmatic nucleus disrupts the rhythm of FRAs expression in neuroendocrine dopaminergic neurons. J Comp Neurol 450: 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JMA, Chan BPK, Roy D, Cai F, Belsham DD. 2003. Expression of circadian rhythm genes in GnRH-secreting GT1–7 neurons. Endocrinology 144: 5285–5292 .

    Article  CAS  PubMed  Google Scholar 

  • Goldman BD. 1991. Parameters of the circadian rhythm of pineal melatonin secretion affecting reproductive responses in Siberian hamsters. Steroids 56: 218–225.

    Article  CAS  PubMed  Google Scholar 

  • Goldman BD, Darrow JM, Yogev L. 1984. Effects of timed melatonin infusions on reproductive development in the Djungarian hamster (Phodopus sungorus). Endocrinology 114: 2074–2083.

    Article  CAS  PubMed  Google Scholar 

  • Goldman BD, Hall V, Hollister C, Reppert S, Roychoudhury P, et al. 1981. Diurnal changes in pineal melatonin content in four rodent species: Relationship to photoperiodism. Biol Reprod 24: 778–783.

    Article  CAS  PubMed  Google Scholar 

  • Goy RW, Goldfoot DA. 1973. Hormonal influences on sexually dimorphic behavior. Handbook of Physiology, Endocrinology II, Part I. Greep RO, Astwood EB, editors. Williams and Wilkins; Baltimore: pp. 169–186.

    Google Scholar 

  • Goy RW, McEwen BS. 1980. Sexual Differentiation of the Brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gray GD, Sodersten P, Tallentire D, Davidson JM. 1978a. Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology 25: 174–191.

    Article  CAS  PubMed  Google Scholar 

  • Gray GD, Sodderstein P, Talentire D, Davidson JM. 1978b. Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology 25: 174–191.

    Article  CAS  PubMed  Google Scholar 

  • Gu G, Simerly R. 1997. Projections of the sexually dimorphic anteroventral periventricular nucleus in the female rat. J Comp Neurol 384: 142–164.

    Article  CAS  PubMed  Google Scholar 

  • Han F, Ozawa H, Matsuda K, Nishi M, Kawata M. 2005. Colocalization of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus and hypothalamus. Neurosci Res 51: 371–381.

    Article  CAS  PubMed  Google Scholar 

  • Hansen S. 1979. A sexually dimorphic rhythmin oestradiol activated lordosis behavior in the rat. J Endocrinol 82: 267–274.

    Article  Google Scholar 

  • Hansen S, Sodersten P, Srebro B. 1978a. A daily rhythm in the behavioural sensitivity of the female rat to oestradiol. J Endocrinol 77: 381–388.

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Sodersten P, Srebro B. 1978b. A daily rhythm in the behavioral sensitivity of the female rat to oestradiol. J Endocrinol 77: 381–388.

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Sodersten P, Eneroth P, Srebro B, Hole K. 1979. A sexually dimorphic rhythm in oestradiol-activated lordosis behaviour in the rat. J Endocrinol 83: 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Harney J, Scarbrough K, Rosewell KL, Wise PM. 1996. In vivo antisense antagonism of vasoactive intestinal peptide in the suprachiasmatic nuclei causes aging-like changes in the estradiol-induced luteinizing hormone and prolactin surges. Endocrinology 137: 3696–3701.

    Article  CAS  PubMed  Google Scholar 

  • Harper DG, Tornatzky W, Miczek KA. 1996. Stress induced disorganization of circadian and ultradian rhythms: comparisons of effects of surgery and social stress. Physiol Behav 59: 409–419.

    Article  CAS  PubMed  Google Scholar 

  • Harris GW. 1937. Induction of ovulation in the rabbit by electrical stimulation of the hypothalamo-hypophyseal mechanism. Proc Roy Soc Lond (Suppl. B) 122: 374

    Google Scholar 

  • Harris GW. 1955. Neural Control of the Pituitary Gland. London: Edward Arnold Ltd.

    Google Scholar 

  • Hastings MH, Mead SM, Vindlaceravu RR, Ebling FJP, Maywood ES, et al. 1992. Non-photic phase shifting of the circadian activity rhythm of Syrian hamsters: The relative potency of arousal and melatonin. Brain Res 591: 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Hellman L, Nakada F, Curti J, Weitzman ED, Kream J, et al. 1970. Cortisol is secreted episodically by normal man. Electroencphalogr Clin Neurophysiol 30: 411–422.

    CAS  Google Scholar 

  • Herman JP, Cullinan WE. 1997. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20: 78–84.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, et al. 2003. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24: 151–180.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Ostrander MM, Mueller NK, Figueiredo H. 2005. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psych 29: 1201–1013.

    Article  CAS  Google Scholar 

  • Hiebert SM, Thomas EM, Lee TM, Pelz KM, Yellon SM, et al. 2000. Photic entraiment of circannual rhythms in golden-mantled ground squirrels: role of the pineal gland. J Biol Rhythms 15: 126–134.

    Article  CAS  PubMed  Google Scholar 

  • Hirst JJ, Haluska GJ, Cook MJ, Novy MJ. 1993. Plasma oxytocin and nocturnal uterine activity: Maternal but not fetal concentrations increase progressively during late pregnancy and delivery in rhesus monkeys. Amer J Obstet Gynecol 169: 415–422.

    Article  CAS  Google Scholar 

  • Hoff JD, Quigley ME, Yen SS. 1983. Hormonal dynamics at midcycle: a reevaluation. J Clin Endocrinol Metab 57: 792–796.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman G, Le W, Abbud R, Lee W, Smith M. 1994. Use of Fos-related antigens (FRAs) as markers of neuronal activity: FRA changes in dopamine neurons during proestrus, pregnancy and lactation. Brain Res 654: 207–215.

    Article  CAS  PubMed  Google Scholar 

  • Hohlweg W, Junkmann K. 1932. Die hormonal-nervose Regulierung der Funktion des Hypophysenvorderlappens. Klin Wochenschr 11: 231

    Article  Google Scholar 

  • Horseman ND, Ehret CF. 1982. Glucocorticosteroid injection is a circadian zeitgeber in the laboratory rat. Am J Physiol 243: R373–R378.

    CAS  PubMed  Google Scholar 

  • Horvath T. 1997. Suprachiasmatic efferents avoid fenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine. Endocrinology 138: 1312–1320.

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Cela V, Beek van der EM. 1998. Gender-specific apposition between vasoactive intestinal peptide-containing axons and gonadotrophin-releasing hormone-producing neurons in the rat. Brain Res 795: 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Humlova H, Illnerova H. 1992. Resetting of the rat circadian clock after a shift in the light/dark cycle depends on the photoperiod. Neurosci Res 13: 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Hummer DL, Jechura TJ, Mahoney MM, Lee TM. 2006. Gonadal hormone effects on entrained and free-running circadian activity rhythms in the developing diurnal rodent, Octodon degus. Am J Physiol, in press.

    Google Scholar 

  • Illnerova H, Vanecek J. 1983. Extension of the rat pineal N-acetyltransferase rhythm in continuous darkness and on short photoperiod. Brain Res 261: 176–179.

    Article  CAS  PubMed  Google Scholar 

  • Illnerova H, Vanecek J, Hoffmann K. 1987. Adjustment of the rat pineal N-acetyltransferase rhythm to eight-hour shifts of the light-dark cycle: Advance of the cycle disturbs the rhythm more than delay. Brain Res 417: 176–171.

    Article  Google Scholar 

  • Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, et al. (2005). Light activates the adrenal gland: Timing of gene expression and glucocorticoid release. Cell Metab 2: 297–307.

    Article  CAS  PubMed  Google Scholar 

  • Itoi K, Seasholtz AF, Watson SJ. 1998. Cellular and extracellular regulatory mechanisms of hypothalamic corticotropin-releasing hormone neurons. Endocr J 45: 13–33.

    Article  CAS  PubMed  Google Scholar 

  • Itoi K, Suda T, Tozawa F, Dobashi I, Ohmori N, et al. (1994). Microinjection of norepinephrine into the paraventricular nucleus of the hypothalamus stimulates corticotropin-releasing factor gene expression in conscious rats. Endocrinology 135: 2177–2182.

    Article  CAS  PubMed  Google Scholar 

  • Ixart G, Szafarczyk A, Belugou JL, Assenmacher I. 1977. Temporal relationships between the diurnal rhythm of hypothalamic corticotrophin releasing factor, pituitary corticotrophin and plasma corticosterone in the rat. J Endocrinol 72: 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Jackson G, Thurmon J, Nelson D. 1975. Estrogen-induced release of LH in the ovariectomized ewe: Independence of time of day. Biol Reprod 13: 358–362.

    Article  CAS  PubMed  Google Scholar 

  • Jechura TJ, Lee TM. 2004 Ovarian hormones influence olfactory cue effects on reentrainment in the diurnal rodent, Octodon degus. Horm Behav 46: 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JD, O'Connor KA, Deak T, Spencer RL, Watkins LR, et al. (2002). Prior stressor exposure primes the HPA axis. Psychoneuroendocrinology 27: 353–365.

    Article  CAS  PubMed  Google Scholar 

  • Kallo I, Butler J, Barcovics-Kallo M, Goubillon M, Coen C. 2001. Estrogen receptor beta-immunoreactivity in gonadropin releasing hormone-expressing neurons: Regulation by estrogen. J Neuroendocrinol 13: 741–748.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Buijs R, Engelmann M, Wotjack C, Landgraf R. 1995. In vivo measurement of a diurnal variation in vasopressin release in the rat suprachiasmatic nucleus. Brain Research 682: 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Kaneko K, Shinsako J, Dallman MF. 1981. Adrenal sensitivity to adrenocorticotropin varies diurnally. Endocrinology 109: 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Kant GJ, Bauman RA, Pastel RH, Myatt CA, Closser-Gomez E, et al. (1991). Effects of controllable vs. uncontrollable stress on circadian temperature rhythms. Physiol Behav 49: 625–630.

    Article  CAS  PubMed  Google Scholar 

  • Kapen S, Boyar R, Hellman L, Weitzman ED. 1973. Episodic release of luteinizing hormone at mid-menstrual cycle in normal adult women. J Clin Endocrinol Metab 36: 724–729.

    Article  CAS  PubMed  Google Scholar 

  • Katz G, Durst R, Zislin Y, Barel Y, Knobler HY. 2001. Psychiatric aspects of jet lag: review and hypothesis. Med Hypotheses 56: 20–23.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami M, Arita J. 1981. Effects of lesions in the medial basal part of the suprachiasmatic area on prolactin and gonadotropin surges induced by estrogen and progesterone treatment in ovariectomized rats. Neuroendocrinology 32: 242–247.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami M, Arita J, Yoshioka E. 1980. Loss of estrogen-induced daily surges of prolactin and gonadotropin by suprachiasmatic nucleus lesions in ovariectomized rats. Endocrinology 106: 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  • King J, Liu E, Ronsheim P, Slonimski M, Rubin B. 1998. Expression of Fos within luteinizing hormone-releasing hormone neurons, in relation to the steroid-induced luteinizing hormone surge in the guinea pig. Biol Reprod 58: 316–322.

    Article  CAS  PubMed  Google Scholar 

  • Klein DC, Smoot R, Weller JL, Higa S, Markey SP, 1983. Lesions of the paraventricular nucleus area of the hypothalamus disrupt the suprachiasmatic spinal-cord circuit in the melatonin rhythm generating-system. Brain Res Bull 10: 647–652.

    Article  CAS  PubMed  Google Scholar 

  • Klein KE, Wegmann HM, Hunt BI. 1972. Desynchronization of body temperature and performance circadian rhythm as a result of outgoing and homegoing transmeridian flights. Aerosp Med 43: 119–132.

    CAS  PubMed  Google Scholar 

  • Knutsson A. 2003. Health disorders of shift workers. Occup Med (Lond) 53: 103–108.

    Article  Google Scholar 

  • Krajnak K, Kashon ML, Rosewell KL, Wise PM. 1998. Sex differences in the daily rhythm of vasoactive intestinal polypeptide but not arginine vasopressin messenger ribonucleic acid in the suprachiasmatic nuclei. Endocrinology 139: 4189–4196.

    Article  CAS  PubMed  Google Scholar 

  • Krey L, Butler W, Knobil E. 1975. Surgical disconnection of the mediobasal hypothalamus and pituitary function in the rhesus monkey. I Gonadotropin secretion Endocrinology 96: 1073–1087.

    Article  CAS  PubMed  Google Scholar 

  • Krieger DT. (ed.) 1979. Endocrine Rhythms. New York: Raven Press.

    Google Scholar 

  • Kriegsfeld LJ, Korets R, Silver R. 2003. Expression of the circadian clock gene Period 1 in neuroendocrine cells: An investigation using mice with a Per1::GFP transgene. European J Neurosci 17: 1–9.

    Article  Google Scholar 

  • Kriegsfeld LJ, Silver R, Gore AC, Crews D. 2002. Vasoactive intestinal polypeptide contacts on gonadotropin-releasing hormone neurones increase following puberty in female rats. J Neuroendocrinol 14: 685–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labyak SE, Lee TM. 1995. Estrus and estrogen-induced changes in circadian rhythms in a diurnal rodent, Octodon degus. Physiol Behav 58: 573–585.

    Article  CAS  PubMed  Google Scholar 

  • Lee KA, Gay CL. 2004 Sleep in late pregnancy predicts length of labor and type of delivery. Am J Obstet Gynecol 191: 2041–2046.

    Article  PubMed  Google Scholar 

  • Lee W, Smith M, Hoffman G. 1990. LHRH neurons express Fos protein during the proestrus surge of luteinizing hormone. Proc Nat Acad Sci USA 87: 5163–5167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legan S, Karsch F. 1975. A daily signal for the LH surge in the rat. Endocrinology 96: 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U. 2001. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20: 7128–7136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leproult R, Colecchia EF, L'Hermite-Baleriaux M, Van Cauter E. 2001. Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. J Clin Endocrinol Metab 86: 151–157.

    CAS  PubMed  Google Scholar 

  • Lerant a, Freeman M. 1997. Dopaminergic neurons in periventrivular and arcuate nuclei of proestrus and ovariectomized rats: endogenous diurnal rhythm of Fos-related antigens expression. Neuroendocrinology 65: 436–445.

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Borjigin J. 2005. Free-running rhythms of pineal circadian output. J Biol Rhythms 20: 430–440.

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Borjigin J. 2005. Reentrainment of the circadian pacemaker through three distinct stages. J Biol Rhythms 20: 441–450.

    Article  CAS  PubMed  Google Scholar 

  • Lohstroh PN, et al. 2003. Bone resorption is affected by follicular phase length in female rotating shift workers. Environ Health Perspect 111: 618–622.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahoney M, Smale L. 2005a. Arginine vasopressin and vasoactive intestinal polypeptide fibers make appositions with gonadotropin-releasing hormone and estrogen receptor cells in the diurnal rodent Arvicanthis niloticus. Brain Res 1049: 156–164.

    Article  CAS  PubMed  Google Scholar 

  • Mahoney MM, Smale L. 2005b. A daily rhythm in mating behavior in a diurnal murid rodent (Arviucanthis niloticus). Horm Behav 47: 8–13.

    Article  PubMed  Google Scholar 

  • Mahoney MM, CSisk C, Ross H, Smale L. 2004. Circadian regulation of gonadotropin-releasing hormone neurons and the preovulatory surge in luteinizing hormone in the diurnal rodent, Arvicanthis niloticus and in a nocturnal rodent Rattus norvegicul. Biol Reprod 70: 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  • McElhinny TL, Sisk CL, Holekamp KE, Smale, L. 1999. A morning surge in plasma luteinizing hormone coincides with elevated fos expression in gonadotropin-releasing hormone-immunoreactive neurons in the diurnal rodent, Arvicanthis niloticus. Biol Reprod 61: 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  • Meerlo P, Hoofdakker van den RH, Koolhaas JM, Daan S. 1997. Stress-induced changes in circadian rhythms of body temperature and activity in rats are not caused by pacemaker changes. J Biol Rhythms 12: 80–92.

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, et al. 1999a. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, (1999b). Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Mohawk JA. 2006. Interactions between glucocorticoids and the desynchronized circadian system. Dissertation completed for Ph.D. at University of Michigan, Ann Arbor.

    Google Scholar 

  • Mohawk JA, Cashen K, Lee TM. 2005. Inhibiting cortisol response accelerates recovery from a photic phase shift. Am J Physiol 288: R221–R228.

    CAS  Google Scholar 

  • Mohawk JA, Lee TM. 2005. Restraint stress delays reentrainment in male and female diurnal and nocturnal rodents. J Biol Rhythms 20: 245–256.

    Article  PubMed  Google Scholar 

  • Mohawk JA, Pargament JM, Lee TM. 2006. Restraint stress alters corticosterone response following a phase-shifting light pulse. Horm Behav submitted.

    Google Scholar 

  • Moore CR, Price D. 1932. Gonadal hormone functions and the reciprocal influence between gonads and hypophysis with its bearing on the problem of sex hormone antagonism. Amer J Anat Sci 50: 13.

    Article  Google Scholar 

  • Moore K, Lookingland K. 1995. Dopaminergic neuronal systems in the hypothalamus. New York: Raven Press, Ltd.

    Google Scholar 

  • Moore RY, Speh JC, Leak RK. 2002. Suprachiasmatic nucleus organization. Cell Tissue Res 309: 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Eichler VB. 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Klein DC. 1974. Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res 71: 17–33.

    Article  CAS  PubMed  Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA. 1982. The Clocks That Time Us: Physiology of the Circadian Timing System. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Morin L. 1980. Effect of ovarian hormones on synchrony of hamster circadian rhythms. Physiol Behav 24: 741–749.

    Article  CAS  PubMed  Google Scholar 

  • Morin L, Cummings A. 1982. Splitting of wheelrunning rhythms by castrated or steroid treated male and female hamsters. Physiol Behav 29: 665–675.

    Article  CAS  PubMed  Google Scholar 

  • Morin L, Fitzgerald K, Zucker I. 1977. Estradiol shortens the period of hamster circadian rhythms. Science 196: 305–307.

    Article  CAS  PubMed  Google Scholar 

  • Morin L, Godless-Sanchez N, Smale L, Moore R. 1994. Projections of the suprachiasmatic nuclei, subparventricular zone and retrochiasmatic area in the golden hamster. Neuroscience 61: 391–410.

    Article  CAS  PubMed  Google Scholar 

  • Muglia LJ, Jacobson L, Weninger SC, Luedke CE, Bae DS, (1997). Impaired diurnal adrenal rhythmicity restored by constant infusion of corticotropin-releasing hormone in corticotropin-releasing hormone-deficient mice. J Clin Invest 99: 2923–2929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munck A, Guyre PM, Holbrook NJ. 1984. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5: 25–44.

    Article  CAS  PubMed  Google Scholar 

  • Myer-Bernstein EL, Letton AE, Matsumoto S-I, Markuns JF, Lehman MN, et al. 1999. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140: 207–218.

    Article  Google Scholar 

  • Nagano M, Akihito A, Nakahama K-I, Nakamura T, Tamada M, et al. (2003). An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 23: 6141–6151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Moriya T, Inoue S, Shimazoe T, Watanabe S, et al. 2005. Estrogen differentially regulates Expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J Neurosci Res 82: 622–630.

    Article  CAS  PubMed  Google Scholar 

  • Nelson RJ. 2000. An Introduction to Behavioral Endocrinology, 2nd edition. Sinauer Assoc, Sunderland, MA.

    Google Scholar 

  • Nunez AA, Casati MJ. 1979. The role of efferent connections of the suprachiasmatic nucleus in the control of circadian rhythms. Behavioral and Neural Biology 25: 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Nunez AA, Brown MH, Youngstrom TG. 1985. Hypothalamic circuits involved in the regulation of seasonal and circadian rhythms in male golden hamsters. Brain Res Bull 15: 149–153.

    Article  CAS  PubMed  Google Scholar 

  • O'Connor LH, Morin LP, Feeder HH. 1985. A diurnal fluctuation in medial basal hypothalamic-preoptic area cytosol estrogen receptors in ovariectomized hamsters. Brain Res 347: 376–380.

    Article  CAS  PubMed  Google Scholar 

  • Olcese Domagalski R, Bednorz A, Weaver DR, Urbanski HF, Reuss S, et al. 2003. Expression and regulation of mPer1 in immortalized GnRH neurons. NeuroReport 4: 613–618.

    Article  Google Scholar 

  • Palm I. 2001 Timing of female reproduction: Role of the suprachiasmatic nucleus. Department of Human and Animal Physiology. Amsterdam: Wageningden University.

    Google Scholar 

  • Palm I, Beek van der E, Wiegant V, Buijs R, Kalsbeek A. 1999a. Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience 93: 659–666.

    Article  CAS  PubMed  Google Scholar 

  • Palm I, Beek van der E, Wiegant V, Buijs R, Kalsbeek A. 2001a. The stimulatory effect of vasopressin on the luteinizing hormone surge in ovariectomized, estradiol-treated rats is time-dependent. Brain Res 901: 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Palm I, Beek van der E, Swarts H, Vliet van der J, Wiegant V, et al. 2001b. Control of estradiol induced prolactin surge by the suprachiasmatic nucleus. Endocrinology 142: 2296–2302.

    Article  CAS  PubMed  Google Scholar 

  • Palm IF, Van Der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A. 1999b. Vasopressin Induces a Lutenizing Hormone Surge in Ovariectomized, Estradiol-Treated Rats with Lesions of the Suprachiasmatic Nucleus. Neuroscience 93.

    Google Scholar 

  • Panda S, Hogenesch JB. 2004. It's all in the timing: Many clocks, many outputs. J Biol Rhythms 19: 374–387.

    Article  CAS  PubMed  Google Scholar 

  • Pfaff DW. 1980. Estrogens and Brain Function: Neural Analysis of a Hormone-Controlled Mammalian Reproductive Behavior. New York: Springer-Verlag.

    Book  Google Scholar 

  • Phoenix CH, Goy RW, Gerall AA, Young WC. 1959. Organizational action of prenatally administered testosterone propionate on the tissues mediating behavior in the female guinea pig. Endocrinology 65: 369–382.

    Article  CAS  PubMed  Google Scholar 

  • Pitman DL, Ottenweller JE, Natelson BH. 1988. Plasma corticosterone levels during repeated presentation of two intensities of restraint stress: chronic stress and habituation. Physiol Behav 43: 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Quay WB. 1970. Precocious entrainment and associated characteristics of activity patterns following pinealectomy and reversal of photoperiod. Physiol Behav 5: 1281–1290.

    Article  CAS  PubMed  Google Scholar 

  • Redman JR, Armstrong SM, Ng KT. 1983. Free-running activity rhythms in the rat: Entrainment by melatonin. Science 219: 1989–1991.

    Article  Google Scholar 

  • Reppert S, Weaver D. 2002. Coordination of circadian timing in mammals. Nature 418: 935–941.

    Article  CAS  PubMed  Google Scholar 

  • Reppert S, Schwartz W, Uhl G. 1987. Arginine vasopressin: a novel peptide rhythm in cerebrospinal fluid. Tr Neurosci 10: 76–80.

    Article  CAS  Google Scholar 

  • Roland BL, Sawchenko PE. 1993. Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 332: 123–143.

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld P, Van Eekelen JAM, Levine S, De Kloet ER. 1988. Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Brain Res 470: 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld P, Van Eekelen JAM, Levine S, De Kloet ER. 1993. Ontogeny of corticosteroid receptors in the brain. Cell Mol Neurobiol 13: 295–319.

    Article  CAS  PubMed  Google Scholar 

  • Rosenwasser AM, Dwyer SM. 2002. Phase shifting the hamster circadian clock by 15-minute dark pulses. J Biol Rhythms 17: 238–247.

    Article  PubMed  Google Scholar 

  • Rosenwasser A, Hollander S, Adler N. 1987. Effects of pregnancy and parturition on free-running circadian activity rhythms in the rat. Chronobiol Int 4: 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Rusak B, Morin LP. 1976. Testicular responses to photoperiod are blocked by lesions of the suprachiasmatic nuclei in golden hamsters. Biol Reprod 15: 366–374.

    Article  CAS  PubMed  Google Scholar 

  • Rusak B, Zucker I. 1979a. Neural regulation of circadian rhythms. Physiol Rev 59: 449–524.

    Article  CAS  PubMed  Google Scholar 

  • Rusak B, Zucker I. 1979b. Neural regulation of circadian rhythms. Physiol Rev 59: 449–522.

    Article  CAS  PubMed  Google Scholar 

  • Sage D, Ganem J, Guillaumond F, Laforge-Anglade G, Francois-Bellan AM, et al. 2004. Influence of the corticosterone rhythm on photic entrainment of locomotor activity in rats. J Biol Rhythms 19: 144–156.

    Article  CAS  PubMed  Google Scholar 

  • Salisbury R, Krieg R, Siebel H. 1980. Effects of arginine vasotocin, oxytocin and arginine vasopressin on steroid induced surges of luteinizing hormone and prolactin in ovariectomized rats. Acta Endocrinol 94: 166–173.

    Article  CAS  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU. 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21: 55–89.

    CAS  PubMed  Google Scholar 

  • Schally AV, Arimura A, Bowers CY, Kastin AJ, Sawano S, et al. 1968. Hypothalamic neurohormones regulating anterior pituitary function. Rec Progr Horm Res 24: 497.

    CAS  PubMed  Google Scholar 

  • Schibler U, Brown SA. 2005. Enlightening the adrenal gland. Cell Metab 2: 278–281.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Nunez AA, Smale L. 2004. Differences in the suprachiasmatic nucleus and lower subparventricular zone of diurnal and nocturnal rodents. Neuroscience 127: 25–34.

    Article  CAS  Google Scholar 

  • Scott AJ. 2000. Shift work and health. Prim Care 27: 1057–1079.

    Article  CAS  PubMed  Google Scholar 

  • Scribner KA, Walker CD, Cascio CS, Dallman MF. 1991. Chronic streptozotocin diabetes in rats facilitates the acute stress response without altering pituitary or adrenal responsiveness to secretagogues. Endocrinology 129: 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Sei H, Fujihara H, Ueta Y, Morita K, Kitahama K, et al. 2003. Single eight-hour shift of light-dark cycle increases brain-derived neurotrophic factor protein levels in the rat hippocampus. Life Sciences 73: 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Seibel MM, et al. 1982. Biological rhythm of the luteinizing hormone surge in women. Fertil Steril 37: 709–711.

    Article  CAS  PubMed  Google Scholar 

  • Sellix M, Freeman M. 2003. Circadian rhythms of neuroendocrine dopaminergic neuronal activity in ovariectomized rats. Neuroendocrinology 77: 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Sellix M, Egli M, Poletini M, McKee D, Bosworth M, et al. 2006. Anatomical and functional characterization of clock gene expression in neuroendocrine dopaminergic neurons. Am J Physiol R-00555–2005: DOI #10.1210/en.2003–0802

    Google Scholar 

  • Shinohara K, Funabashi T, Nakamura T, Kimura F. 2003. Effects of estrogen and progesterone on the expression of connexin-36 mRNA in the suprachiasmatic nucleus of female rats. Neurosci Lett 309: 37–40.

    Article  Google Scholar 

  • Shiotsuka R, Jovonovich J, Jovonovich JA. 1974. In vitro data on drug sensitivity: circadian and ultraidan corticosterone rhythms in adrenal organ cultures. Chronobiological Aspects of Endocrinology. Aschoff J, Ceresa F, Halberg F, editors. Stuttgart, Germany: Schattauer-Verlag; pp. 255–267.

    Google Scholar 

  • Silver R, Le Sauter J. 1995. Localization of pacemaker cells in the hamster SCN:II transplant studies. Soc Neurosci Abstr 21.

    Google Scholar 

  • Silver R, Le Sauter J, Tresco P, Lehman M. 1996. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382: 810–813.

    Article  CAS  PubMed  Google Scholar 

  • Silverman A-J, Livne I, Witkin J. 1994. The gonadotropin-releasing hormone (GnRH), neuronal systems: Immunocytochemistry and in situ hybridization. In The Physiology of Reproduction. Raven Press Ltd; New York: pp. 1683–1709.

    Google Scholar 

  • Smith M, Jennes L, Weiss P. 2000. Localization of the VIP2 receptor protein on GnRH neurons in the female rat. Neuroendocrinology 141: 4317–4319.

    CAS  Google Scholar 

  • Stephens DB. 1980. Stress and its measurement in domestic animals: a review of behavioral and physiological studies under field and laboratory situations. Adv Vet Sci Comp Med 24: 179–210.

    CAS  PubMed  Google Scholar 

  • Stetson M, Watson-Whitmyre M. 1976. Nucleus suprachiasmaticus: The biological clock in the hamster. Science 191: 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Stobie KM, Weick RF. 1989. Vasoactive intestinal peptide inhibits luteinizing hormone secretion: the inhibition is not mediated by dopamine. Neuroendocrinology 49: 597–603.

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Deng J, Liu T, Borjigin J. 2002. Circadian 5-HT production regulated by adrenergic signaling. Proc Natl Acad Sci USA 99: 4686–4691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Liu T, Deng J, Borjigin J. 2003. Long-term in vivo pineal microdialysis. J Pineal Res 35: 118–124.

    Article  CAS  PubMed  Google Scholar 

  • Swaab DF, Bao A-M, Lucassen PJ. 2005. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4: 141–194.

    Article  CAS  PubMed  Google Scholar 

  • Swann J, Turek F. 1985. Multiple circadian oscillators regulate the timing of behavioral and endocrine rhythms in female golden hamsters. Science 22: 898–900.

    Article  Google Scholar 

  • Takahashi J, Menaker M. 1980. Interaction of estradiol and progesterone: effects on circadian locomotor rhythm in female golden hamsters. Am J Physiol 329: R497–R504.

    Google Scholar 

  • Tapp WN, Natelson BH. 1989. Circadian rhythms and patterns of performance before and after simulated jet lag. Am J Physiol 257: R796–803.

    CAS  PubMed  Google Scholar 

  • Terrazzino S, Perego C, De Simoni MG. 1995. Effect of development of habituation to restraint stress on hypothalamic noradrenaline release and adrenocorticotropin secretion. J Neurochem 65: 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Tersawa E, Yeoman R, Schultz N. 1984. Factors influencing the progesterone-induced luteinizing hormone surge in rhesus monkeys: Diurnal influences and time interval after estrogen. Biol Reprod 31: 732–741.

    Article  Google Scholar 

  • Tersawa S, Wiegand S, Bridson W. 1980. A role for medial preoptic nucleuson afternoon of proestrus in female rats. Am J Physiol 328: E533–E539.

    Google Scholar 

  • Testart J, Frydman R, Roger M. 1982. Seasonal influence of diurnal rhythms in the onset of the plasma luteinizing hormone surge in women. J Clin Endocrinol Metab 55: 374–377.

    Article  CAS  PubMed  Google Scholar 

  • Thind K, Boggan J, Goldsmith P. 1991. Interactions Between Vasopressin- and Gonadotropin-Releasing -Hormone-Containing Neuroendocrine Neurons in the Monkey Supraoptic Nucleus. Neuroendocrinology 39: 287–297 .

    Article  Google Scholar 

  • Turek FW, Campbell CS. 1979. Photoperiodic regulation of neuroendocrine-gonadal activity. Biol Reprod 20: 32–50.

    Article  CAS  PubMed  Google Scholar 

  • Turner CD, Bagnara JT. 1971. General Endocrinology, 5th edition. Philadelphia, PA: W.B. Saunders Co; pp. 24–73.

    Google Scholar 

  • van der Beek E. 1996. Circadian control of reproduction in the female rat. Progress in Brain Res 111: 295–320.

    Article  Google Scholar 

  • van Der Beek E, Swarts H, Wiegant V. 1998. Central Administration of Antiserum to Vasoactive Intestinal Peptide Delays and Reduces Lutenizing Hormone and Prolactin Surges in Ovariectomized, Estrogen-treated Rats. Neuroendocrinology 69: 227–237 .

    Google Scholar 

  • van der Beek E, van Oudheusden H, Buijs H, Donk van der R, Wiegant V. 1994. Preferential induction of c-fos immunoreactivity in vasoactive intestinal polypeptide-innervated gonadotropin-releasing hormone neourns during a steroid induced luteinizing hormone surge in the female rat. Endocrinology 134: 2636–2644.

    Article  PubMed  Google Scholar 

  • van der Beek E, Horvath T, Wiegant V, Hurk van den R, Buije R. 1997a. Evidence for a direct neuronal pathway from suprachiasmatic nucleus to the gonadotropin-releasing hormone system: Combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 384: 569–579.

    Article  PubMed  Google Scholar 

  • van der Beek EM, Swarts HJM, Wiegant VM. 1999. Central administration of antiserum to vasoactive intestinal peptide delays and reduces luteinizing hormone and prolactin surges in ovariectomized, estrogen-treated rats. Neuroendocrinology 69: 227–237.

    Article  PubMed  Google Scholar 

  • Van der Beek EM, Wiegant HA, Donk R, Van der Hurk HA, van den Buijs RM. 1993. Lesions of the suprachiasmatic nucleus indicate the presence of a direct vasoactive intestinal polypeptide-containing projection to gonadotropin-releasing hormone neurons in the female rat. J Neuroendocrin 5: 137–144.

    Article  Google Scholar 

  • van der Beek EM, Horvath TL, Weigant VM, Hurk van den R, Buijs R. 1997b. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotrophin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 384: 569–579.

    Article  PubMed  Google Scholar 

  • Van Reeth O, Hinch D, Tecco JM, Turek FW. 1991. The effects of short periods of immobilization on the hamster circadian clock. Brain Res 545: 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Viau V, Meaney MJ. 1996. The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress is mediated by the medial preoptic area. J Neurosci 16: 1866–1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayan E, Samson WK, Said SI, McCann SM. 1979. Vasoactive intestinal peptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone, and prolactin in conscious ovariectomized rats. Endocrinology 104: 53–57.

    Article  CAS  PubMed  Google Scholar 

  • Waddington Lamont E, Robinson B, Stewart J, Amir S. 2005. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period 2. Proc Natl Acad Sci USA 102: 4180–4184.

    Article  CAS  Google Scholar 

  • Watson R, Langub C. 1992. Vasopressinergic synaptic input upon estrogen receptive neurons in the anterior preoptic area of the rat: Suprachiasmatic nucleus origin? Society for Neuroscience Abstracts 18: 113.

    Google Scholar 

  • Watson R, Langub C, Engle MG, Maley B. 1995. Estrogen-receptive neurons in the anteroventral periventricular nucleus are synaptic targets of the suprachiasmatic nucleus and peri-suprachiasmatic region. Brain Res 689: 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Watts AG, Swanson LW. 1987. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258: 230–252 .

    Article  CAS  PubMed  Google Scholar 

  • Watts A, Swanson L, Sanchez-Watts G. 1987. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258: 204–229.

    Article  CAS  PubMed  Google Scholar 

  • Watts AG, Swanson LW. 1987. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258: 230–252.

    Article  CAS  PubMed  Google Scholar 

  • Weaver DR, Stehle JH, Stopa EG, Reppert SM. 1993. Melatonin receptors in human hypothalamus and pituitary: Implications for circadian and reproductive responses to melatonin. J Clin Endocrinol Metab 76: 295–301.

    CAS  PubMed  Google Scholar 

  • Weibel L, Maccari S, Van Reeth O. 2002. Circadian clock functioning is linked to acute stress reactivity in rats. J Biol Rhythms 17: 438–446.

    Article  CAS  PubMed  Google Scholar 

  • Weick RF, Stobie KM. 1992. Vasoactive intestinal peptide inhibits the steroid-induced LH surge in the ovariectomized rat. J Endocrinol 133: 433–437.

    Article  CAS  PubMed  Google Scholar 

  • Weitzman ED. 1976. Circadian rhythms and episodic hormone secretion in man. Ann Rev Med 27: 225–243.

    Article  CAS  PubMed  Google Scholar 

  • Weitzman ED, Fukushima DK, Nogeire C, Roffwarg H, Gallagher TF, et al. 1971. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab 33: 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Weitzman ED, Hellman L. 1974. Temporal organization of the 24-hour pattern of the hypothalamic-pituitary axis. Biorhythms and Human Reproduction. Ferin M, Halberg F, Richart RM, Vandewiele RL, editors. New York: Wiley Press; pp. 371–395.

    Google Scholar 

  • Weitzman ED, Schaumburg H, Fishbein W. 1966. Plasma 17-hydroxy-corticosteroid levels during sleep in man. J Clin Endocrinol Metab 26: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Weller KL, Smith DA. 1982. Afferent connections to the bed nucleus of the stria terminalis. Brain Res 232: 255–270.

    Article  CAS  PubMed  Google Scholar 

  • Wiegand S, Tersawa E, Bridson W, Goy R. 1980. Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Neuroendocrinology 31: 137–157.

    Article  Google Scholar 

  • Wilson M, Rosewell K, Kashon M, Shughrue P, Merchenthaler I, et al. 2002. Age differentially influences estrogen receptor-alpha (ER-alpha) and estrogen receptor-beta (ER-beta) gene expressionin specific regions of the rat brain. Mech Aging Develop 123: 593–601.

    Article  CAS  Google Scholar 

  • Winget CM, De Roshia CW, Markley CL, Holley DC. 1984. A review of human physiological and performance changes associated with desynchronosis of biological rhythms. Aviat Space Environ Med 55: 1085–1096.

    CAS  PubMed  Google Scholar 

  • Woodfill CJI, Wayne NL, Moenter SM, Karsch FJ. 1994. Photoperiodic synchronization of a circannual reproductive rhythm in sheep: Identification of season-specific time cues. Biol Reprod 50: 965–976.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, et al. 2005. Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J Biol Chem 280: 42036–42043.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R-I, et al. 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Yeates NTM. 1949. The breeding season of the sheep with particular reference to its modification by artificial means using light. J Agric Sci 39: 1–43.

    Article  Google Scholar 

  • Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian osillations in mouse peripheral tissues. Proc Nat Acad Sci USA 101: 5339–5346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Koyanagi S, Matsuo A, Fujioka T, To H, et al. 2005. Glucocorticoid hormone regulates the circadian coordination of micro-opioid receptor expression in mouse brainstem. J Pharmacol Exp Ther 315: 1119–1124.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Herman JP. 2002. Neurocircuitry of stress integration: Anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat. Integr Comp Biol 42: 541–551.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the assistance of Dr. Megan Mahoney, Dr. Daniel Hummer and soon to be Dr. Jennifer Mohawk, without whose data and assistance this chapter would never have been completed. The authors were supported by NIMH: MH05333 (LS), NSF: IBN-0130977 (LS), NIMH: MH069518 (TML), NSF: IBN-0212322 (TML).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lee, T.M., Smale, L. (2007). Neuroendocrinology of Behavioral Rhythms. In: Lajtha, A., Blaustein, J.D. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30405-2_23

Download citation

Publish with us

Policies and ethics