Skip to main content

The Mammalian Circadian System: from Genes to Behavior

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

1 Introduction

Virtually all organisms studied to date, from bacteria to humans, possess an internal clock that has an intrinsic period of approximately 24 h. This endogenous pacemaker drives circadian rhythms (“circa” = about, “dies” = a day) of myriad biological processes, from cell metabolism to behavioral state. Although the anatomical location and genetic components of the pacemaker differ among species, all circadian systems can be described by a three-component model that includes: (1) the pacemaker, a molecular clock that has a period of approximately 24 h and that continues to oscillate even in the prolonged absence of any timing cues, (2) an input pathway that conveys environmental time cues to the pacemaker, and (3) output pathways by which the pacemaker can influence biochemistry and behavior (Takahashi et al., 2001). This review focuses on mammalian circadian rhythms, and covers the anatomical and molecular basis for the master pacemaker, the neurochemical processes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANS:

Autonomic nervous system

CT:

circadian time

CRE:

cyclic-AMP response element

CREB:

CRE-binding protein

FSH:

follicle stimulating hormone

GRP:

gastrin-related peptide

GnRH:

gonadotropin-releasing hormone

G-protein:

guanine nucleotide binding protein

HPA:

hypothalamic-pituitary-adrenal

HPG:

hypothalamic-pituitary-gonadal

IGL:

intergeniculate leaflet

LD:

light:dark

LH:

luteinizing hormone

MEF:

mouse embryonic fibroblast

MUA:

multiunit electrical activity

NPY:

neuropeptide Y

PACAP:

pituitary adenylate cyclase activating polypeptide

POA:

preoptic area

RGC:

retinal ganglion cell

RHT:

retinohypothalamic tract

RORE:

retinoic acid related orphan receptor response element

5-HT:

serotonin

SCN:

suprachiasmatic nucleus

VIP:

vasoactive intestinal peptide

AVP:

vasopressin

TTX:

tetrodotoxin

ZT:

Zeitgeber time

References

  • Abe H, Honma S, Ohtsu H, Honma K. 2004. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Mol Brain Res 124: 178–187.

    Article  CAS  PubMed  Google Scholar 

  • Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, et al 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12: 540–550.

    Article  CAS  PubMed  Google Scholar 

  • Albus H, Bonnefont X, Chaves I, Yasui A, Doczy J, et al 2002. Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr Biol 12: 1130–1133.

    Article  CAS  PubMed  Google Scholar 

  • Amir S, Stewart JM. 1996. Resetting of the circadian clock by a conditioned stimulus. Nature 379: 542–545.

    Article  CAS  PubMed  Google Scholar 

  • Antoch MP, Song EJ, Chang A-M, Vitaterna MH, Zhao Y, et al 1997. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89: 655–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aschoff J. 1965. Circadian rhythms in man. Science 148: 1427–1432.

    Article  CAS  PubMed  Google Scholar 

  • Bae K, Xiaowei J, Maywood ES, Hastings MH, Reppert SM, et al 2001. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525–536.

    Article  CAS  PubMed  Google Scholar 

  • Balsolobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, et al 2000. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289: 2344–2347.

    Article  Google Scholar 

  • Balsolobre A, Damiola F, Schibler U. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93: 929–937.

    Article  Google Scholar 

  • Barkley M, Bradford G, Geschwind I. 1978. The pattern of plasma prolactin concentration during the first half of mouse gestation. Biol Reprod 19: 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, et al 2003. Requirement of mammalian Timeless for circadian rhythmicity. Science 302: 439–442.

    Article  CAS  PubMed  Google Scholar 

  • Beaule C, Amir S. 1999. Photic entrainment and induction of immediate-early genes within the rat circadian system. Brain Res 821: 95–100.

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom AL, Hannibal J, Hindersson P, Fahrenkrug J. 2003. Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur J Neurosci 18: 2552–2562.

    Article  CAS  PubMed  Google Scholar 

  • Berson DM, Dunn FA, Takao M. 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070–1073.

    Article  CAS  PubMed  Google Scholar 

  • Boer K, Boer GJ, Swaab DF. 1981. Reproduction in Brattleboro rats with diabetes insipidus. J Reprod Fertil 61: 273–280.

    Article  CAS  PubMed  Google Scholar 

  • Bos NP, Mirmiran M. 1990. Circadian rhythms in spontaneous neuronal discharges of the cultured suprachiasmatic nucleus. Brain Res 511: 158–162.

    Article  CAS  PubMed  Google Scholar 

  • Brown NL, Patel S, Brzezinski J, Glaser T. 2001. Math5 is required for retinal ganglion cell and optic nerve formation. Development 128: 2497–2508.

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Schibler U. 1999. The ins and outs of circadian timekeeping. Curr Opin Gen Dev 9: 588–594.

    Article  CAS  Google Scholar 

  • Brown- Grant K, Raisman G. 1977. Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proc R Soc Lond B Biol Sci 198: 279–296.

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski JAt, Brown NL, Tanikawa A, Bush RA, Sieving PA, et al 2005. Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Invest Ophthalmol Vis Sci 46: 2540–2551.

    Article  PubMed  Google Scholar 

  • Buijs RM, la Fleur SE, Wortel J, Van Heyningen C, Zuiddam L, et al 2003. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol 464: 36–48.

    Article  PubMed  Google Scholar 

  • Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MGP, Ter Horst GJ, et al 1999. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11: 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, et al 2000. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103: 1009–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher GQ, Lee B, Obrietan K. 2003. Temporal regulation of light-induced extracellular signal-regulated kinase activation in the suprachiasmatic nucleus. J Neurophysiol 90: 3854–3863.

    Article  CAS  PubMed  Google Scholar 

  • Cagampang FR, Piggins HD, Sheward WJ, Harmar AJ, Coen CW. 1998a. Circadian changes in PACAP type 1 (PAC1) receptor mRNA in the rat suprachiasmatic and supraoptic nuclei. Brain Res 813: 218–222.

    Article  CAS  PubMed  Google Scholar 

  • Cagampang FR, Sheward WJ, Harmar AJ, Piggins HD, Coen CW. 1998b. Circadian changes in the expression of vasoactive intestinal peptide 2 receptor mRNA in the rat suprachiasmatic nuclei. Brain Res Mol Brain Res 54: 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Camacho F, Cilio M, Guo Y, Virshup DM, Patel K, et al 2001. Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett 489: 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Castel M, Belenky M, Cohen S, Wagner S, Schwartz WJ. 1997. Light-induced c-Fos expression in the mouse suprachiasmatic nucleus: immunoelectron microscopy reveals co-localization in multiple cell types. Eur J Neurosci 9: 1950– 1960.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU. 1999. Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA 96: 13468–13473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng HY, Obrietan K, Cain SW, Lee BY, Agostino PV, et al 2004. Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43: 715–728.

    Article  CAS  PubMed  Google Scholar 

  • Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, et al 2002. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Colwell C. 2000a. Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci 12: 571–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colwell CS. 2000b. Rhythmic coupling among cells in the suprachiasmatic nucleus. J Neurobiol 43: 379–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colwell CS, Menaker M. 1992. NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. J Biol Rhythms 7: 125–136.

    Article  CAS  PubMed  Google Scholar 

  • Colwell CS, Foster RG, Menaker M. 1991. NMDA receptor antagonists block the effects of light on circadian behavior in the mouse. Brain Res 554: 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Colwell CS, Ralph MR, Menaker M. 1990. Do NMDA receptors mediate the effects of light on circadian behavior? Brain Res 523: 117–120.

    Article  CAS  PubMed  Google Scholar 

  • Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, et al 2004. Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol 287, R1194–1201.

    Article  CAS  PubMed  Google Scholar 

  • Daan S. 1977. Tonic and phasic effects of light in the entrainment of circadian rhythms. Ann NY Acad Sci 290: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Daan S, Aschoff J. 2001. The entrainment of circadian systems., In Handbook of Behavioral Neurobiology: Circadian Clocks, Takahashi JS, Turek FW, Moore RY, editors. New York: Kluwer/Plenum.

    Google Scholar 

  • Damiola F, Minh NL, Preitner N, Kornmann B, Fleury- Olela F, et al 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14: 2950–2961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darlington TK, Lyons LC, Hardin PE, Kay SA. 2000. The period E-box is sufficient to drive circadian oscillation of transcription in vivo. J Biol Rhythms 15: 462–471.

    Article  CAS  PubMed  Google Scholar 

  • de Boer SF, Van der Gugten J. 1987. Daily variations in plasma noradrenaline, adrenaline, and corticosterone concentrations in rats. Physiol Behav 40: 323–328.

    Article  CAS  PubMed  Google Scholar 

  • de Jeu M, Hermes M, Pennartz C. 1988. Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. Neuroreport 9: 3725–3729.

    Article  Google Scholar 

  • de Mairan J-J. 1729. Observation botanique. Histoir de l'Academie Royale des Science, 35–36.

    Google Scholar 

  • Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, et al 1994. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266: 1713–1717.

    Article  CAS  PubMed  Google Scholar 

  • Edgar DM, Dement WC. 1991. Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am J Physiol 261: R928–933.

    CAS  PubMed  Google Scholar 

  • Engelmann W, Eger I, Johnsson A,Karlsson HG. 1974. Effects of temperature pulses on the petal rhythm of Kalanchoe: An experimental and theoretical study. Int J Chronobiol, 29: 347–358

    Google Scholar 

  • Evans NP, Dahl GE, Glover BH, Karsch FJ. 1994. Central regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by estradiol during the period leading up to the preovulatory GnRH surge in the ewe. Endocrinology 134: 1806–1811.

    Article  CAS  PubMed  Google Scholar 

  • Everett JW, Sawyer CH. 1950. A 24 h periodicity in the LH-release apparatus of female rats, disclosed by barbituate sedation. Endocrinology 46: 196–216.

    Google Scholar 

  • Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, et al 2000. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28: 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Feldman JF, Hoyle MN. 1973. Isolation of circadian clock mutants of Neurospora crassa. Genetics 75: 605–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field M, Maywood E, O'Brien J, Weaver D, Reppert S, et al 2000. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Foster RG. 1998. Shedding light on the biological clock. Neuron 20: 829–832.

    Article  CAS  PubMed  Google Scholar 

  • Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, et al 1991. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169: 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, et al 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284: 502–504.

    Article  CAS  PubMed  Google Scholar 

  • Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, et al 2002. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, et al 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280: 1564–1569.

    Article  CAS  PubMed  Google Scholar 

  • Gillette M, Reppert S. 1987. The hypothalamic suprachiasmatic nuclei: Circadian patterns of vasopressin secretion and neuronal activity in vitro. Brain Res Bull 19: 135–139.

    Article  CAS  PubMed  Google Scholar 

  • Gillette MU, Medanic M, McArthur AJ, Liu C, Ding JM, et al 1995a. Intrinsic neuronal rhythms in the suprachiasmatic nuclei and their adjustment. Ciba Found Symp 183: 134–144; discussion 144–153.

    CAS  PubMed  Google Scholar 

  • Gillette MU, Medanic M, McArthur AJ, Liu C, Ding JM, et al. 1995b. Intrinsic neuronal rhythms in the suprachiasmatic nuclei and their adjustment, In Circadian Clocks and their Adjustment. Wiley and Sons, pp. 134–153.

    Google Scholar 

  • Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, et al 1993. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260: 238–241.

    Article  CAS  PubMed  Google Scholar 

  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. 2001. Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4: 1165

    Article  CAS  PubMed  Google Scholar 

  • Gotter AL, Manganaro T, Weaver DR, Kolakowski LF, Possidente B, et al 2000. A time-less function of mouse Timeless. Nat Neurosci 3: 755–756.

    Article  CAS  PubMed  Google Scholar 

  • Griffin EA, Staknis D, Weitz CJ. 1999. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286: 768–771.

    Article  CAS  PubMed  Google Scholar 

  • Gwinner E. 1966. Entrainment of a circadian rhythm in birds by species-specific song cycles (Aves, Fringillidae; Cardeulis spinus, Serinus serinus). Experientia 22: 1–3.

    Article  Google Scholar 

  • Hamann A, Matthaei S. 1996. Regulation of energy balance by leptin. Exp Clin Endocrinol Diabetes 104: 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J. 2002. Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 309: 73–88.

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, et al 1998. Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract: a daytime regulator of the biological clock. Ann NY Acad Sci 865: 197–206.

    Article  CAS  PubMed  Google Scholar 

  • Hao H, Allen DL, Hardin PE. 1997. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol 17: 3687–3693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington ME, Hoque S, Hall A, Golombek D, Biello S. 1999. Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J Neurosci 19: 6637–6642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings MH, Reddy AB, Maywood ES. 2003. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4: 649–661.

    Article  CAS  PubMed  Google Scholar 

  • Hastings MH, Field MD, Maywood ES, Weaver DR, Reppert SM. 1999. Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism. J Neurosci 19(12):RC11.

    Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, et al 2003. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 76–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Sanada K, Fukada Y. 2001. Circadian and photic regulation of MAP kinase by Ras- and protein phosphatase-dependent pathways in the chick pineal gland. FEBS Lett 491: 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Hayes KR, Baggs JE, Hogenesch JB. 2005. Circadian clocks are seeing the systems biology light. Genome Biol 6: 219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hermes ML, Ruijter JM, Klop A, Buijs RM, Renaud LP. 2000. Vasopressin increases GABAergic inhibition of rat hypothalamic paraventricular nucleus neurons in vitro. J Neurophysiol 83: 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Herzog E, Geusz M, Khalsa S, Straume M, Block G. 1997. Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res 757: 285–290.

    Article  CAS  PubMed  Google Scholar 

  • Herzog ED, Takahashi JS, Block GD. 1998. Clock controls circadian period in the isolated suprachiasmatic nucleus neurons. Nat Neurosci 1: 708–713.

    Article  CAS  PubMed  Google Scholar 

  • Herzog ED, Aton SJ, Numano R, Sakaki Y, Tei H. 2004. Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythms 19: 35–46.

    Article  PubMed  Google Scholar 

  • Hida A, Koike N, Hirose M, Hattori M, Sakaki Y, et al 2000. The human and mouse Period1 genes: five well-conserved E-boxes additively contribute to the enhancement of mPer1 transcription. Genomics 65: 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Hogenesch JB, Gu YZ, Jain S, Bradfield CA. 1998. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95: 5474–5479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honma S, Shirakawa T, Katsuno Y, Namihira M, Honma K. 1998. Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 250: 157–160.

    Article  CAS  PubMed  Google Scholar 

  • Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, et al 2002. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419: 841–844.

    Article  CAS  PubMed  Google Scholar 

  • Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP, et al 1996. Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35: 13871–13877.

    Article  CAS  PubMed  Google Scholar 

  • Hwang A, Maity A, McKenna WG, Muschel RJ. 1995. Cell cycle-dependent regulation of the cyclin B1 promoter. J Biol Chem 270: 28419–28424.

    Article  CAS  PubMed  Google Scholar 

  • Ibata Y, Takahashi Y, Okamura H, Kawakami F, Terubayashi H, et al 1989. Vasoactive intestinal peptide (VIP)-like immunoreactive neurons located in the rat suprachiasmatic nucleus receive a direct retinal projection. Neurosci Lett 97: 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Sugiyama T, Wallace CS, Gompf HS, Yoshioka T, et al 2003. Circadian dynamics of cytosolic and nuclear Ca+2 in single suprachiasmatic nucleus neurons. Neuron 38: 253–263.

    Article  CAS  PubMed  Google Scholar 

  • Inouye S-IT. 1996. Circadian rhythms of neuropeptides in the suprachiasmatic nucleus. Progress in Brain Research, Buijs R, Kalsbeck A, Romijn H, Pennartz C, Mirmiran M, editors. Elsevier Science.

    Google Scholar 

  • Inouye ST, Kawamura H. 1979. Persistance of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76: 5962–5966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Yagita K, Fukuyama T, Nishimura M, Nagano M, et al 2001. Constitutive expression and delayed light response of casein kinase Iepsilon and Idelta mRNAs in the mouse suprachiasmatic nucleus. J Neurosci Res 64: 612–616.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH. 1993. The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc 68: 413–471.

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Shearman LP, Weaver DR, Zylka MJ, De Vries GJ, et al 1999. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96: 57–68.

    Article  CAS  PubMed  Google Scholar 

  • Johnson MS. 1926. Activity and distribution of certain wild mice in relation to biotic communities. J Mammal 7: 245–275.

    Article  Google Scholar 

  • Kalsbeek A, Buijs RM. 2002. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 309: 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Buijs RM, van Heerikhuize JJ, Arts M, van der Woude TP. 1992. Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Res 580: 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM. 1996. A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci 16: 5555–5565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapfhamer D, Valladares O, Sun Y, Nolan PM, Rux JJ, et al 2002. Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Nat Genet 32: 290–295.

    Article  CAS  PubMed  Google Scholar 

  • Kavakli IH, Sancar A. 2002. Circadian photoreception in humans and mice. Mol Interv 2: 484–492.

    Article  PubMed  Google Scholar 

  • King DP, Takahashi JS. 2000. Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci 23: 713–742.

    Article  CAS  PubMed  Google Scholar 

  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, et al 1997. Positional cloning of the mouse circadian Clock gene. Cell 89: 641–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondratov RV, Chernov MV, Kondratova AA, Gorbacheva VY, Gudkov AV, et al 2003. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev 17: 1921–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornhauser JM, Cowan CW, Shaywitz AJ, Dolmetsch RE, Griffith EC, et al 2002. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34: 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Krajnak K, Rosewell KL, Wise PM. 2001. Fos-induction in gonadotropin-releasing hormone neurons receiving vasoactive intestinal polypeptide innervation is reduced in middle-aged female rats. Biol Reprod 64: 1160–1164.

    Article  CAS  PubMed  Google Scholar 

  • Kramer A, Yang F-C, Snodgrass P, Li X, Scammell TE, et al 2001. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294: 2511–2515.

    Article  CAS  PubMed  Google Scholar 

  • Kulhman SJ, Silver R, Le Sauter J, Bult- Ito A, McMahon DG. 2003. Phase resetting light pulses induce Per1 and persistant spike activity in a subpopulation of biological clock neurons. J Neurosci 23: 1441–1450.

    Article  Google Scholar 

  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, et al 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian click feedback loop. Cell 98: 193–205.

    Article  CAS  PubMed  Google Scholar 

  • Leak RK, Moore RY. 2001. Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433: 312–334.

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Weaver DR, Reppert SM. 2004. Direct association between mouse PERIOD and CKIepsilon is critical for a functioning circadian clock. Mol Cell Biol 24: 584–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CC, Etchegaray J-P, Cagampang FRA, Loudon AS, Reppert SM. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107: 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, et al 1987. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7: 1626–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine JE, Bauer-Dantoin AC, Besecke LM, Conaghan LA, Legan SJ, et al 1991. Neuroendocrine regulation of the luteineizing hormone-releasing hormone pulse generator in the rat. Rec Prog Horm Res 47: 97–153.

    CAS  PubMed  Google Scholar 

  • Levine JE, Chappell PE, Besecke LM, Bauer-Dantoin AC, Wolfe AM, et al 1995. Amplitude and frequency modulation of pulsatile luteinizing hormone-releasing hormone release. Cell Mol Neurobiol 15: 117–139.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Weaver DR, Strogatz SH, Reppert SM. 1997. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91: 855–860.

    Article  CAS  PubMed  Google Scholar 

  • Lopez- Molina L, Conquet F, Dubois- Dauphin M, Schibler U. 1997. The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16: 6762–6771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low- Zeddies SS, Takahashi JS. 2001. Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 105: 25–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowrey PL, Takahashi JS. 2000. Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and postranslational regulation. Annu Rev Genet 34: 533–562.

    Article  CAS  PubMed  Google Scholar 

  • Lowrey PL, Takahashi JS. 2004. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5: 407–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, et al 2000. Positional syntenic cloning and functional cloning characterization of the mammalian circadian mutation tau Science 288: 483–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, et al 2001. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular nucleus on sleep-wake cycle and temperature regulation. J Neurosci 21: 4864–4874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas RJ, Freedman MS, Munoz M, Garcia- Fernandez JM, Foster RG. 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284: 505–507.

    Article  CAS  PubMed  Google Scholar 

  • Lupi D, Cooper HM, Froehlich A, Standford L, McCall MA, et al 1999. Transgenic ablation of rod photoreceptors alters the circadian phenotype of mice. Neuroscience 89: 363–374.

    Article  CAS  PubMed  Google Scholar 

  • Magni P, Vettor R, Pagano C, Calcagno A, Beretta E, et al 1999. Expression of a leptin receptor in immortalized gonadotropin-releasing hormone-secreting neurons. Endocrinology 140: 1581–1585.

    Article  CAS  PubMed  Google Scholar 

  • Maywood ES, O'Brien JA, Hastings MH. 2003. Expression of mCLOCK and other circadian clock-relevant proteins in the mouse suprachiasmatic nuclei. J Neuroendocrinol 15: 329–334.

    Article  CAS  PubMed  Google Scholar 

  • McCall MA, Gregg RG, Merriman K, Goto Y, Peachey NS, et al 1996. Morphological and physiological consequences of the selective elimination of rod photoreceptors in transgenic mice. Exp Eye Res 63: 35–50.

    Article  CAS  PubMed  Google Scholar 

  • Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW. 2005. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433: 741–745.

    Article  CAS  PubMed  Google Scholar 

  • Menaker M, Takahashi J, Eskin A. 1978. The physiology of circadian pacemakers. Ann Rev Physiol 40: 501–526.

    Article  CAS  Google Scholar 

  • Meyer-Bernstein EL, Jetton AE, Markuns JF, Matsumoto S-I, Lehman MN, et al 1999. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, et al 2004. Circadian Clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol 14: 1367–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minami Y, Furuno K, Akiyama M, Moriya T, Shibata S. 2002. Pituitary adenylate cyclase-activating polypeptide produces a phase shift associated with induction of mPer expression in the mouse suprachiasmatic nucleus. Neuroscience 113: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Mintz EM, Marvel CL, Gillespie CF, Price KM, Albers HE. 1999. Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J Neurosci 19: 5124–5130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto Y, Sancar A. 1998. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95: 6097–6102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore RY, Card JP. 1994. Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344: 403–430.

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Eichler VB. 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Lenn NJ. 1972. A retinohypothalamic projection in the rat. J Comp Neurol 146: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Speh JC, Leak RK. 2002. Suprachiasmatic nucleus organization. Cell Tissue Res 309: 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Muglia LJ. 2000. Genetic analysis of fetal development and parturition control in the mouse. Ped Res 47: 437–443.

    Article  CAS  Google Scholar 

  • Munoz E, Brewer M, Baler R. 2002. Circadian transcription: Thinking outside the E-box. J Biol Chem 277: 36009–36017.

    Article  CAS  PubMed  Google Scholar 

  • Najima Y, Ikeda M, Kimura T, Honma S, Ohmiya Y, et al 2004. Bidirectional role of orphan nuclear receptor RORalpha in clock gene transcriptions demonstrated by a novel reporter assay system. FEBS Lett 565: 122–126.

    Article  CAS  Google Scholar 

  • Neitz M, Neitz J. 2001. The uncommon retina of the common house mouse. Trends Neurosci 24: 248–250.

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Zucker I. 1981. Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp Biochem Physiol 69: 145–148.

    Article  Google Scholar 

  • Obrietan K, Impey S, Smith D, Athos J, Storm DR. 1999. Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 274: 17748–17756.

    Article  CAS  PubMed  Google Scholar 

  • Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, et al 1999. Photic induction of mPer1 and mPer2 in Cry-deficient mice lacking a biological clock. Science 286: 2531–2534.

    Article  CAS  PubMed  Google Scholar 

  • Palm IF, Van der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A. 1999. Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience 93: 659–666.

    Article  CAS  PubMed  Google Scholar 

  • Palm IF, Van der Beek EM, Swarts HJM, Van der Vliet J, Wiegant VM, et al 2001. Control of the estradiol-induced prolactin surge by the suprachiasmatic nucleus. Endocrinology 142: 2296–2302.

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, et al 2002a. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307–320.

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, et al 2005. Illumination of the melanopsin signaling pathway. Science 307: 600–604.

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, et al 2002b. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298: 2213–2216.

    Article  CAS  PubMed  Google Scholar 

  • Peterson SL, Ottem EN, Carpenter CD. 2003. Direct and indirect regulation of gonadotropin-releasing hormone neurons by estradiol. Biol Reprod 69: 1771–1778.

    Article  CAS  Google Scholar 

  • Pickard GE, Weber ET, Scott PA, Riberdy AF, Rea MA. 1996. 5HT1B receptor agonists inhibit light-induced phase shifts of behavioral circadian rhythms and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus. J Neurosci 16: 8208–8220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickard GE, Smith BN, Belenky M, Rea MA, Dudek FE, et al 1999. 5-HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. J Neurosci 19: 4034–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piggins HD, Marchant EG, Goguen D, Rusak B. 2001. Phase-shifting effects of pituitary adenylate cyclase activating polypeptide on hamster wheel-running rhythms. Neurosci Lett 305: 25–28.

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh CS. 1960. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp Quant Biol 25: 159–182.

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh CS. 1981. Circadian systems: entrainment, In Handbook of Behavioral Biology: Biological Rhythms, Aschoff J, editor. New York: Plenum Press; pp. 95–124.

    Chapter  Google Scholar 

  • Preitner N, Damiola F, Molina LL, Zakany J, Duboule D, et al 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Provencio I, Foster RG. 1995. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694: 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Provencio I, Rollag MD, Castrucci AM. 2002. Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415: 493.

    CAS  PubMed  Google Scholar 

  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. 1998. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95: 340–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provencio I, Wong S, Lederman AB, Argamaso SM, Foster RG. 1994. Visual and circadian responses to light in aged retinally degenerate mice. Vision Res 34: 1799–1806.

    Article  CAS  PubMed  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, et al 2000. A novel human opsin in the inner retina. J Neurosci 20: 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintero JE, Kulhman SJ, McMahon DG. 2003. The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci 23: 8070–8076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph MR, Menaker M. 1988. A mutation of the circadian system in golden hamsters. Science 241: 1225–1227.

    Article  CAS  PubMed  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M. 1990. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975–978.

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR. 2001. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63: 647–676.

    Article  CAS  PubMed  Google Scholar 

  • Richter CP. 1922. A behavioristic study of activity in the rat. Comp Psych Monographs 1: 1–55.

    Google Scholar 

  • Richter CP. 1967. Sleep and activity: their relation to the 24-hour clock. Proc Assoc Res Nerv Ment Dis 45: 8–27.

    CAS  Google Scholar 

  • Ripperger JA, Shearman LP, Reppert SM, Schibler U. 2000. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Gen Dev 14: 679–689.

    Article  CAS  Google Scholar 

  • Romijn HJ, Sluiter AA, Pool CW, Wortel J, Buijs RM. 1996. Differences in the colocalization between Fos and PHI, GRP, VIP, and VP in neurons of the rat suprachiasmatic nucleus after a light stimulus during the phase delay versus the phase advance period of the night. J Comp Neurol 372: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Rowland DL, Wagonblast AL, Dylestra TA. 1991. Timing of parturition in the rat: an analysis of successive births. Chronobiologia 18: 31–38.

    CAS  PubMed  Google Scholar 

  • Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, et al 2002. Role of melanopsin in circadian responses to light. Science 298: 2211–2213.

    Article  CAS  PubMed  Google Scholar 

  • Rutter J, Reick M, Wu LC, McKnight SL. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510–514.

    Article  CAS  PubMed  Google Scholar 

  • Sanada K, Okano T, Fukada Y. 2002. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J Biol Chem 277: 267–271.

    Article  CAS  PubMed  Google Scholar 

  • Sanada K, Harada Y, Sakai M, Todo T, Fukada Y. 2004. Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase. Genes Cells 9: 697–708.

    Article  CAS  PubMed  Google Scholar 

  • Sargent ML, Woodward DO. 1969. Genetic determinants of circadian rhythmicity in Neurospora. J Bacteriol 97: 861–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathyanarayanan S, Zheng X, Xiao R, Sehgal A. 2004. Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116: 603–615.

    Article  CAS  PubMed  Google Scholar 

  • Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, et al 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43: 527–537.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz WJ, Gainer H. 1977. Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197: 1089–1091.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz WJ, Gross RA, Morton MT. 1987. The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci USA 84: 1694–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby CP, Thompson C, Schmitz TM, Van Gelder RN, Sancar A. 2000. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc Natl Acad Sci USA 97: 14697–14702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearman LP, Jin X, Lee CC, Reppert SM, Weaver DR. 2000a. Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol Cell Biol 20: 6269–6275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Reppert SM. 1997. Two period homologs: circadian and photic regulation in the suprachiasmatic nucleus. Neuron 19: 1261–1269.

    Article  CAS  PubMed  Google Scholar 

  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, et al 2000b. Interacting molecular loops in the mammalian circadian clock. Science 288: 1013–1018.

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Moore RY. 1993. Tetrodotoxin does not affect circadian rhythms in neuronal activity and metabolism in rodent suprachiasmatic nucleus in vitro. Brain Res 606: 259–266.

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Watanabe A, Hamada T, Ono M, Watanabe S. 1994. N-methyl-D-aspartate induces phase shifts in circadian rhythm of neuronal activity of rat SCN in vitro. Am J Physiol 267, R360–364.

    CAS  PubMed  Google Scholar 

  • Shimomura K, Low- Zeddies SS, King DP, Steeves TDL, Whiteley A, et al 2001. Genome-wide epistatic interaction analysis reveals complex determinants of circadian behavior in mice. Gen Res 11: 959–980.

    Article  CAS  Google Scholar 

  • Silver R, LeSauter J, Tresco PA, Lehman MN. 1996a. A diffusable coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382: 810–813.

    Article  CAS  PubMed  Google Scholar 

  • Silver R, Romero MT, Besmer HR, Leak RK, Nunez JM, et al 1996b. Calbindin-D28K cells in the hamster SCN express light-induced c-fos. Neuroreport 7: 1224–1228.

    Article  CAS  PubMed  Google Scholar 

  • Smith BN, Sollars PJ, Dudek FE, Pickard GE. 2001. Serotonergic modulation of retinal input to the mouse suprachiasmatic nucleus mediated by 5-HT1B and 5-HT7 receptors. J Biol Rhythms 16: 25–38.

    Article  CAS  PubMed  Google Scholar 

  • Smith MS. 1980. Role of prolactin in mammalian reproduction, Reproductive Physiology III, Greep RO, editor. Baltimore: University Park Press; pp. 249–276.

    Google Scholar 

  • Smith MJ, Jennes L, Wise PM. 2000. Localization of the VIP2 receptor protein on GnRH neurons in the female rat. Endocrinology 141: 4317–4320.

    Article  CAS  PubMed  Google Scholar 

  • Stephan FK, Zucker I. 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69: 1583–1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokkan K-A, Yamazaki S, Tei H, Sakaki Y, Menaker M. 2001. Entrainment of the circadian clock in the liver by feeding. Science 291: 490–493.

    Article  CAS  PubMed  Google Scholar 

  • Storch KF, Lipna O, Leykin I, Viswanathan N, Davis FC, Wang WH, Weitz CJ. 2002. Extensive and divergent gene expression in liver and heart. Nature 417:78–83.

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM. 1975. The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J Comp Neurol 160 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, et al 2003. Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Brain Res Mol Brain Res 110: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi JS. 2004. Finding new clock components: Past and future. J Biol Rhythms 19: 339–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi JS, Turek FW, Moore RY, editors. 2001. Circadian Clocks, Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Takahashi JS, De Coursey PJ, Bauman L, Menaker M. 1984. Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308: 186–188.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Hayashi S, Tamada Y, Ikeda M, Hisa Y, et al 1997. Direct retinal projections to GRP neurons in the suprachiasmatic nucleus of the rat. Neuroreport 8: 2187–2191.

    Article  CAS  PubMed  Google Scholar 

  • Thompson CL, Blaner WS, Van Gelder RN, Lai K, Quadro L, et al 2001. Preservation of light signaling to the suprachiasmatic nucleus in vitamin A-deficient mice. Proc Natl Acad Sci USA 98: 11708–11713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, et al 1998. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282: 1490–1494.

    Article  CAS  PubMed  Google Scholar 

  • Tischkau SA, Mitchell JW, Tyan S-H, Buchanan GF, Gillette MU. 2003. Ca+2/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem 278: 718–723.

    Article  CAS  PubMed  Google Scholar 

  • Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, et al 2001. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291: 1040–1043.

    Article  CAS  PubMed  Google Scholar 

  • Tracnickova Z, Cermakian N, Reppert SM, Sassone-Corsi P. 2002. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci 99: 7728–7733.

    Article  CAS  Google Scholar 

  • Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, et al 2002. A transcription factor response element for gene expression during circadian night. Nature 418: 534–539.

    Article  CAS  PubMed  Google Scholar 

  • Ueda HR, Hayashi S, Chen W, Sano M, Machida M, et al 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37: 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Van der Beek EM, Horvath TL, Wiegant VM, Van den Hurk R, Buijs RM. 1997. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 384: 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Van der Beek EM, van Oudheusden HJC, Buijs RM, van der Hurk HA, van der Honk R, et al 1994. Preferential induction of c-fos immunoreactivity in vasoactive intestinal polypeptide-innervated gonadotropin-releasing hormone neurons during a steroid-induced luteinizing hormone surge in the female rat. Endocrinology 134: 2637–2644.

    Article  Google Scholar 

  • van der Horst GTJ, Muijtjens M, Kobayashi K, Takano R, Kanno S, et al 1999. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398: 627–630.

    Article  CAS  PubMed  Google Scholar 

  • Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. 2000. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol 20: 4888–4899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitaterna MH, King DP, Chang A, Kornhauser JM, Lowrey PL, et al 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264: 719–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, et al 1999. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96: 12114–12119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Marilaun AK. 1895. The Natural History of Plants, Vol. 2, New York: Henry Holt.

    Google Scholar 

  • Wang SW, Kim BS, Ding K, Wang H, Sun D, et al 2001. Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15: 24–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G. 1987. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258: 204–229.

    Article  CAS  PubMed  Google Scholar 

  • Weber ET, Gannon RL, Rea MA. 1998. Local administration of serotonin agonists blocks light-induced phase advances of the circadian activity rhythm in the hamster. J Biol Rhythms 13: 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Wee R, Castrucci AM, Provencio I, Gan L, Van Gelder RN. 2002. Loss of photic entrainment and altered free-running circadian rhythms in math5-/- mice. J Neurosci 22: 10427–10433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh DK, Logothetis DE, Meister M, Reppert SM. 1995. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14: 697–706.

    Article  CAS  PubMed  Google Scholar 

  • Wever RA. 1979. The Circadian System of Man: Results of Experiments Under Temporal Isolation, New York: Springer-Verlag.

    Book  Google Scholar 

  • Wiegand SJ, Terasawa E, Bridson WE, Goy RW. 1980. Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinology 31: 147–157.

    CAS  PubMed  Google Scholar 

  • Wray S, Hoffman GE. 1986. A developmental study of the quantitative distribution of LHRH neurons within the central nervous system of postnatal male and female rats. J Comp Neurol 252: 522–531.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, et al 2005. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640–644.

    Article  CAS  PubMed  Google Scholar 

  • Yagita K, Tamanini F, van der Horst GTJ, Okamura H. 2001. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292: 278–281.

    Article  CAS  PubMed  Google Scholar 

  • Yagita K, Tamanini F, Yasuda M, Hoeijmakers JH, van der Horst GT, et al 2002. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J 21: 1301–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, et al 2003. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302: 1408–1412.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Mitsui S, Miyake S, Yan L, Onishi H, et al 2000a. The 5′ upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr Biol 10: 873–876.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Mitsui S, Yan L, Yagita K, Miyake S, et al 2000b. Role of DBP in the circadian oscillatory mechanism. Mol Cell Biol 20: 4773–4781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki S, Kerbeshian MC, Hocker CG, Block GD, Menaker M. 1998. Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J Neurosci 18: 10709–10723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, et al 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Takekida S, Shigeyoshi Y, Okamura H. 1999. Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 94: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Yannielli P, Harrington ME. 2004. Let there be “more” light: enhancement of light actions on the circadian system through non-photic pathways. Prog Neurobiol 74: 59–76.

    Article  CAS  PubMed  Google Scholar 

  • Yannielli PC, Brewer JM, Harrington ME. 2004. Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studies. Eur J Neurosci 19: 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Yannielli PC, Harrington ME. 2000. Neuropeptide Y applied in vitro can block the phase shifts induced by light in vivo. Neuroreport 11: 1587–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yannielli PC, Harrington ME. 2001a. Neuropeptide Y in the mammalian circadian system: effects on light-induced circadian responses. Peptides 22: 547–556.

    Article  CAS  PubMed  Google Scholar 

  • Yannielli PC, Harrington ME. 2001b. The neuropeptide Y Y5 receptor mediates the blockade of “photic-like” NMDA-induced phase shifts in the golden hamster. J Neurosci 21: 5367–5373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • YooS-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, et al 2004. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101: 5339–5346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SH, Ko CH, Lowrey PL, Buhr ED, Song EJ, et al 2005. A noncanonical e-box enhancer drivers mouse Period2 circadian oscillations in vivo. Proc Natl Acad Sci USA 102: 2608–2613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young RW. 1985. Cell differentiation in the retina of the mouse. Anat Rec 212: 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, et al 2001. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105: 683–694.

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, et al 1999. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400: 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM. 1998. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clocks and oscillating transcripts outside of brain. Neuron 20: 1103–1110.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Miller, B.H., McDearmon, E.L., Takahashi, J.S. (2007). The Mammalian Circadian System: from Genes to Behavior. In: Lajtha, A., Blaustein, J.D. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30405-2_22

Download citation

Publish with us

Policies and ethics