Skip to main content

Sex Differences in Neurotransmitters and Behavior: Development

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

The ability of gonadal steroids to impact on the developing brain and organize permanent sex differences during a perinatal sensitive period has been established for over 50 years. What has been lacking is an understanding of the mechanistic basis of this process, termed sexual differentiation of the brain. Recent advances have identified target-derived growth factors to direct neuronal circuits and an unexpected role for prostaglandins in synaptic patterning. The advent of transgenic mice with null mutations for estrogen receptor isoforms, aromatase and the androgen receptor have confirmed and extended our understanding of steroid action in the developing brain. Differential cell death regulated by steroids in males versus females is a major determinant of volumetric sex differences in particular regions. Sex differences in reproductively relevant brain areas, predominantly in the diencephalon, are far greater in magnitude and more readily generalize across species than those related to cognition or emotionality. Nonetheless, the potential heuristic value of studying sex differences, and its potential importance to the etiology of gender-biased neurological disorders and diseases of mental health, have not been fully realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AVPv:

anteroventral periventricular nucleus

BNST:

bed nucleus of the stria terminalis

CAH:

congental adrenal hyperplasia

COX-1,2:

cyxlooxegenase 1,2

FSH:

follicle stimulating hormone

GABA:

gamma-amino butyric acid

GAD 65,67:

glutamic acid decarboxlase 65,67

GAP-43:

growth associated protein 43

INAH:

interstitial nucleus of the anterior hypothalamus

LH:

lutenizing hormone

LHRH:

lutenizing hormone releasing hormone

LTD:

long term depression

LTP:

long term potentiation

MRI:

magnetic resonance imaging

PGE2:

prostaglandin E2

PN:

postnatal

POA:

preoptic area

PVN:

paraventricular nucleus

SDN:

sexually dimorphic nucleus

SNB:

spinal nucleus of the bulbocavernosus

References

  • Allen LS, Hines M, Shryne JE, Gorski RA. 1989. Two sexually dimorphic cell groups in the human brain. J Neurosci 9: 497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amateau SK, McCarthy MM. 2002a. A novel mechanism of dendritic spine plasticity involving estradiol induction of prostglandin-E2. J Neurosci 22: 8586–8596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amateau SK, McCarthy MM. 2002b. Sexual differentiation of astrocyte morphology in the developing rat preoptic area. J Neuroendo 14: 904–910.

    Article  CAS  Google Scholar 

  • Amateau SK, McCarthy MM. 2004. Induction of PGE(2) by estradiol mediates developmental masculinization of sex behavior. Nat Neurosci 7: 643–650.

    Article  CAS  PubMed  Google Scholar 

  • Amateau SK, Alt JJ, Stamps CL, McCarthy MM. 2004. Brain estradiol content in newborn rats: Sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology 145: 2906–2917.

    Article  CAS  PubMed  Google Scholar 

  • Anderson RH, Fleming DE, Rhees RW, Kinghorn E. 1986. Relationships between sexual activity, plasma testosterone, and the volume of the sexually dimorphic nucleus of the preoptic area in prenatally stressed and non-stressed rats. Brain Res 370: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Sekine Y, Murakami S. 1996. Estrogen and apoptosis in the developing sexually dimorphic preoptic area in female rats. Neurosci Res 25: 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Arnold AP, Xu J, Grisham W, Chen X, Kim YH, Itoh Y. 2004. Minireview: Sex chromosomes and brain sexual differentiation. Endocrinology 145: 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  • Auger AP, Tetel MJ, McCarthy MM. 2002. Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc Natl Acad Sci 97: 7551–7555.

    Article  Google Scholar 

  • Bakker J, Honda SNH, Balthazart J. 2002. The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. J Neurosci 22: 9104–9112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bale TL, Picetti R, Contarino A, Koob GF, Vale WW. 2002. Mice deficient for both corticotrophin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci 22: 193–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball J. 1926. The female sex cycle as a factor in learning in the rat. Am J Physiol 78: 533–536.

    Article  Google Scholar 

  • Baum MJ, Brand T, Ooms MP, Vreeburg JT, Slob AK. 1988. Immediate postnatal rise in whole body androgen content in male rats: Correlation with increased testicular content and reduced body clearance of testosterone. Bio Reprod 38: 980–986.

    Article  CAS  Google Scholar 

  • Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, et al. 2005. Strategies and methods for research on sex differences in brain and behavior. Endocrinology 146: 1650–1673.

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum SA. 1999. Effects of early androgens on sex-typed activities and interests in adolescents with congenital adrenal hyperplasia. Horm Behav 35: 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Bleier R, Byne W, Sigglekow I. 1982. Cytoarchitectonic sexual dimorphism of the medial preoptic area and anterior hypothalamic area in guinea pig, rat, hamster and mouse. J Comp Neurol 275: 725–730.

    Google Scholar 

  • Breedlove SM. 1994. Sexual differentiation of the human nervous system. Annu Rev Psychol 45: 389–418.

    Article  CAS  PubMed  Google Scholar 

  • Cooke BM, Breedlove SM, Jordan CL. 1999. A brain sexual dimorphism controlled by adult circulating androgens. PNAS 96: 7538–7540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coolen LM, Olivier B, Peters HJ, Veening JG. 1997. Demonstration of ejaculation-induced neural activity in the male rat brain using 5-HT1A agonist 8-OH-DPAT. Physiol Behav 62: 881–891.

    Article  CAS  PubMed  Google Scholar 

  • Corbier P, Dehennin L, Castanier M, Mebaza A, Edwards DA, et al. 1990. Sex differences in serum luteinizing hormone and testosterone in the human neonate during the first few hours after birth. J Clin Endocrinol Metab 71: 1344–1348.

    Article  CAS  PubMed  Google Scholar 

  • Corbier P, Edwards DA, Roffi J. 1992. The neonatal testosterone surge: A comparative study. Arch Int Physiol Biochem Biophys 100: 127–131.

    CAS  Google Scholar 

  • Cordoba Montoya DA, Carrer HF. 1997. Estrogen facilitates induction of long term potentiation in the hippocampus of awake rats. Brain Res 778: 430–438.

    Article  CAS  PubMed  Google Scholar 

  • Crick NR, Zahn-Waxler C. 2003. The development of psychopathology in females and males: Current progress and future challenges. Dev Psychopathol 15: 719–742.

    Article  PubMed  Google Scholar 

  • Daniel JM, Dohanich GP. 2001. Acetylcholine mediates the estrogen-induced increase in NMDA receptor binding in CA1 of the hippocampus and the associated improvement in working memory. J Neurosci 21: 6949–6956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel JM, Roberts SL, Dohanich GP. 1999. Effects of ovarian hormones and environment on radial maze and water maze performance of female rats. Physiol Behav 66: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Davis EC, Shryne JE, Gorski RA. 1995. A revised critical period for the sexual differentiation of the sexually dimorphic nucleus of the preoptic area in the rat. Neuroendocrinology 62: 579–585.

    Article  CAS  PubMed  Google Scholar 

  • Davis EC, Popper P, Gorski RA. 1996. The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res 734: 10–18.

    Article  CAS  PubMed  Google Scholar 

  • De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, et al. 2001. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11: 552–557.

    Article  CAS  PubMed  Google Scholar 

  • de Kloet ER, Oitzl MS, Joels M. 1999. Stress and cognition: Are corticosteroids good or bad guys? TINS 22: 422–426.

    CAS  PubMed  Google Scholar 

  • Desmond NL, William B. 1998. Free postsynaptic densities in the hippocampus of the female rat. NeuroReport 9: 1975–1979.

    Article  CAS  PubMed  Google Scholar 

  • Fitch RH, Berrebi AS, Cowell PE, Schrott LM, Denenberg VH. 1990. Corpus Callosum: Effects of neonatal hormones on sexual dimorphism in the rat. Brain Res 515: 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Foecking EM, Szabo M, Schawartz NB, Levine JE. 2005. Neuroendocrine consequences of prenatal androgen exposure in the female rat: Absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol Reprod epub.

    Google Scholar 

  • Forger NG, Rosen GJ, Waters EM, Jacob D, Simerly RB, et al. 2004. Deletion of Bax eliminates sex differences in the mouse forebrain. PNAS 101: 13666–13671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser DD, Mudrick-Donnon LA, Mac Vicar BA. 1994. Astrocytic GABA receptors. Glia 11: 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Fugger HN, Foster, Thomas C, Gustafsson, Jan-Åke, Rissman, Emilie F. 2000. Novel effects of estradiol and estrogen receptor α and ß on cognitive function. Brain Res 883: 258–264.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Chowen JA, Naftolin F. 1996. Endocrine glia: Roles of glial cells in the brain actions of steroid and thyroid hormones and in the regulation of hormone secretion. Front Neuroendocrinol 17: 180–211.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Cardona-Gomez GP, Trejo JL, Fernandez-Galaz MC, Chowen JA. 2000. Glial cells are involved in organizational and activational effects of sex hormones in the brain. Sexual Differentiation of the Brain. Matsumoto A, editor. Boca Raton: CRC Press; pp. 83–93.

    Google Scholar 

  • Giedd JN. 2004. Structural magnetic resonance imaging of the adolescent brain. Ann NY Acad Sci 1021: 77–85.

    Article  PubMed  Google Scholar 

  • Gorski RA, Barraclough CA. 1963. Effects of low dosages of androgen on the differentiation of hypothalamic regulatory control of ovulation in the rat. Endocrinology 73: 210–216.

    Article  CAS  PubMed  Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM. 1978. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148: 333–346.

    Article  CAS  PubMed  Google Scholar 

  • Gorski RA, Harlan RE, Jacobson CD, Shryne JE, Southam AM. 1980. Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J Comp Neurol 193: 529–539.

    Article  CAS  PubMed  Google Scholar 

  • Granger DA, Schwartz EB, Booth A, Arentz M. 1999. Salivary testosterone determination in studies of child health and development. Horm Behav 35: 18–27.

    Article  CAS  PubMed  Google Scholar 

  • Grattan DR, Rocca MS, Strauss KI, Sagrillo CA, Selmanoff M, et al. 1996. GABAergic neuronal activity and mRNA levels for both forms of glutamic acid decarboxylase (GAD65 and GAD67) are reduced in the diagonal band of Broca during the afternoon of proestrous. Brain Res 733: 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Gupta RR, Sen S, Diepenhorst LL, Rudick CN, Maren S. 2001. Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain Res 888: 356–365.

    Article  CAS  PubMed  Google Scholar 

  • Heeb MM, Yahr P. 1996. c-fos immunoreactivity in the sexually dimorphic area of the hypothalamus and related brain regions of male gerbils after exposure to sex-related stimuli or performance of specific sexual behaviors. Neuroscience 72: 1049–1071.

    Article  CAS  PubMed  Google Scholar 

  • Hilton GD, Nunez JL, McCarthy MM. 2003. Sex differences in response to kainic acid and estradiol in the hippocampus of newborn rats. Neuroscience 117: 383–391.

    Article  CAS  Google Scholar 

  • Hines M. 2002. Sexual differentiation of human brain and behavior. Hormones, Brain and Behavior. Pfaff D, editor. London, UK: Academic; pp. 425–462.

    Chapter  Google Scholar 

  • Hines M. 2004. Psychosexual development in individuals who have female pseudohermaphroditism. Child Adolesc Psychiatr 13: 641–656.

    Article  Google Scholar 

  • Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, Mukai H, Morrison JH, Janssen WG, Kominami S, Harada N, Kimoto T, Kawato S. 2003. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Sci USA 101(3): 865-870.

    Article  CAS  Google Scholar 

  • Honda S, Harada N, Ito S, Takagi Y, Maeda S. 1998. Disruption of sexual behavior in male aromatase-deficient mice lacking exons 1 and 2 of the cyp 19 gene. Biochem Biophys Res Commun 252: 445–449.

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Garcia-Segura LM, Naftolin F. 1997. Lack of gonadotrophin-positive feedback in the male rat is associated with lack of estrogen-induced synaptic plasticity in the arcuate nucleus. Neuroendocrinology 65: 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Houtsmuller EJ, Brand T, De Jonge FH, Joosten RN, van den Poll N, et al. 1994. SDN-POA volume, sexual behavior, and partner preference of male rats affected by perinatal treatment with ATD. Physiol Behav 56: 535–541.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH. 1967. Eleventh Bowditch Lecture. Effects of distortion of sensory input on the visual system of kittens. Physiologist 10: 17–45.

    CAS  PubMed  Google Scholar 

  • Hull EM, Lorrain DS, Du J, Matuszewich L, Bitran D, et al. 1998. Organizational and activational effects of dopamine on male sexual behavior. Males, females and behavior: Toward biological understanding. Ellis L, Ebertz L, editors. Greenwood; pp. 79–96.

    Google Scholar 

  • Hull EM, Lorrain DS, Du J, Matuszewich L, Lumley LA, et al. 1999. Hormone–neurotransmitter interactions in the control of sexual behavior. Behav Brain Res 105: 105–116.

    Article  CAS  PubMed  Google Scholar 

  • Hutton LA, Gu G, Simerly RB. 1998. Development of a sexually dimorphic projection from the bed nuclei of the stria terminalis to the anteroventral periventricular nucleus in the rat. J Neurosci 18: 3003–3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibanez MA, Gu G, Simerly RB. 2001. Target-dependent sexual differentiation of a limbic–hypothalamic neural pathway. J Neurosci 21: 5652–5659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima M, Arisaka O, Minamoto F, Arai Y. 2001. Sex differences in children's free drawings: A study on girls with congenital adrenal hyperplasia. Horm Behav 40: 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Isgor C, Sengelaub DR. 1998. Prenatal gonadal steroids affect adult spatial behavior, CA1 and CA3 pyramidal cell morphology in rats. Horm Behav 34: 183–198.

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Skinkle KL, Hicks TP. 1999. Age-dependent, steroid-specific effects of oestrogen on long-term potentiation in rat hippocampal slices. J Physiol (Lond) 515: 209–220.

    Article  CAS  Google Scholar 

  • Jacobson CD, Gorski RA. 1981. Neurogenesis of the sexually dimorphic nucleus of the preoptic area in the rat. J Comp Neurol 196: 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Kameyama K. 1991. Sensitive phases for teratogen-induced developmental defects in the brain. J Toxicol Sci 16: 25–35.

    Article  CAS  PubMed  Google Scholar 

  • Kampen DL, Sherwin BB. 1994. Estrogen use and verbal memory in healthy postmenopausal women. Obstet Gynecol 83: 979–983.

    Article  CAS  PubMed  Google Scholar 

  • King JC, Rubin BS. 1994. Dynamic changes in LHRH neurovascular terminals with various endocrine conditions in adults. Horm Behav 28: 349–356.

    Article  CAS  PubMed  Google Scholar 

  • Kornack DR, Lu B, Black IB. 1991. Sexually dimorphic expression of the NGF receptor gene in the developing rat brain. Brain Res 542: 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Kudo K, Qiao CX, Kanba S, Arita J. 2004. A selective increase in phosphorylation of cyclic AMP response element-binding protein in hippocampal CA1 region of male, but not female, rats following contextual fear and passive avoidance conditioning. Brain Res 1024: 233–243.

    Article  CAS  PubMed  Google Scholar 

  • Le WW, Berghorn KA, Rassnick S, Hoffman GE. 1999. Periventricular preoptic area neurons coactivated with luteinizing hormone (LH)-releasing hormone (LHRH) neurons at the time of the LH surge are LHRH afferents. Endocrinology 140: 510–519.

    Article  CAS  PubMed  Google Scholar 

  • LeVay S. 1991. A difference in hypothalamic structure between heterosexual and homosexual men. Science 9: 497–506.

    Google Scholar 

  • Lewis MH. 2004. Environmental complexity and central nervous system development and function. Ment Retard Dev Disabil Res Rev 10: 91–95.

    Article  PubMed  Google Scholar 

  • Li C, Brake WG, Romeo RD, Dunlop JC, Gordon M, et al. 2004. Estrogen alters hippocampal dendritic spine share and enhances synaptic protein immunoreactivity and spatial memory in female mice. Proc Natl Acad Sci 101: 2185–2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luine VN, Jacome LF, Maclusky NJ. 2003. Rapid enhancement of visual and place memory by estrogens in rats. Endocrinology 144: 2836–2844.

    Article  CAS  PubMed  Google Scholar 

  • Maclusky NJ, Walters MJ, Clark AS, Toran-Allerand CD. 1994. Aromatase in the cerebral cortex, hippocampus, and mid-brain: Ontogeny and developmental implications. Mol Cell Neurosci 5: 691–698.

    Article  CAS  PubMed  Google Scholar 

  • Madeira MD, Lieberman AR. 1995. Sexual dimorphism in the mammalian limbic system. Prog Neurobiol 45: 275–333.

    Article  CAS  PubMed  Google Scholar 

  • Markus EJ, Zecevic M. 1997. Sex differences and estrous cycle changes in hippocampus-dependent fear conditioning. Psychobiology 25: 246–252.

    Article  Google Scholar 

  • Martin S, Jones M, Simpson EM, VDB. 2003. Impaired spatial reference memory in aromatase deficient (ArKO) mice. Neuroreport 14: 1979–1982.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Arai Y. 1980. Sexual dimorphism in “wiring pattern” in the hypothalamic arcuate nucleus and its modification by neonatal hormonal environment. Brain Res 19: 238–242.

    Article  Google Scholar 

  • Matsutani S, Yamamoto N. 1997. Neuronal regulation of astrocyte morphology in vitro is mediated by GABAergic signaling. Glia 20: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MM, Schlenker EH, Pfaff DW. 1993. Enduring consequences of neonatal treatment with antisense oligodeoxynucleotides to estrogen receptor mRNA on sexual differentiation of rat brain. Endocrinology 133: 433–439.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MM, Amateau SK, Mong JA. 2002. Steroid modulation of astrocytes in the neonatal brain: Implications for adult reproductive function. Bio Reprod 67: 691–698.

    Article  CAS  Google Scholar 

  • McCormick CM, Furey BF, Child M, Sawyer MJ, Donohue SM. 1998. Neonatal sex hormones have “organization” effects on the hypothalamic–pituitary–adrenal axis of male rats. Dev Brain Res 105: 295–307.

    Article  CAS  Google Scholar 

  • Mong JA, McCarthy MM. 1999. Steroid-induced developmental plasticity in hypothalamic astrocytes: Implications for synaptic patterning. J Neurobiol 40: 602–619.

    Article  CAS  PubMed  Google Scholar 

  • Mong JA, Glaser E, McCarthy MM. 1999. Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. J Neurosci 19: 1464–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mong JA, Nunez JL, McCarthy MM. 2002. GABA mediates steroid-induced astrocyte differentiation in the neonatal rat hypothalamus. J Neuroendocrinol 14: 1–16.

    Article  Google Scholar 

  • Mong JA, Kurzweil RL, Davis AM, Rocca MS, McCarthy MM. 1996. Evidence for sexual differentiation of glia in rat brain. Horm Behav 30: 553–562.

    Article  CAS  PubMed  Google Scholar 

  • Morreale de Escobar G. 2001. The role of thyroid hormone in fetal neurodevelopment. J Pediatr Endocrinol Metab 14: 1453–1462.

    PubMed  Google Scholar 

  • Murakami S, Arai Y. 1989. Neuronal death in the developing sexually dimorphic periventricular nucleus of the preoptic area in the female rat: Effect of neonatal androgen treatment. Neurosci Lett 102: 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Nopoulos P, Flaum M, Andreasen NC. 1997. Sex differences in brain morphology in Schizophrenia. Am J Psychiatry 154: 1648–1654.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F, Arnold AP. 1976. Sexual dimorphism in vocal control areas of the songbird brain. Science 194: 211–213.

    Article  CAS  PubMed  Google Scholar 

  • Nunez JL, Koss WA, Juraska JM. 2000. Hippocampal anatomy and water maze performance are affected by neonatal cryoanesthesia in rats of both sexes. Horm Behav 37: 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Nunez JL, Alt J, McCarthy MM. 2003. A new model for prenatal brain damage: I. GABAA receptor activation induces cell death in developing rat hippocampus. Exp Neurol 181: 258–269.

    Article  CAS  PubMed  Google Scholar 

  • Olmos G, Naftolin F, Peres J, Tranque PA, Garcia-Segura LM. 1989. Synaptic remodeling in the rat arcuate nucleus during the estrous cycle. Neuroscience 32: 663–667.

    Article  CAS  PubMed  Google Scholar 

  • Ottem EN, Godwon JG, Krishnan S, Petersen SL. 2004. Dual-phenotype GABA/glutamate neurons in adult preoptic area: Sexual dimorphism and function. J Neurosci 24: 8097–8105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parducz A, Perez J, Garcia-Segura LM. 1993. Estradiol induces plasticity of GABAergic synapses in the hypothalamus. Neuroscience 53: 395–401.

    Article  CAS  PubMed  Google Scholar 

  • Perrot-Sinal TS. 1996. Sex differences in performance in the Morris water maze and the effects of initial nonstationary hidden platform training. Behav Neurosci 110: 1309–1320.

    Article  CAS  PubMed  Google Scholar 

  • Pfaff DW. 1966. Morphological changes in the brains of adult male rats after neonatal castration. J Endocrinol 36: 415–416.

    Article  CAS  PubMed  Google Scholar 

  • Phoenix CH, Goy RW, Gerall AA, Young WC. 1959. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65: 369–382.

    Article  CAS  PubMed  Google Scholar 

  • Plant TM. 2001. Neurobiological bases underlying the control of onset of puberty in the rhesus monkey: A representative higher primate. Front Neuroendocrinol 22: 107–139.

    Article  CAS  PubMed  Google Scholar 

  • Polston EK, Gu G, Simerly RB. 2004. Neurons in the principal nucleus of the bed nuclei of the stria terminalis provide a sexually dimorphic GABAergic input to the anteroventral periventricular nucleus of the hypothalamus. Neuroscience 123: 793–803.

    Article  CAS  PubMed  Google Scholar 

  • Prange-Kiel J, Wehrenberg U, Jarry H, Rune GM. 2003. Para/autocrine regulation of estrogen receptors in hippocampal neurons. Hippocampus 13: 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Quadros PS, Goldstein AY, De Vries GJ, Wagner CK. 2002. Regulation of sex differences in progesterone receptor expression in the medial preoptic nucleus of postnatal rats. J Neuroendocrinol 14: 761–767.

    Article  CAS  PubMed  Google Scholar 

  • Raisman G, Field PM. 1971. Sexual dimorphism in the preoptic area of the rat. Science 173: 731–733.

    Article  CAS  PubMed  Google Scholar 

  • Raisman G, Field PM. 1973. Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res 54: 1–29.

    Article  CAS  PubMed  Google Scholar 

  • Rhees RW, Shryne JE, Gorski RA. 1990. Termination of the hormone-sensitive period for differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Dev Brain Res 52: 17–23.

    Article  CAS  Google Scholar 

  • Rhoda J, Corbier P. Roffi J. 1984. Gonadal steroid concentrations in serum and hypothalamus of the rat at birth: Aromatization of testosterone to 17β-estradiol. Endocrinology 114: 1754–1760.

    Article  CAS  PubMed  Google Scholar 

  • Ricceri L, Ewusi A, Calamandrei G, Berger-Sweeney J. 1997. Sexually dimorphic effects of anti-NGF treatment in neonatal rats. Dev Brain Res 101: 273–276.

    Article  CAS  Google Scholar 

  • Roof RL. 1993. Neonatal exogenous testosterone modifies sex difference in radial arm and Morris water maze performance in prepubescent and adult rats. Behav Brain Res 53: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Roselli CE, Resko JA, Stormshak F. 2002. Hormonal influences on sexual partner preference in rams. Arch Sex Behav 31: 43–49.

    Article  PubMed  Google Scholar 

  • Rudick CN, Woolley C. 2003. Selective estrogen receptor modulators regulate phasic activation of hippocampal CA1 pyramidal cells by estrogen. Endocrinology 144: 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Sagrillo CA, Selmanoff M. 1997. Castration decreases single cell levels of mRNA encoding glutamic acid decarboxylase in the rostral hypothalamus. J Neuroendocrinol 9: 699–706.

    Article  CAS  PubMed  Google Scholar 

  • Sandstrom N, Williams CL. 2001. Memory retention is modulated by acute estradiol and progesterone replacement. Behav Neurosci 115: 384–393.

    Article  CAS  PubMed  Google Scholar 

  • Sanzgiri RP, Araque A, Haydon PG. 1999. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol 41(2): 221-229.

    Google Scholar 

  • Shaftel SS, Olschowka JA, Hurley SD, Moore AH, O'Banion Mk. 2003. COX-3: A splice variant of cyclooxygenase-1 in mouse neural tissue cells. Mol Brain Res 119: 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Shaywitz BA, Shaywitz SE, Pugh KR, Constable RT, Sckudlarski P, et al. 1995. Sex differences in the functional organization of the brain for language. Nature 373: 607–608.

    Article  CAS  PubMed  Google Scholar 

  • Sherwin BB. 1997. Estrogen effects on cognition in menopausal women. Neurology 48: S21–S26.

    Article  CAS  PubMed  Google Scholar 

  • Shors TJ, Miesegaes G. 2002. Testosterone in utero and at birth dictates how stressful experience will affect learning in adulthood. Proc Natl Acad Sci 99: 13955–13960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shors TJ, Chua C, Falduto J. 2001. Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 21: 6292–6297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shughrue PJ, Dorsa DM. 1994. The ontogeny of GAP-43 (Neuromodulin) mRNA in postnatal rat brain: Evidence for a sex dimorphism. J Comp Neurol 340: 174–184.

    Article  CAS  PubMed  Google Scholar 

  • Sickel MJ, McCarthy MM. 2000. Calbindin D28-K immunoreactivity is a marker for a subdivision of the sexual dimorphic nucleus of the preoptic area in the rat: Developmental profile and gonadal steroid modulation. J Neurobiol 12: 397–402.

    CAS  Google Scholar 

  • Simerly RB. 1998. Organization and regulation of sexually dimorphic neuroendocrine pathways. Behav Brain Res 92: 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Simerly RB. 2000. Development of sexually dimorphic forebrain pathways. Sexual differentiation of the brain. Matsumoto A, editor. Boca Raton, FL: CRC Press; pp. 175–202.

    Google Scholar 

  • Simerly RB. 2002. Wired for reproduction: Organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 25: 507–536.

    Article  CAS  PubMed  Google Scholar 

  • Sisk CL, Foster DL. 2004. The neural basis of puberty and adolescence. Nat Neurosci 7: 1040–1047.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Nishiahara M. 2002. Granulin precursor gene: A sex steroid-inducible gene involved in sexual differentiation of the rat brain. Mol Genet Metab 75: 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Bannai M, Matsumuro M, Furuhata Y, Ikemura R, et al. 2000. Suppression of copulatory behavior by intracerebroventricular infusion of antisense oligodeoxynucleotide of granulin in neonatal male rats. Physiol Behav 68: 707–713.

    Article  CAS  PubMed  Google Scholar 

  • Swaab DF, Fliers E. 1985. A sexually dimorphic nucleus in the human brain. Science 228: 1112–1115.

    Article  CAS  PubMed  Google Scholar 

  • Tin-Tin-Win-Shwe D, Mitsushima D, Shinohara K, Kimura F. 2004. Sexual dimorphism of GABA release in the medial preoptic area and luteinizing hormone release in gonadectomized estrogen-primed rats. Neuroscience 127: 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Van de Kar L, Blair ML. 1999. Forebrain pathways mediating stress-induced hormone secretion. Front Neuroendocrinol 20: 1–48.

    Article  PubMed  Google Scholar 

  • Viau V, Meaney MJ. 1996. The inhibitory effect of testosterone on hypothalamic–pituitary–adrenal responses to stress is mediated by the medial preoptic area. J Neurosci 16: 1866–1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vreeburg JT, van der Vaart PD, van der Shoot P. 1977. Prevention of central defeminization but not masculinization in male rats by inhibition neonatally of oestrogen biosynthesis. J Endocrinol 74: 375–382.

    Article  CAS  PubMed  Google Scholar 

  • Wallen K, Baum MJ. 2002. Masculinization and defeminization in altricial and precocial mammals: Comparative aspects of steroid hormone action. Hormones brain and behavior. Pfaff D, editor. London, UK: Academic; pp. 385–424.

    Chapter  Google Scholar 

  • Warren SG, Humphreys AG, Juraska JM, Greenough WT. 1995. LTP varies across the estrous cycle: Enhanced synaptic plasticity in proestrus rats. Brain Res 703: 26–30.

    Article  CAS  PubMed  Google Scholar 

  • Whalen R, Edwards D. 1967. Hormonal determinants of the development of masculine and feminine behavior in male and female rats. Anat Rec 157: 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Williams CL. 2002. Hormones and cognition in nonhuman animals. Behavioral Endocrinology, 2nd Edition. al. JBBe, editor. Cambridge MA: MIT Press; pp. 527–578.

    Google Scholar 

  • Williams CL, Meck WH. 1991. The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology 16: 155–176.

    Article  CAS  PubMed  Google Scholar 

  • Williams CL, Barnett AM, Meck WH. 1990. Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behav Neurosci 104: 84–97.

    Article  CAS  PubMed  Google Scholar 

  • Wimer RE, Wimer C. 1985. Three sex dimorphims in the granule cell layer of the hippocampus in house mice. Brain Res 328: 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Wong M-L, al. e. 2000. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: Relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci 97: 325–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood RI. 1997. Thinking about networks in the control of male hamster sexual behavior. Horm Behav 32: 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Woodson JC, Gorski RA. 2000. Structural sex differences in the mammalian brain: Reconsidering the male/female dichotomy. Sexual differentiation of the brain. Matsumoto A, editor. Boca Raton, FL: CRC Press; pp. 229–255.

    Google Scholar 

  • Woolley CS. 1999. Effects of estrogen in the CNS. Cur Op Neurobiol 9: 349–354.

    Article  CAS  Google Scholar 

  • Woolley CS, Weiland NG, McEwen BS, Schwartzkroin PA. 1997. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: Correlation with dendritic spine density. J Neurosci 17: 1848–1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamani MR, Desmond NL, Levy WB. 2000. Estradiol modulates long-term synaptic depression in female rat hippocampus. J Neurophysiol 84: 1800–1808.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

McCarthy, M.M. (2007). Sex Differences in Neurotransmitters and Behavior: Development. In: Lajtha, A., Blaustein, J.D. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30405-2_11

Download citation

Publish with us

Policies and ethics