Skip to main content

The Neuroendocrinology and Neurochemistry of Birdsong

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Birdsong is a complex learned motor skill that is used in the context of territory defense and mate choice. Songbirds have evolved a specialized neural circuit that controls the learning, production, and perception of song. Studies of the hormonal regulation of neurotransmitter systems in this specialized circuit provide an opportunity for neuroscientists to investigate the cellular neurochemistry of complex behaviors. In this review, we review the hormonal regulation of seasonal neuroplasticity in this circuit with special emphasis on the action of androgens including their estrogenic and androgenic metabolites. One theme that emerges is that androgens can induce seasonal changes in the morphology of the song circuit but that the ability of testosterone to be metabolized into androgenic or estrogenic metabolites also changes seasonally. The basic chemical neuroanatomy of the song system is reviewed and possible sites for the modulation of these transmitter systems by androgens are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

arcopallium

α2 :

α2- adrenergic receptors

Ach:

acetylcholine

Achesterase:

acetylcholine esterase

AF:

aspiny fast-firing neurons

ant.Di:

anterior diencephalon

AP5:

2-amino-5-phosphonovaleric acid

APH:

area parahippocampalis

AR:

androgen receptors

β1:

Beta1 adrenergic receptors

β2:

Beta2 adrenergic receptors

BDNF:

brain-derived neurotrophic factor

BST:

bed nucleus of the stria terminalis

BSTM:

bed nucleus of the stria terminalis, medial part

CA:

commissura anterior

Cereb:

Cerebellum

ChAT:

Choline acetyl transferase

DA:

Dopamine

DBC:

decussatio brachiorum conjunctivorum

DHEA:

dehydroepiandrosterone

5α-DHT:

5α-dihydrotestosterone

5β-DHT:

5β-dihydrotestosterone

DLM:

dorsolateral thalamic nucleus

DM:

dorsomedial portion of the nucleus intercollicularis

DSD:

decussatio supraoptica dorsalis

DSP-4:

N-[2-chloroethyl]-N-ethyl-2-bromobenzylamine

E:

Entopallium

ERα:

Estrogen Receptors of the Alpha Subtype

ERβ:

Estrogen Receptors of the Beta Subtype

FLM:

fasciculus longitudinalis medialis

GABA:

γ-amino butyric acid

GAD:

glutamic acid decarboxylase

GCt:

substantia grisea centralis (=mesencephalic central gray)

GLv:

nucleus geniculatus lateralis pars ventralis

GnRH:

gonadotropin-releasing hormone

GP:

globus pallidus

HA:

accessory part of the hyperpallium

3H:

tritium

HVC:

Used as the proper name for the nucleus

ICC:

immunocytochemistry

ISH:

in situ hybridization

ICo:

nucleus Intercollicularis

Km:

estimated affinity

LMAN:

lateral magnocellular nucleus of the anterior nidopallium

LSt:

lateral striatum

LTP:

Long Term Potentiation

M:

mesopallium

MLd:

nucleus mesencephalicus lateralis, pars dorsalis

Musc:

Muscarinic Cholinergic Receptors

mRNA:

messenger ribonucleic acid

N:

nidopallium

NC:

caudal nidopallium

NE:

Norepinephrine

Nico:

Nictotinic cholinergic receptors

Nif:

nucleus interfacialis (=interface)

NMDA:

N-methyl-D-aspartic acid

OV:

nucleus ovoidalis

PMH:

Posterior nucleus of the medial hypothalamus

nXIIts:

tracheosyringeal part of the nucleus of the XIIth cranial nerve

O.L:

Optic Lobes

POA:

Preoptic region

POM:

medial preoptic nucleus

post.Di:

posterior diencephalon

PVN:

paraventricular nucleus

RA:

robust nucleus of the arcopallium

Ram:

nucleus retroambigualis

Rt:

nucleus rotundus

rVRG:

rostral Ventral Respiratory Group

SN:

spiny neurons

T:

Testosterone

Tel:

Telencephalon

TH:

tyrosine hydroxylase

TnA:

nucleus taeniae of the amygdala

TSM:

septopallial mesencephalic tract

Tu:

nucleus tuberis

VIP:

vasoactive intestinal polypeptide

Vmax:

maximum velocity

VMN:

Ventromedial nucleus of the hypothalamus

VTA:

Ventral tegmental area

VT:

vasotocin

X:

area X of the medial striatum

ZENK:

zif-268, egr-1, NGFI-A, or Krox-24

References

  • Aamodt SM, Kozlowski MR, Nordeen EJ, Nordeen KW. 1992. Distribution and developmental change in [3H]MK-801 binding within zebra finch song nuclei. J Neurobiol 23: 997–1005.

    Article  CAS  PubMed  Google Scholar 

  • Aamodt SM, Nordeen EJ, Nordeen KW. 1995. Early isolation from conspecific song does not affect the normal developmental decline of N-methyl-D-aspartate receptor binding in an avian song nucleus. J Neurobiol 27: 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Absil P, Braquenier JB, Balthazart J, Ball GF. 2002. Effects of lesions of nucleus taeniae on appetitive and consummatory aspects of male sexual behavior in Japanese quail. Brain Behav Evol 60(1): 13–35.

    Article  PubMed  Google Scholar 

  • Absil P, Riters LV, Balthazart J. 2001. Preoptic aromatase cells project to the mesencephalic central gray in the male Japanese quail (Coturnix japonica). Horm Behav 40(3): 369–383.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Borda B, Nottebohm F. 2002. Gonads and singing play separate, additive roles in new neuron recruitment in adult canary brain. J Neurosci 19: 8684–8690.

    Article  Google Scholar 

  • Appeltants D, Absil P, Balthazart J, Ball GF. 2000. Identification of the origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing combined with tyrosine hydroxylase immunocytochemistry. J Chem Neuroanat 18: 117–133.

    Article  CAS  PubMed  Google Scholar 

  • Appeltants D, Ball GF, Balthazart J. 2001. The distribution of tyrosine hydroxylase in the canary brain: demonstration of a specific and sexually dimorphic catecholaminergic innervation of the telencephalic song control nuclei. Cell Tissue Res 304(2): 237–259.

    Article  CAS  PubMed  Google Scholar 

  • Appeltants D, Ball GF, Balthazart J. 2002a. The origin of catecholaminergic inputs to the song control nucleus RA in canaries. Neuroreport 13: 649–653.

    Article  CAS  PubMed  Google Scholar 

  • Appeltants D, Ball GF, Balthazart J. 2003. Song activation by testosterone is associated with an increased catecholaminergic innervation of the song control system in female canaries. Neuroscience 121(3): 801–814.

    Article  CAS  PubMed  Google Scholar 

  • Appeltants D, Del Negro C, Balthazart J. 2002b. Noradrenergic control of auditory information processing in female canaries. Behav Brain Res 133(2): 221–235.

    Article  CAS  PubMed  Google Scholar 

  • Arnold AP. 1975. The effects of castration and androgen replacement on song courtship, and aggression in zebra finches. J Exp Zool 191: 309–326.

    Article  CAS  PubMed  Google Scholar 

  • Arnold AP. 1981. Logical levels of steroid hormone action in the control of vertebrate behavior. Amer Zool 21: 233–242.

    Article  CAS  Google Scholar 

  • Arnold AP. 1990. The passerine bird song system as a model in neuroendocrine research. J Exp Zool 4(Suppl): 22–30.

    Article  CAS  Google Scholar 

  • Arnold AP, Nottebohm F, Pfaff DW. 1976. Hormone concentrating cells in vocal control areas of the brain of the zebra finch (Poephila guttata). J Comp Neurol 165: 487–512.

    Article  CAS  PubMed  Google Scholar 

  • Arnold AP, Saltiel A. 1979. Sexual difference in pattern of hormone accumulation in the brain of a song bird. Science 205: 702–705.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF. 1990. Chemical neuroanatomical studies of the steroid-sensitive songbird vocal control system: a comparative approach. Hormones, brain and behaviour in vertebrates. 1. Sexual differentiation, neuroanatomical aspects, neurotransmitters and neuropeptides. Balthazart J, editor. Comp Physiol Basel: Karger; 8: 148-167.

    Google Scholar 

  • Ball GF. 1994. Neurochemical specializations associated with vocal learning and production in songbirds and budgerigars. Brain Behav Evol 44: 234–246.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF. 1999. Neuroendocrine basis of seasonal changes in vocal behavior among songbirds. The design of animal communication. Hauser M, Konishi M, editors. Cambridge, MA: MIT Press; pp. 213–253.

    Google Scholar 

  • Ball GF, Absil P, Balthazart J. 1995a. Assessment of volumetric sex differences in the song control nuclei HVC and RA in zebra finches by immunocytochemistry for methionine enkephalin and vasoactive intestinal polypeptide. Brain Res 699: 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF, Absil P, Balthazart J. 1995b. Peptidergic delineations of nucleus interface reveal a sex difference in volume. Neuroreport 6: 957–960.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF, Balthazart J. 2002. Neuroendocrine mechanisms regulating reproductve cycles and reproductive behavior in birds. hormones, brain and behavior, Vol. 2. Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT, editors. San Diego, CA: Academic; pp. 649–798.

    Chapter  Google Scholar 

  • Ball GF, Casto JM, Bernard DJ. 1994. Sex differences in the volume of avian song control nuclei: comparative studies and the issue of brain nucleus delineation. Psychoneuroendocrinology 19: 485–504.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF, Faris PL, Hartman BK, Wingfield JC. 1988. Immunohistochemical localization of neuropeptides in the vocal control regions of two songbird species. J Comp Neurol 268: 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF, Hulse SH. 1998. Bird song. Am Psychol 53: 37–58.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF, Nock B, Wingfield JC, McEwen BS, Balthazart J. 1990. Muscarinic cholinergic receptors in the songbird and quail brain: a quantitative autoradiographic study. J Comp Neurol 298: 431–442.

    Article  CAS  PubMed  Google Scholar 

  • Ball GF, Riters LV, Balthazart J. 2002. Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Front Neuroendocrinol 23: 137–178.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J. 1983. Hormonal correlates of behavior. Avian biology Vol VII. Farner DS, King JR, Parkes KC, editors. New York: Academic; pp. 221–365.

    Chapter  Google Scholar 

  • Balthazart J. 1989. Steroid metabolism and the activation of social behavior. Advances in comparative and environmental physiology, Vol 3. Balthazart J, editor. Berlin: Springer; pp. 105–159.

    Google Scholar 

  • Balthazart J, Absil P, Foidart A, Houbart M, Harada N, et al. 1996. Distribution of aromatase-immunoreactive cells in the forebrain of zebra finches (Taeniopygia guttata): implications for the neural action of steroids and nuclear definition in the avian hypothalamus. J Neurobiol 31: 129–148.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Absil P, Gérard M, Appeltants D, Ball GF. 1998. Appetitive and consummatory male sexual behavior in Japanese quail are differentially regulated by subregions of the preoptic medial nucleus. J Neurosci 18: 6512–6527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balthazart J, Baillien M, Cornil CA, Ball GF. 2004. Preoptic aromatase modulates male sexual behavior: slow and fast mechanisms of action. Physiol Behav 83: 247–270.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Ball GF. 1989. Effects of the noradrenergic neurotoxin DSP-4 on luteinizing hormone levels, catecholamine concentrations, alpha2-adrenergic receptor binding, and aromatase activity in the brain of the Japanese quail. Brain Res 492: 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Ball GF. 1995. Sexual differentiation of brain and behavior in birds. Trends Endocrinol Metab 6: 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Ball GF. 1998. New insights into the regulation and function of brain estrogen synthase (aromatase). TINS 21: 243–249.

    CAS  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Sante P, Hendrick JC. 1992a. Effects of alpha-methyl-para-tyrosine on monoamine levels in the Japanese quail: sex differences and testosterone effects. Brain Res Bull 28: 275–288.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Surlemont C, Vockel A, Harada N. 1990. Distribution of aromatase in the brain of the Japanese quail, ring dove, and zebra finch: an immunocytochemical study. J Comp Neurol 301: 276–288.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Wilson EM, Ball GF. 1992b. Immunocytochemical localization of androgen receptors in the male songbird and quail brain. J Comp Neurol 317: 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Schumacher M, Pröve E. 1986. Brain testosterone metabolism during ontogeny in the Zebra finch. Brain Res 378: 240–256.

    Article  CAS  PubMed  Google Scholar 

  • Barclay SR, Harding CF. 1988. Androstenedione modulation of monoamine levels and turnover in hypothalamic and vocal control nuclei in the male zebra finch: Steroid effects on brain monoamines. Brain Res 459: 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Barclay SR, Harding CF. 1990. Differential modulation of monoamine levels and turnover rates by estrogen and/or androgen in hypothalamic and vocal control nuclei of male zebra finches. Brain Res 523: 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Barclay SR, Harding CF, Waterman SA. 1991. Correlations between catecholamine levels and sexual behavior in male zebra finches. Pharmacol Biochem Behav 41: 195–201.

    Article  Google Scholar 

  • Barclay SR, Harding CF, Waterman SA. 1996. Central DSP-4 treatment decreases norepinephrine levels and courtship behavior in male zebra finches. Pharmacol Biochem Behav 53: 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Barraclough CA, Wise PM. 1982. The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle stimulating-hormone secretion. Endocr Rev 3: 91–119.

    Article  CAS  PubMed  Google Scholar 

  • Basham ME, Nordeen EJ, Nordeen KW. 2004. Blockade of NMDA receptors in the anteriori forebrain imparis sensory acquisition in the zebra finch (Poephila guttata). Neurobiol Learn Mem 66: 295–304.

    Article  Google Scholar 

  • Bentley GE, Ball GF. 2000. Photoperiod-dependent and -independent regulation of melatonin receptors in the forebrain of songbirds. J Neuroendocrinol 12: 745–752.

    Article  CAS  PubMed  Google Scholar 

  • Bentley GE, Ball GF. 2001. Steroid-melatonin interactions and seasonal regulation of the song control system. Avian endocrinology. Dawson A, Chaturvedi CM, editors. New Delhi, India: Narosa Publishing House.

    Google Scholar 

  • Bentley GE, Spar BD, MacDougall-Shackleton SA, Hahn TP, Ball GF. 2000. Photoperiodic regulation of the reproductive axis in male zebra finches, Taeniopygia guttata. Gen Comp Endocrinol 117: 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Benton S, Nelson DA, Marler P, DeVoogd TJ. 1998. Anterior forebrain pathway is needed for stable song expression in adult male white-crowned sparrows (Zonotrichia leucophrys). Behav Brain Res 96: 135–150.

    Article  CAS  PubMed  Google Scholar 

  • Bernard DJ, Ball GF. 1995. Two histological markers reveal a similar photoperiodic difference in the volume of the high vocal center in male European starlings. J Comp Neurol 360: 726–734.

    Article  CAS  PubMed  Google Scholar 

  • Bernard DJ, Ball GF. 1997. Photoperiodic condition modulates the effects of testosterone on song control nuclei volumes in male European starlings. Gen Comp Endocrinol 105: 276–283.

    Article  CAS  PubMed  Google Scholar 

  • Bernard DJ, Bentley GE, Balthazart J, Turek FW, Ball GF. 1999. Androgen receptor, estrogen receptor alpha, and estrogen receptor beta show distinct patterns of expression in forebrain song control nuclei of European starlings. Endocrinology 140: 4633–4643.

    Article  CAS  PubMed  Google Scholar 

  • Bernard DJ, Casto JM, Ball GF. 1993. Sexual dimorphism in the volume of song control nuclei in European starlings: assessment by a Nissl stain and autoradiography for muscarinic cholinergic receptors. J Comp Neurol 334: 559–570.

    Article  CAS  PubMed  Google Scholar 

  • Bernard DJ, Eens M, Ball GF. 1996. Age- and behavior-related variation in volumes of song control nuclei in male European starlings. J Neurobiol 30: 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Bernard DJ, Wilson FE, Ball GF. 1997. Testis-dependent and -independent effects of photoperiod on volumes of song control nuclei in American tree sparrows (Spizella arborea). Brain Res 760: 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Beyer C. 1987. Sex steroids and afferent input: their roles in brain sexual differentiation. Ann Rev Physiol 49: 349–364.

    Article  CAS  Google Scholar 

  • Blaustein JD, Olster DH. 1989. Gonadal steroid hormone receptors and social behaviors. Advances in comparative and environmental physiology, Vol 3. Balthazart J, editor. Berlin: Springer; pp. 31–104.

    Google Scholar 

  • Blaustein JD, Tetel MJ, Meredith JM. 1995. Neurobiological regulation of hormonal response by progestin and estrogen receptors. Neurobiological effects of sex steroid hormones. Micevych PE, Hammer RPJ, editors. Cambridge: Cambridge University Press; pp. 324–349.

    Chapter  Google Scholar 

  • Böhner J, Chaiken M, Ball GF, Marler P. 1990. Song acquisition in photosensitive and photorefractory male European starlings. Horm Behav 24: 582–594.

    Article  PubMed  Google Scholar 

  • Bottjer SW. 1993. The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches. J Neurobiol 24: 51–69.

    Article  CAS  PubMed  Google Scholar 

  • Bottjer SW, Alexander G. 1995. Localization of met-enkephalin and vasoactive intestinal polypeptide in the brains of male zebra finches. Brain Behav Evol 45: 153–177.

    Article  CAS  PubMed  Google Scholar 

  • Bottjer SW, Halsema KA, Brown SA, Miesner EA. 1989. Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J Comp Neurol 279: 312–326.

    Article  CAS  PubMed  Google Scholar 

  • Bottjer SW, Johnson F. 1997. Circuits, hormones, and learning: Vocal behavior in songbirds. J Neurobiol 33: 602–618.

    Article  CAS  PubMed  Google Scholar 

  • Bottjer SW, Miesner EA, Arnold AP. 1984. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224: 901–903.

    Article  CAS  PubMed  Google Scholar 

  • Brainard MS. 2004. Contributions of the anterior forebrain pathway to vocal plasticity. Behavioral neurobiology of birdsong, Vol. 1016. Zeigler HP, Marler P, editors. New York: Annals of the New York Academy of Sciences. pp. 377-394.

    Google Scholar 

  • Brainard MS, Doupe AJ. 2000. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404.

    Google Scholar 

  • Brenowitz E, Lent K, Kroodsma DE. 1995. Brain space for learned song in birds develops independently of song learning. J Neurosci 15: 6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenowitz EA. 1991. Evolution of the vocal control system in the avian brain. Sem Neurosci 3: 399–407.

    Article  Google Scholar 

  • Brenowitz EA. 1997. Comparative approaches to the avian song system. J Neurobiol 33: 517–531.

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz EA. 2004. Plasticity of the adult avian song control system. Behavioral neurobiology of birdsong, Zeigler HP, Marler P, editors. Ann NY Acad Sci 1016: 560-585.

    Google Scholar 

  • Brenowitz EA, Baptista LF, Lent K, Wingfield JC. 1998. Seasonal plasticity of the song control system in wild Nuttall's white-crowned sparrows. J Neurobiol 34: 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz EA, Margoliash D, Nordeen KW. 1997. An introduction to birdsong and the avian song system. J Neurobiol 33: 495–500.

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz EA, Nalls B, Wingfield JC, Kroodsma DE. 1991. Seasonal changes in avian song nuclei without seasonal changes in song repertoire. J Neurosci 11: 1367–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GD, Paton H, Hemmings H, Heintz J, Nottebohm F. 1986. Dopamine innervation of newly generated neurons in the forebrain of adult canaries. J Histochem Cytochem 34: 109.

    Google Scholar 

  • Caro SP, Lambrechts MM, Balthazart J. 2005. Early seasonal development of brain song control nuclei in male blue tits. Neurosci Lett 386: 139–144.

    Google Scholar 

  • Carrillo GD, Doupe AJ. 2004. Is the songbird area X striatal, pallidal or both? An anatomical study. J Comp Neurol 473: 415–437.

    Article  PubMed  Google Scholar 

  • Castelino CB, Ball GF. 2005. A role for norepinephrine in the regulation of context-dependent ZENK expression in male zebra finches, Taeniopygia guttat. Eur J Neurosci 21: 1962–1972.

    Article  PubMed  Google Scholar 

  • Casto JM, Ball GF. 1994. Characterization and localization of D1 dopamine receptors in the sexually dimorphic vocal control nucleus, area X, and the basal ganglia of European starlings. J Neurobiol 25: 767–780.

    Article  CAS  PubMed  Google Scholar 

  • Catchpole CK, Slater PJB. 1995. Bird song: biological themes and variations. 1st edn. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Chaiken M, Bohner J, Marler P. 1994. Repertoire turnover and the timing of song acquisition in European starlings. Behaviour 128: 25–39.

    Article  Google Scholar 

  • Cox PR. 1944. A statistical investigation into bird-song. Br Birds 38.

    Google Scholar 

  • Dahlström A, Fuxe K. 1964. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurones. Acta Physiol Scand 62(Suppl. 232): 1–55.

    Google Scholar 

  • Dave AS, Yu AC, Margoliash D. 1998. Behavioral state modulation of auditory activity in a vocal motor system. Science 282: 2250–2254.

    Article  CAS  PubMed  Google Scholar 

  • De Ridder E, Pinxten R, Eens M. 2000. Experimental evidence of a testosterone-induced shift from paternal to mating behaviour in a facultatively polygynous songbird. Behav Ecol Sociobiol 49: 24–30.

    Article  Google Scholar 

  • Deutch AY, Roth RH. 2003. Neurotransmitters. Fundamental neuroscience. Squire LR, Bloom FE, Mcconnell SK, Roberts JL, Spitzer NC, et al. editors. San Diego, CA: Academic; pp. 163–196.

    Google Scholar 

  • Ding L, Perkel DJ. 2004. Long-term potentiation in an avian basal ganglia nucleus essential for vocal learning. J Neurosci 24: 488–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Perkel DJ, Farries MA. 2003. Presynaptic depression of glutamatergic synaptic transmission by D1-like dopamine receptor activation in the avian basal ganglia. J Neurosci 23(14): 6086–6095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doupe AJ, Kuhl PK. 1999. Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22: 567–631.

    Article  CAS  PubMed  Google Scholar 

  • Doupe AJ, Perkel DJ, Reiner A, Stern EA. 2005. Birdbrains could teach basal ganglia research a new song. Trends Neurosci 28(7): 353–363.

    Article  CAS  PubMed  Google Scholar 

  • Eens M. 1997. Understanding the complex song of the European starling: an integrated ethological approach. Adv Study Anim Behav 26: 355–434.

    Article  Google Scholar 

  • Evrard HC, Harada N, Balthazart J. 2004. Immunocytochemical localization of aromatase in sensory and integrating nuclei of the hindbrain in Japanese quail (Coturnix japonica). J Comp Neurol 473(2): 194–212.

    Article  CAS  PubMed  Google Scholar 

  • Farries MA, Perkel DJ. 2002. A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J Neurosci 22: 3776–3787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feare CJ. 1984. The starling. Oxford: Oxford University Press.

    Google Scholar 

  • Foidart A, Harada N, Balthazart J. 1994. Effects of steroidal and non steroidal aromatase inhibitors on sexual behavior and aromatase-immunoreactive cells and fibers in the quail brain. Brain Res 657: 105–123.

    Article  CAS  PubMed  Google Scholar 

  • Foidart A, Lakaye B, Grisar T, Ball GF, Balthazart J. 1999. Estrogen receptor-beta in quail: cloning, tissue expression and neuroanatomical distribution. J Neurobiol 40: 327–342.

    Article  CAS  PubMed  Google Scholar 

  • Foidart A, Silverin B, Baillien M, Harada N, Balthazart J. 1998. Neuroanatomical distribution and variations across the reproductive cycle of aromatase activity and aromatase-immunoreactive cells in the pied flycatcher (Ficedula hypoleuca). Horm Behav 33: 180–196.

    Article  CAS  PubMed  Google Scholar 

  • Fritschy J-M, Grzanna R. 1989. Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neurosci 30: 181–197.

    Article  CAS  Google Scholar 

  • Fusani L, Van't Hof T, Hutchison JB, Gahr M. 2000. Seasonal expression of androgen receptors, estrogen receptors, and aromatase in the canary brain in relation to circulating androgens and estrogens. J Neurobiol 43: 254–268.

    Article  CAS  PubMed  Google Scholar 

  • Gahr M. 1990. Localization of androgen receptors and estrogen receptors in the same cells of the songbird brain. Proc Natl Acad Sci USA 87: 9445–9448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahr M. 2000. Neural song control system of hummingbirds: comparison to swifts, vocal learning (songbirds) and nonlearning (suboscines) passerines, and vocal learning (budgerigars) and nonlearning (dove, owl, gull, quail, chicken) nonpasserines. J Comp Neurol 426: 182–196.

    Article  CAS  PubMed  Google Scholar 

  • Gahr M, Flügge G, Güttinger HR. 1987. Immunocytochemical localization of estrogen binding neurons in the songbird brain. Brain Res 402: 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Gahr M, Güttinger H-R, Kroodsma DE. 1993. Estrogen receptors in the avian brain: survey reveals general distribution and forebrain areas unique to songbirds. J Comp Neurol 327: 112–122.

    Article  CAS  PubMed  Google Scholar 

  • Gahr M, Kosar E. 1996. Identification, distribution, and developmental changes of a melatonin binding site in the song control system of the zebra finch. J Comp Neurol 367: 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Gahr M, Metzdorf R. 1997. Distribution and dynamics in the expression of androgen and estrogen receptors in vocal control systems of songbirds. Brain Res Bull 44: 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Gahr M, Wild JM. 1997. Localization of androgen receptor mRNA-containing cells in avian respiratory-vocal nuclei: an in situ hybridization study. J Neurobiol 33: 865–876.

    Article  CAS  PubMed  Google Scholar 

  • Goldman SA, Zaremba A, Niedzwiecki D. 1992. In vitro neurogenesis by neuronal precursor cells derived from the adult songbird brain. J Neurosci 12: 2532–2541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisham W, Arnold AP. 1994. Distribution of GABA-like immunoreactivity in the song system of the zebra finch. Brain Res 651: 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Harding CF, Sheridan K, Walters MJ. 1983. Hormonal specificity and activation of sexual behavior in male zebra finches. Horm Behav 17: 111–133.

    Article  CAS  PubMed  Google Scholar 

  • Harding CF, Walters MJ, Collado D, Sheridan K. 1988. Hormonal specificity and activation of social behavior in male red-winged blackbirds. Horm Behav 22: 402–418.

    Article  CAS  PubMed  Google Scholar 

  • Harding CF, Walters MJ, Parsons B. 1984. Androgen receptor levels in hypothalamic and vocal control nuclei in the male zebra finch. Brain Res 306: 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Herbison AE. 1998. Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endo Rev 19(3): 302–330.

    Article  CAS  Google Scholar 

  • Hessler NA, Doupe AJ. 1999a. Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. J Neurosci 19: 10461–10481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hessler NA, Doupe AJ. 1999b. Social context modulates singing-related neural activity in the songbird forebrain. Nature Neurosci 2: 209–211.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin A. 1976. Chance and design in electrophysiology: an informal account of certain experiments on nerves carred out between 1942 and 1952. J Physiol (Lond.) 263: 1–21.

    Article  CAS  Google Scholar 

  • Hoelzel AR. 1986. Song characteristics and response to playback of male and female Robins Erithacus rubecula. Ibis 128: 115–127.

    Article  Google Scholar 

  • Hunt KE, Hahn TP, Wingfield JC. 1997. Testosterone implants increase song but not aggression in male Lapland longspurs. Anim Behav 54: 1177–1192.

    Article  CAS  PubMed  Google Scholar 

  • Hutchison JB. 1991. Hormonal control of behaviour: steroid action in the brain. Curr Opin Neurobiol 1: 562–571.

    Article  CAS  PubMed  Google Scholar 

  • Hutchison JB, Steimer T. 1981. Brain 5β-reductase. A correlate of behavioral sensitivity to androgen. Science 213: 244–246.

    CAS  PubMed  Google Scholar 

  • Hutchison JB, Steimer T, Hutchison RE. 1986. Formation of behaviorally active estrogen in the dove brain: induction of preoptic aromatase by intracranial testosterone. Neuroendocrinology 43: 416–427.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs EC, Arnold AP, Campagnoni AT. 1996. Zebra finch estrogen receptor cDNA: cloning and mRNA expression. J Steroid Biochem Mol Biol 59: 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis ED. 2004. Learned birdsong and the neurobiology of human language. Behavioral neurobiology of birdsong, Zeigler HP, Marler P, editors. Ann NY Acad Sci 1016: 749-777.

    Google Scholar 

  • Jarvis ED, Nottebohm F. 1997. Motor-driven gene expression. Proc Natl Acad Sci USA 94: 4097–4102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F. 1998. For whom the bird sings: context-dependent gene expression. Neuron 21: 775–788.

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER. 1995. Cellular mechanisms of learning and memory. Essentials of neural science and behavior. Kandel ER, Schwartz JH, Jessell TM, editors. East Norwalk, Conn.: Appleton & Lange; pp. 667–694.

    Google Scholar 

  • Kao MH, Doupe AJ, Brainard MS. 2005. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433: 638–643.

    Article  CAS  PubMed  Google Scholar 

  • Kelley DB, Pfaff DW. 1978. Generalizations from comparative studies on neuroanatomical and endocrine mechanisms of sexual behaviour. Biological determinants of sexual behaviour. Hutchison JB, editor. Chichester: Wiley; pp. 225–254.

    Google Scholar 

  • Kelly MJ, Ronnekleiv OK. 2002. Rapid membrane effects of estrogen in the central nervous system. Hormones, brain and behavior, Vol. 3. Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT, editors. San Diego: Academic; pp. 361–380.

    Chapter  Google Scholar 

  • Kim YS, Stumpf WE, Sar M, Martinez-Vargas MC. 1978. Estrogen and androgen target cells in the brain of fishes, reptiles, and birds: phylogeny and ontogeny. Amer Zool 18: 425–433.

    Article  CAS  Google Scholar 

  • Kimpo RR, Doupe AJ. 1997. FOS is induced by singing in distinct neuronal populations in a motor network. Neuron 18: 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Kimpo RR, Theunissen FE, Doupe AJ. 2003. Propagation of correlated activity through multiple stages of a neural circuit. J Neurosci 23: 5750–5761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirn J, O'Loughlin B, Kasparian S, Nottebohm F. 1994. Cell death and neuronal recruitment in the high vocal center of adult male canaries are temporally related to changes in song. Proc Natl Acad Sci USA 91: 7844–7848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss JZ, Voorhuis TAM, van Eekelen JAM, de Kloet ER, de Wied D. 1987. Organization of vasotocin-immunoreactive cells and fibers in the canary brain. J Comp Neurol 263: 347–364.

    Article  CAS  PubMed  Google Scholar 

  • Kittelberger JM, Mooney R. 2005. Acute injections of brain-derived neurotrophic factor in a vocal premotor nculeus reversibly disrupt adult birdsong stability and trigger syllable deletion. J Neurobiol 62: 406–424.

    Article  CAS  PubMed  Google Scholar 

  • Konishi M. 1985. Birdsong: from behavior to neuron. Ann Rev Neurosci 8: 125–170.

    Article  CAS  PubMed  Google Scholar 

  • Kroodsma D, Konishi M. 1991. A suboscine bird (Eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback. Anim Behav 42: 477–487.

    Article  Google Scholar 

  • Kubota M, Saito N. 1991. Sodium- and calcium-dependent conductances of neurones in the zebra finch hyperstriatum ventrale pars caudale in vitro. J Physiol (Lond.) 440: 131–142.

    Article  CAS  Google Scholar 

  • Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JÅ. 1996. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93: 5925–5930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiper GGJM, Shughrue PJ, Merchenthaler I, Gustafsson J-Å. 1998. The estrogen receptor β subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol 19: 253–286.

    Article  CAS  PubMed  Google Scholar 

  • Lakaye B, Foidart A, Grisar T, Balthazart J. 1998. Partial cloning and distribution of estrogen receptor beta in the avian brain. Neuroreport 9: 2743–2748.

    Article  CAS  PubMed  Google Scholar 

  • Lehrman DS. 1965. Interaction between internal and external environments in the regulation of the reproductive cycle of the ring dove. Sex and behavior. Beach FA, editor. New York: Wiley; pp. 355–380.

    Google Scholar 

  • Leonardo A, Fee MS. 2005. Ensemble coding of vocal control in birdsong. J Neuroscience 25(3): 652–661.

    Article  CAS  PubMed  Google Scholar 

  • Leonardo A, Konishi M. 1999. Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399: 466–470.

    Article  CAS  PubMed  Google Scholar 

  • Lewis JW, Ryan SM, Arnold AP, Butcher LL. 1981. Evidence for catecholamine projection to area X in the zebra finch. J Comp Neurol 196: 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Li R, Sakaguchi H. 1997. Cholinergic innervation of the song control nuclei by the ventral paleostriatum in the zebra finch: a double-labeling study with retrograde fluorescent tracers and choline acetyltransferase immunohistochemistry. Brain Res 763: 239–246.

    Article  CAS  PubMed  Google Scholar 

  • Logan CA, Wingfield JC. 1990. Autumnal territorial aggression is independent of plasma testosterone in mockingbirds. Horm Behav 24: 568–581.

    Article  CAS  PubMed  Google Scholar 

  • Lücke J, Haase E. 1980. Autoradiographische Untersuchungen am Gehirn von Bergfinken (Fringilla montifringilla L.) nach injektion von 3H-Testosteron. J Hirnforsch 21: 369–380.

    PubMed  Google Scholar 

  • Luo MM, Perkel DJ. 1999a. A GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system. J Neurosci 19: 6700–6711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo MM, Perkel DJ. 1999b. Long-range GABAergic projection in a circuit essential for vocal learning. J Comp Neurol 403: 68–84.

    Article  CAS  PubMed  Google Scholar 

  • Maney DL, Bernard DJ, Ball GF. 2001. Gonadal steroid receptor mRNA in catecholaminergic nuclei of the canary brainstem. Neurosci Lett 311: 189–192.

    Article  CAS  PubMed  Google Scholar 

  • Margoliash D, Konishi M. 1985. Auditory representation of autogenous song in the song system of white-crowned sparrows. Proc Natl Acad Sci USA 82: 5997–6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marler P. 2004. Bird calls: their potential for behavioral neurobiology. Ann NY Acad Sci 1016: 31–44.

    Article  PubMed  Google Scholar 

  • Marler P, Peters S, Ball GF, Dufty AM, Wingfield JC. 1988. The role of sex steroids in the acquisition and production of birdsong. Nature 336: 770–772.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Vargas MC, Stumpf WE, Sar M. 1975. Estrogen localization in the dove brain. Phylogenetic considerations and implications for nomenclature. Anatomical neuroendocrinology. Basel: Karger; pp. 166–175.

    Google Scholar 

  • Martinez-Vargas MC, Stumpf WE, Sar M. 1976. Anatomical distribution of estrogen target cells in the avian CNS: a comparison with the mammalian CNS. J Comp Neurol 167: 83–104.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS. 1994. Steroid hormone actions on the brain: when is the genome involved? Horm Behav 28: 396–405.

    Article  CAS  PubMed  Google Scholar 

  • Mello CV, Pinaud R, Ribeiro S. 1998. Noradrenergic system of the zebra finch brain: immunocytochemical study of dopamine-beta-hydroxylase. J Comp Neurol 400: 207–228.

    Article  CAS  PubMed  Google Scholar 

  • Mello CV, Vicario DS, Clayton DF. 1992. Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci USA 89: 6818–6822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mermelstein PG, Becker JB, Surmeier DJ. 1996. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J Neurosci 16: 595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzdorf R, Gahr M, Fusani L. 1999. Distribution of aromatase, estrogen receptor, and androgen receptor mRNA in the forebrain of songbirds and nonsongbirds. J Comp Neurol 407: 115–129.

    Article  CAS  PubMed  Google Scholar 

  • Mooney R, Konishi M. 1991. Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons. Proc Natl Acad Sci USA 88: 4075–4079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney R, Prather JF. 2005. The HVC microcircuit: The synaptic basis for interactions between song motor and vocal plasticity pathways. J Neurosci 25: 1952–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrell JI, Kelley DB, Pfaff DW. 1975. Sex steroid binding in the brain of vertebrates. Brain-endocrine interactions II. Knigge KM, Scott DE, Kobayashi H, Miura S, Ishii S, editors. Basel: Karger; pp. 230–256.

    Google Scholar 

  • Morrell JI, Pfaff DW. 1978. A neuroendocrine approach to brain function: localization of sex steroid concentrating cells in vertebrate brains. Amer Zool 18: 447–460.

    Article  CAS  Google Scholar 

  • Morton ES. 1996. A comparison of vocal behavior among tropical and temperate passerine birds. Ecology and evolution of acoustic communication in birds. Kroodsma DE, Miller EH, editors. Ithaca, NY: Cornell University Press; pp. 258–268.

    Google Scholar 

  • Mosselman S, Polman J, Dijkema R. 1996. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 392: 49–53.

    Article  CAS  PubMed  Google Scholar 

  • Naftolin F, Horvath TL, Jakab RL, Leranth C, Harada N, et al. 1996. Aromatase immunoreactivity in axon terminals of the vertebrate brain -- An immunocytochemical study on quail, rat, monkey and human tissues. Neuroendocrinology 63: 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Nastiuk KL, Clayton DF. 1994. Seasonal and tissue-specific regulation of canary androgen receptor messenger ribonucleic acid. Endocrinology 134: 640–649.

    Article  CAS  PubMed  Google Scholar 

  • Nastiuk KL, Clayton DF. 1995. The canary androgen receptor mRNA is localized in the song control nuclei of the brain and is rapidly regulated by testosterone. J Neurobiol 26: 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Nordeen EJ, Nordeen KW, Arnold AP. 1987a. Sexual differentiation of androgen accumulation within the zebra finch brain through selective cell loss and addition. J Comp Neurol 259: 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Nordeen KW, Nordeen EJ. 1992. Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behav Neural Biol 59: 58–66.

    Article  Google Scholar 

  • Nordeen KW, Nordeen EJ. 2004. Synaptic and molecuarl mechanisms regulating plasticity during early learning. Behavioral neurobiology of birdsong, Zeigler HP, Marler P, editors. Ann NY Acad Sci 1016: 416-437.

    Google Scholar 

  • Nordeen KW, Nordeen EJ, Arnold AP. 1987b. Estrogen accumulation in zebra finch song control nuclei: implications for sexual differentiation and adult activation of song behavior. J Neurobiol 18: 569–582.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F. 1975. Vocal behavior in birds. Avian biology, Vol. 5. Farner DS, King JR, editors. New York: Academic; pp. 287–332.

    Chapter  Google Scholar 

  • Nottebohm F. 1980. Brain pathways for vocal learning in birds: A review of the first 10 years. Progress in Psychobiology and Physiological Psychology, Vol 9. Sprague JM, Epstein AN, editors. New York: Academic; pp. 85–214.

    Google Scholar 

  • Nottebohm F. 1981. A brain for all seasons: cyclical anatomical changes in song-control nuclei of the canary brain. Science 214: 1368–1370.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F. 1987. Plasticity in the adult avian central nervous system: possible relation between hormones, learning, and brain repair. Handbook of physiology-the nervous system. pp. 85-108.

    Google Scholar 

  • Nottebohm F. 1989. From bird song to neurogenesis. Sci Am 260: 74–79.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F. 1993. The search for neural mechanisms that define the sensitive period for song learning in birds. Neth J Zool 43: 193–234.

    Article  Google Scholar 

  • Nottebohm F. 2004. The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Behavioral neurobiology of birdsong, Vol. 1016. Zeigler HP, Marler P, editors. pp. 628-658.

    Google Scholar 

  • Nottebohm F, Alvarez-Buylla A, Cynx J, Kirn J, Ling CY, et al. 1990. Song learning in birds: the relation between perception and production. Philos Trans R Soc Lond (Biol) 329: 115–124.

    Article  CAS  Google Scholar 

  • Nottebohm F, Kelley DB, Paton JA. 1982. Connections of vocal control nuclei in the canary telencephalon. J Comp Neurol 207: 344–357.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F, Nottebohm ME, Crane L. 1986. Developmental and seasonal changes in canary song and their relation to changes in the anatomy of song-control nuclei. Behav Neural Biol 46: 445–471.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F, Nottebohm ME, Crane LA, Wingfield JC. 1987. Seasonal changes in gonadal hormone levels of adult male canaries and their relation to song. Behav Neural Biol 47: 197–211.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM. 1976. Central control of song in the canary, Serinus canarius. J Comp Neurol 165: 457–486.

    Article  CAS  PubMed  Google Scholar 

  • Nowicki S, Ball GF. 1989. Testosterone induction of song in photosensitive and photorefractory male sparrows. Horm Behav 23: 514–525.

    Article  CAS  PubMed  Google Scholar 

  • Panzica GC, Plumari L, García-Ojeda E, Deviche P. 1999. Central vasotocin-immunoreactive system in a male passerine bird (Junco hyemalis). J Comp Neurol 409: 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Panzica GC, Viglietti-Panzica C, Balthazart J. 1996. The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior. Front Neuroendocrinol 17: 51–125.

    Article  CAS  PubMed  Google Scholar 

  • Pasqualini C, Olivier V, Guibert B, Frain O, Leviel V. 1995. Acute stimulatory effect of estradiol on striatal dopamine synthesis. J Neurochem 65: 1651–1657.

    Article  CAS  PubMed  Google Scholar 

  • Perkel DJ. 2004. Origin of the anterior forebrain pathway. Behavioral Neurobiology of Birdsong, Zeigler HP, Marler P, editors. Ann NY Acad Sci 1016: 736-748.

    Google Scholar 

  • Perlman WR, Ramachandran B, Arnold AP. 2003. Expression of androgen receptor mRNA in the late embryonic and early posthatch zebra finch brain. J Comp Neurol 455(4): 513–530.

    Article  CAS  PubMed  Google Scholar 

  • Peterson RS, Yarram L, Schlinger BA, Saldanha CJ. 2005. Aromatase is pre-synaptic and sexually dimorphic in the adult zebra finch brain. Proc Biol Sci 272: 2089–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaff DW. 1976. The neuroanatomy of sex hormone receptors in the vertebrate brain. Neuroendocrine regulation of fertility. Anand Kumar TC, editor. Basel: Karger; pp. 30–45.

    Google Scholar 

  • Pfaff DW, Schwartz-Giblin S, McCarthy MM, Kow LM. 1994. Cellular and molecular mechanisms of female reproductive behaviors. The physiology of reproduction. Knobil E, Neill JD, editors. New York: Raven Press; pp. 107–220.

    Google Scholar 

  • Pinxten R, De Ridder E, Balthazart J, Eens M. 2002. Context-dependent effects of castration and testosterone treatment on song in male European starlings. Horm Behav 42: 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran B, Schlinger BA, Arnold AP, Campagnoni AT. 1999. Zebra finch aromatase gene expression is regulated in the brain through an alternate promoter. Gene 240: 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez VD, Zheng JB, Siddique KM. 1996. Membrane receptors for estrogen, progesterone, and testosterone in the rat brain: Fantasy or reality. Cell Mol Neurobiol 16: 175–198.

    Article  CAS  PubMed  Google Scholar 

  • Rasika S, Alvarez-Buylla A, Nottebohm F. 1999. BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. Neuron 22: 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Karle E, Jerson KD, Medina L. 1994. Catecholaminergic perikarya and fibers in the avian nervous system. Phylogeny and development of catecholamine systems in the CNS of vertebrates. Smeets WJAJ, Reiner A, editors. Cambridge UK: Cambridge University Press; pp. 135–181.

    Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, et al. 2004. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473(3): 377–414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinke H, Wild JM. 1998. Identification and connections of inspiratory premotor neurons in songbirds and budgerigar. J Comp Neurol 391: 147–163.

    Article  CAS  PubMed  Google Scholar 

  • Riters LV, Alger SJ. 2004. Neuroanatomical evidence for indirect connections between the medial preoptic nucleus and the song control system: possible neural substrates for sexually motivated song. Cell Tissue Res 316(1): 35–44.

    Article  PubMed  Google Scholar 

  • Riters LV, Baillien M, Eens M, Pinxten R, Foidart A, et al. 2001. Seasonal variation in androgen-metabolizing enzymes in the diencephalon and telencephalon of the male European starling (Sturnus vulgaris). J Neuroendocrinol 13(11): 985–997.

    Article  CAS  PubMed  Google Scholar 

  • Riters LV, Ball GF. 1999. Lesions to the medial preoptic area affect singing in the male European starling (Sturnus vulgaris). Horm Behav 36: 276–286.

    Article  CAS  PubMed  Google Scholar 

  • Riters LV, Ball GF. 2002. Sex differences in the densities of alpha2-adrenergic receptors in the song control system, but not the medial preoptic nucleus in zebra finches. J Chem Neuroanat 23(4): 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Riters LV, Eens M, Pinxten R, Ball GF. 2002. Seasonal changes in the densities of α2-noradrenergic receptors are inversely related to changes in testosterone and the volumes of song control nuclei in male European starlings. J Comp Neurol 444: 63–74.

    Article  CAS  PubMed  Google Scholar 

  • Riters LV, Eens M, Pinxten R, Duffy DL, Balthazart J, et al. 2000. Seasonal changes in courtship song and the medial preoptic area in male European starlings (Sturnus vulgaris). Horm Behav 38: 250–261.

    Article  CAS  PubMed  Google Scholar 

  • Rivkees SA, Cassone VM, Weaver DR, Reppert SM. 1989. Melatonin receptors in chick brain: Characterization and localization. Endocrinology 125: 363–368.

    Article  CAS  PubMed  Google Scholar 

  • Roselli CE. 1991. Synergistic induction of aromatase activity in the rat brain by estradiol and 5alpha-dihydrotestosterone. Neuroendocrinol 53: 79–84.

    Article  CAS  Google Scholar 

  • Roselli CE, Horton LE, Resko JA. 1985. Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 117: 2471–2477.

    Article  CAS  PubMed  Google Scholar 

  • Roselli CE, Horton LE, Resko JA. 1987. Time-course and steroid specificity of aromatase induction in rat hypothalamus-preoptic area. Biol Reprod 37: 628–633.

    Article  CAS  PubMed  Google Scholar 

  • Roselli CE, Resko JA. 1989. Testosterone regulates aromatase activity in discrete brain areas of male rhesus macaques. Biol Reprod 40: 929–934.

    Article  CAS  PubMed  Google Scholar 

  • Ryan S, Arnold AP. 1981. Evidence for cholinergic participation in the control of bird song: acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain. J Comp Neurol 202: 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Ryan SM, Arnold AP, Elde RP. 1981. Enkephalin-like immunoreactivity in vocal control regions of the zebra finch brain. Brain Res 229: 236–240.

    Article  CAS  PubMed  Google Scholar 

  • Rybak F, Gahr M. 2004. Modulation by steroid hormones of a “sexy” acoustic signal in an oscine species, the common canary, Serinus canaria. An Acad Bras Cienc 76(2): 365–367.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi H, Asano M, Yamamoto K, Saito N. 1987. Release of endogenous γ-aminobutyric acid from vocalization nucleus, the robust nucleus of the archistriatum of zebra finch in vitro. Brain Res 410: 380–384.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi H, Kubota M, Saito N. 1992. In vitro release of glutamate and aspartate from zebra finch song control nuclei. Exp Brain Res 88: 560–562.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi H, Saito N. 1989. The acetylcholine and catecholamine contents in song control nuclei of zebra finch during song ontogeny. Dev Brain Res 47: 313–317.

    Article  CAS  Google Scholar 

  • Saldanha CJ, Schlinger BA. 1997. Estrogen synthesis and secretion in the brown-headed cowbird (Molothrus ater). Gen Comp Endocrinol 105: 390–401.

    Article  CAS  PubMed  Google Scholar 

  • Saldanha CJ, Tuerk MJ, Kim YH, Fernandes AO, Arnold AP, et al. 2000. Distribution and regulation of telencephalic aromatase expression in the zebra finch revealed with a specific antibody. J Comp Neurol 423: 619–630.

    Article  CAS  PubMed  Google Scholar 

  • Scharff C, Nottebohm F. 1991. A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: Implications for vocal learning. J Neurosci 11: 2896–2913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlinger BA. 1996. Evolution of steroid-metabolizing enzyme expression in the avian brain. It J Anat Embryol 101(Suppl. 1): 67–68.

    Google Scholar 

  • Schlinger BA. 1997. Sex steroids and their actions on the birdsong system. J Neurobiol 33: 619–631.

    Article  CAS  PubMed  Google Scholar 

  • Schlinger BA, Arnold AP. 1991. Brain is the major site of estrogen synthesis in a male songbird. Proc Natl Acad Sci USA 88: 4191–4194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlinger BA, Arnold AP. 1992a. Circulating estrogens in a male songbird originate in the brain. Proc Natl Acad Sci USA 89: 7650–7653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlinger BA, Arnold AP. 1992b. Plasma sex steroids and tissue aromatization in hatchling zebra finches: Implications for the sexual differentiation of singing behavior. Endocrinology 130: 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Schlinger BA, Arnold AP. 1993. Estrogen synthesis in vivo in the adult zebra finch: Additional evidence that circulating estrogens can originate in brain. Endocrinology 133: 2610–2616.

    Article  CAS  PubMed  Google Scholar 

  • Schlinger BA, Callard GV. 1989. Localization of aromatase in synaptosomal and microsomal subfractions of quail (Coturnix coturnix japonica) brain. Neuroendocrinol 49: 434–441.

    Article  CAS  Google Scholar 

  • Schlinger BA, Slotow RH, Arnold AP. 1992. Plasma estrogens and brain aromatase in winter white-crowned sparrows. Ornis Scand 23: 292–297.

    Article  Google Scholar 

  • Schmidt MF, Konishi M. 1999. Gating of auditory responses in the vocal control system of awake songbirds. Nat Neurosci 1: 513–518.

    Article  Google Scholar 

  • Schumacher M. 1990. Rapid membrane effects of steroid hormones: an emerging concept in neuroendocrinology. TINS 13: 359–362.

    CAS  PubMed  Google Scholar 

  • Schwabl H, Kriner E. 1991. Territorial aggression and song of male European robins (Erithacus rubecula) in autumn and spring: Effects of antiandrogen treatment. Horm Behav 25: 180–194.

    Article  CAS  PubMed  Google Scholar 

  • Seyfarth RM, Cheney DL. 1997. Some general features of vocal development in nonhuman primates. Social influences on vocal development. Snowden CT, Hausberger M, editors. Cambridge, UK: Cambridge; pp. 249–273.

    Chapter  Google Scholar 

  • Shaw BK, Kennedy GG. 2002. Evidence for species differences in the pattern of androgen receptor distribution in relation to species differences in an androgen-dependent behavior. J Neurobiol 52: 203–220.

    Article  CAS  PubMed  Google Scholar 

  • Shea SD, Margoliash D. 2003. Basal forebrain chlinergic modulation of auditory activity in the zebra finch song system. Neuron 40: 1213–1226.

    Article  CAS  PubMed  Google Scholar 

  • Shen P, Campagnoni CW, Kampf K, Schlinger BA, Arnold AP, et al. 1994. Isolation and characterization of a zebra finch aromatase cDNA: In situ hybridization reveals high aromatase expression in brain. Mol Brain Res 24: 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Shen P, Schlinger BA, Campagnoni AT, Arnold AP. 1995. An atlas of aromatase mRNA expression in the zebra finch brain. J Comp Neurol 360: 172–184.

    Article  CAS  PubMed  Google Scholar 

  • Sibley CG, Monroe JBL. 1990. Distribution and taxonomy of the birds of the world. New Haven, CT: Yale University Press.

    Google Scholar 

  • Silver R, O'Connell M, Saad R. 1979. The effects of androgens on the behavior of birds. Endocrine control of sex behavior. Beyer C, editor. New York: Raven Press; pp. 223–279.

    Google Scholar 

  • Silverin B. 1975. Reproductive organs and breeding behaviour of the male pied flycatcher Ficedula hypoleuca (Pallas). Ornis Scand 6: 15–26.

    Article  Google Scholar 

  • Silverin B. 1983a. Population endocrinology and gonadal activities of the male pied flycatcher (Ficedula hypoleuca) Avian endocrinology: environmental and ecological perspectives. Japan Sci Soc. Mikami S, Homma K, Wada M, editors. Tokyo/Berlin: Press/Springer-Verlag; pp. 289–305.

    Google Scholar 

  • Silverin B. 1983b. Population endocrinology of the female pied flycatcher, Ficedula hypoleuca. Hormones and Behaviour in Higher Vertebrates. Balthazart J, Pröve E, Gilles R, editors. Berlin: Springer Verlag; pp. 388–397.

    Chapter  Google Scholar 

  • Silverin B. 1993. Territorial aggressiveness and its relation to the endocrine system in the pied flycatcher. Gen Comp Endocrinol 89: 206–213.

    Article  CAS  PubMed  Google Scholar 

  • Silverin B, Baillien M, Foidart A, Balthazart J. 2000. Distribution of aromatase activity in the brain and peripheral tissues of passerine and nonpasserine avian species. Gen Comp Endocrinol 117: 34–53.

    Article  CAS  PubMed  Google Scholar 

  • Silverin B, Wingfield JC. 1982. Patterns of breeding behaviour and plasma levels of hormones in a free-living population of pied flycatchers Ficedula hypoleuca. J Zool Lond 198: 117–129.

    Article  CAS  Google Scholar 

  • Simpson HB, Vicario DS. 1990. Brain pathways for learned and unlearned vocalizations differ in zebra finches. J Neurosci 10: 1541–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slagsvold T. 1977. Bird song activity in relation to breeding cycle, spring weather, and environmental physiology. Ornis Scand 8: 197–222.

    Article  Google Scholar 

  • Smith GT, Brenowitz EA, Beecher MD, Wingfield JC. 1997a. Seasonal changes in testosterone, neural attributes of song control nuclei, and song structure in wild songbirds. J Neurosci 17: 6001–6010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GT, Brenowitz EA, Prins GS. 1996. Use of PG-21 immunocytochemistry to detect androgen receptors in the songbird brain. J Histochem Cytochem 44: 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  • Smith GT, Brenowitz EA, Wingfield JC. 1997b. Roles of photoperiod and testosterone in seasonal plasticity of the avian song control system. J Neurobiol 32: 426–442.

    Article  CAS  PubMed  Google Scholar 

  • Smith GT, Brenowitz EA, Wingfield JC. 1997c. Seasonal changes in the size of the avian song control nucleus HVC defined by multiple histological markers. J Comp Neurol 381: 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Smith GT, Brenowitz EA, Wingfield JC, Baptista LF. 1995. Seasonal changes in song nuclei and song behavior in Gambels white-crowned sparrows. J Neurobiol 28: 114–125.

    Article  CAS  PubMed  Google Scholar 

  • Smith TR. 1996. Seasonal plasticity in the song nuclei of wild rufous-side towhees. Brain Res 734: 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Soha JA, Shimizu T, Doupe AJ. 1996. Development of the catecholaminergic innervation of the song system of the male zebra finch. J Neurobiol 29: 473–489.

    Article  CAS  PubMed  Google Scholar 

  • Sohrabji F, Nordeen EJ, Nordeen KW. 1990. Selective impairment of song learning following lesions of a forebrain nucleus in juvenile zebra finches. Behav Neural Biol 53: 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Sohrabji F, Nordeen KW, Nordeen EJ. 1989. Projections of androgen-accumulating neurons in a nucleus controlling avian song. Brain Res 488: 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Soma KK, Alday NA, Hau M, Schlinger BA. 2004. Dehydroepiandrosterone metabolism by 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase in adult zebra finch brain: Sex difference and rapid effect of stress. Endocrinology 145(4): 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  • Soma KK, Bindra RK, Gee J, Wingfield JC, Schlinger BA. 1999a. Androgen-metabolizing enzymes show region-specific changes across the breeding season in the brain of a wild songbird. J Neurobiol 41: 176–188.

    Article  CAS  PubMed  Google Scholar 

  • Soma KK, Hartman VN, Wingfield JC, Brenowitz EA. 1999b. Seasonal changes in androgen receptor immunoreactivity in the song nucleus HVc of a wild bird. J Comp Neurol 409: 224–236.

    Article  CAS  PubMed  Google Scholar 

  • Soma KK, Tramontin AD, Wingfield JC. 2000. Oestrogen regulates male aggression in the non-breeding season. Proc R Soc Lond (Biol) 267: 1089–1096.

    Article  CAS  Google Scholar 

  • Soma KK, Wingfield JC. 2001. Dehydroepiandrosterone in songbird plasma: Seasonal regulation and relationship to territorial aggression. Gen Comp Endocrinol 123(2): 144–155.

    Article  CAS  PubMed  Google Scholar 

  • Soma KK, Wissman AM, Brenowitz EA, Wingfield JC. 2002. Dehydroepiandrosterone (DHEA) increases territorial song and the size of an associated brain region in a male songbird. Horm Behav 41(2): 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Steimer T, Hutchison JB. 1981. Metabolic control of the behavioral action of androgens in the dove brain: testosterone inactivation by 5β-reduction. Brain Res 209: 189–204.

    Article  CAS  PubMed  Google Scholar 

  • Stumpf WE, Sar M. 1978. Anatomical distribution of estrogen, androgen, progestin, corticoid and thyroid hormone target sites in the brain of mammals: phylogeny and ontogeny. Amer Zool 18: 435–445.

    Article  CAS  Google Scholar 

  • Theunissen FE, Amina N, Shaevitz SS, Woolley SMN, Fremouw T, et al. 2004. Song selectivity in the song system and in the auditory forebrain. Behavioral neurobiology of birdsong, Zeigler HP, Marler P, editors. Ann NY Acad Sci 1016: 222-245.

    Google Scholar 

  • Thompson CK, Brenowitz EA. 2005. Seasonal changes in neuron size and spacing but not neuronal recruitment in a basal ganglia nucleus in the avian song control system. J Comp Neurol 481: 276–283.

    Article  PubMed  Google Scholar 

  • Thompson RR, Goodson JL, Ruscio MG, Adkins-Regan E. 1998. Role of the archistriatal nucleus taeniae in the sexual behavior of male Japanese quail (Coturnix japonica): a comparison of function with the medial nucleus of the amygdala in mammals. Brain Behav Evol 51: 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Thompson TL, Moss RL. 1994. Estrogen regulation of dopamine release in the nucleus accumbens: genomic- and nongenomic-mediated effects. J Neurochem 62: 1750–1756.

    Article  CAS  PubMed  Google Scholar 

  • Tramontin AD, Brenowitz EA. 2000. Seasonal plasticity in the adult brain. TINS 23: 251–258.

    CAS  PubMed  Google Scholar 

  • Tramontin AD, Hartman VN, Brenowitz EA. 2000. Breeding conditions induce rapid and sequential growth in adult avian song control circuits: a model of seasonal plasticity in the brain. J Neurosci 20: 854–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tramontin AD, Perfito N, Wingfield JC, Brenowitz EA. 2001. Seasonal growth of song control nuclei precedes seasonal reproductive development in wild adult song sparrows. Gen Comp Endocrinol 122(1): 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Tramontin AD, Smith GT, Breuner CW, Brenowitz EA. 1998. Seasonal plasticity and sexual dimorphism in the avian song control system: Stereological measurement of neuron density and number. J Comp Neurol 396: 186–192.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, et al. 1997. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol 11: 353–365.

    CAS  PubMed  Google Scholar 

  • Tyack PL, Sayigh LS. 1997. Vocal learning in cetaceans. Social influences on vocal development. Snowden CT, Hausberger M, editors. Cambridge, UK: Cambrige University Press; pp. 208–233.

    Chapter  Google Scholar 

  • Vockel A, Pröve E, Balthazart J. 1988. Changes in the activity of testosterone-metabolizing enzymes in the brain of male and female zebra finches during the post-hatching period. Brain Res 463: 330–340.

    Article  CAS  PubMed  Google Scholar 

  • Vockel A, Pröve E, Balthazart J. 1990a. Effects of castration and testosterone treatment on the activity of testosterone-metabolizing enzymes in the brain of male and female zebra finches. J Neurobiol 21: 808–825.

    Article  CAS  PubMed  Google Scholar 

  • Vockel A, Pröve E, Balthazart J. 1990b. Sex- and age-related differences in the activity of testosterone-metabolizing enzymes in microdissected nuclei of the zebra finch brain. Brain Res 511: 291–302.

    Article  CAS  PubMed  Google Scholar 

  • Voorhuis TAM, de Kloet ER. 1992. Immunoreactive vasotocin in the zebra finch brain (Taeniopygia guttata). Dev Brain Res 69: 1–10.

    Article  CAS  Google Scholar 

  • Voorhuis TAM, de Kloet ER, de Wied D. 1990. The vasotocin system in the canary brain. Hormones, brain and behaviour in vertebrates, Vol. 1. Sexual differentiation, neuroanatomical aspects, neurotransmitters and neuropeptides. Balthazart J, editor. Basel, NY: Karger; pp. 168–179.

    Google Scholar 

  • Voorhuis TAM, Elands JPM, de Kloet ER. 1990. Vasotocin target sites in the capsular region surrounding the nucleus robustus archistriatalis of the canary brain. J Neuroendocrinol 2: 653–657.

    Article  CAS  PubMed  Google Scholar 

  • Wada K, Sakaguchi H, Jarvis ED, Hagiwara M. 2004. Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J Comp Neurol 476(1): 44–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters MJ, Collado D, Harding CF. 1991. Oestrogenic modulation of singing in male zebra finches: Differential effects on directed and undirected songs. Anim Behav 42: 445–452.

    Article  Google Scholar 

  • Watson JT, Adkins-Regan E. 1989. Neuroanatomical localization of sex steroid-concentrating cells in the Japanese quail (Coturnix japonica): Autoradiography with [3H]-testosterone, [3H]-estradiol, and [3H]-dihydrotestosterone. Neuroendocrinol 49: 51–64.

    Article  CAS  Google Scholar 

  • Watson JT, Adkins-Regan E, Whiting P, Lindstrom JM, Podleski TR. 1988. Autoradiographic localization of nicotinic acetylcholine receptors in the brain of teh zebra finch (Poephila guttata). J Comp Neurol 274: 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Weiner RI, Findell PR, Kordon C. 1988. Role of classic and peptide neuromediators in the neuroendocrine regulation of LH and prolactin. The physiology of reproduction. Knobil E, Neill J, et al. editors. New York: Raven Press; pp. 1235–1281.

    Google Scholar 

  • Whitfield-Rucker MG, Cassone VM. 1996. Melatonin binding in the house sparrow song control system: Sexual dimorphism and the effect of photoperiod. Horm Behav 30: 528–537.

    Article  CAS  PubMed  Google Scholar 

  • Wild JM. 1994. The auditory-vocal-respiratory axis in birds. Brain Behav Evol 44: 192–209.

    Article  CAS  PubMed  Google Scholar 

  • Wild JM. 1997. Neural pathways for the control of birdsong production. J Neurobiol 33: 653–670.

    Article  CAS  PubMed  Google Scholar 

  • Wild JM. 2004. Functional neuroanatomy of the sensorimotor control of singing. Ann NY Acad Sci 1016: 438–462.

    Article  PubMed  Google Scholar 

  • Wild JM, Li DF, Eagleton C. 1997. Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata). J Comp Neurol 377: 392–413.

    Article  CAS  PubMed  Google Scholar 

  • Wild JM, Williams MN, Howie GJ, Mooney R. 2005. Calcium-binding proteins define interneurons in HVC of the zebra finch (Taeniophygia guttata). J Comp Neurol 483: 76–90.

    Article  CAS  PubMed  Google Scholar 

  • Wiley RH, Piper WH, Archawaranon M, Thompson EW. 1993. Singing in relation to social dominance and testosterone in white-throated sparrows. Behaviour 127: 175–190.

    Article  Google Scholar 

  • Wingfield JC. 1985. Environmental and endocrine control of territorial behavior in birds. The endocrine system and the environment. Follett BK, Ishii S, Chandola A, editors. Tokyo/Berlin: Japan Scientific Society Press/Springer-Verlag; pp. 265–277.

    Google Scholar 

  • Wingfield JC. 1994. Regulation of territorial behavior in the sedentary song sparrow, Melospiza melodia morphna. Horm Behav 28: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Wingfield JC, Farner DS. 1993. Endocrinology of reproduction in wild species. Avian biology, vol. 9. Farner DS, King J, Parkes KC, editors. New York: Academic; pp. 163–327.

    Google Scholar 

  • Wingfield JC, Hahn TP. 1994. Testosterone and territorial behaviour in sedentary and migratory sparrows. Anim Behav 47: 77–89.

    Article  Google Scholar 

  • Yu AC, Margoliash D. 1996. Temporal hierarchical control of singing in birds. Science 273: 1871–1875.

    Article  CAS  PubMed  Google Scholar 

  • Zaczek R, Fritschy J-M, Culp S, De Souza EB, Grzanna R. 1990. Differential effects of DSP-4 on noradrenaline axons in cerebral cortex and hypothalamus may reflect heterogeneity of noradrenaline uptake sites. Brain Res 522: 308–314.

    Article  CAS  PubMed  Google Scholar 

  • Zigmond RE, Detrick RA, Pfaff DW. 1980. An autoradiographic study of the localization of androgen concentrating cells in the chaffinch. Brain Res 182: 369–381.

    Article  CAS  PubMed  Google Scholar 

  • Zigmond RE, Nottebohm F, Pfaff DW. 1973. Androgen-concentrating cells in the midbrain of a songbird. Science 179: 1005–1007.

    Article  CAS  PubMed  Google Scholar 

  • Zuschratter W, Scheich H. 1990. Distribution of choline acteylytransferase and acetylcholinesterase in the vocal motor system of zebra finches. Brain Res 513: 193–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory and preparation of this review were supported by grants from the NIH/NINDS (R01 NS 35467) to G.F.B., and by a grant from the Belgian FRFC (2.4562.05) to J.B.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ball, G.F., Balthazart, J. (2007). The Neuroendocrinology and Neurochemistry of Birdsong. In: Lajtha, A., Blaustein, J.D. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30405-2_10

Download citation

Publish with us

Policies and ethics