Skip to main content

The Dialect of Immune System in the CNS: The Nervous Tissue as an Immune Compartment for T Cells and Dendritic Cells

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 801 Accesses

Abstract:

There is a growing body of evidence shedding light on the mechanism of immune regulation in the central nervous system (CNS). There are multiple elements that contribute to the special anti-inflammatory environment in this tissue. Unique physiological and anatomic features, soluble mediators and cell surface molecules and immune cells promote the immune privilege status of the CNS. These multiple mechanisms together shape immune responses in the inflamed CNS. A deeper understanding the mechanism of immune privilege in the CNS will provide the basic of successful therapeutic interventions for immune-mediated CNS diseases, such as multiple sclerosis (MS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-MSH:

α-melanocyte-stimulating hormone

AP:

area postrema

APCs:

antigen-presenting cells

BBB:

blood–brain barrier

CNS:

central nervous system

DC:

dendritic cell

EAE:

experimental autoimmune encephalomyelitis

ECM:

extracellular matrix

GM-CSF:

macrophage colony-stimulating factor

HUVEC:

human umbilical vein endothelial cell

ICAM-1:

intercellular adhesion molecule-1

IFN-γ:

interferon-γ

IL:

Interleukin

JAM:

junction associated molecule

MIP:

macrophage inflammatory protein

MOG:

myelin oligodendrocyte glycoprotein

MRP:

multidrug resistance-associated proteins

MRP:

multidrug resistance-associated proteins

MS:

multiple sclerosis

NVU:

neurovascular unit

NVU:

neurovascular unit

pDCs:

plasmacytoid DCs

PD-L1:

programmed death ligand 1

PECAM-1:

platelet–endothelial cell adhesion molecule-1

PLP:

proteolipid protein

SST:

Somatostatin

TEER:

transendothelial electrical resistance

TEER:

transendothelial electrical resistance

TJs:

tight junctions

TNF-α:

tumor necrosis factor-α

VCAM-1:

vascular cell adhesion molecule-1

VIP:

vasoactive intestinal peptide

ZO:

zonula occludens

References

  • Abbott NJ. 2002. Astrocyte-endothelial interactions and blood–brain barrier permeability. J Anat 200: 629–638.

    Article  CAS  PubMed  Google Scholar 

  • Achim CL, Morey MK, Wiley CA. 1991. Expression of major histocompatibility complex and HIV antigens within the brains of AIDS patients. AIDS 5: 535–41.

    Article  CAS  PubMed  Google Scholar 

  • Achim CL, Wiley CA. 1992. Expression of major histocompatibility complex antigens in the brains of patients with progressive multifocal leukoencephalopathy. J Neuropathol Exp Neurol 51: 257–263.

    Article  CAS  PubMed  Google Scholar 

  • al-Sabbagh A, Miller A, Santos LM, Weiner HL. 1994. Antigen-driven tissue-specific suppression following oral tolerance: Orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur J Immunol 24: 2104–2109.

    Article  CAS  PubMed  Google Scholar 

  • Albrecht U, Seulberger H, Schwarz H, Risau W. 1990. Correlation of blood–brain barrier function and HT7 protein distribution in chick brain circumventricular organs. Brain Res 535: 49–61.

    Article  CAS  PubMed  Google Scholar 

  • Aloisi F, Borsellino G, Samoggia P, Testa U, Chelucci C, et al. 1992. Astrocyte cultures from human embryonic brain: Characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res 32: 494–506.

    Article  CAS  PubMed  Google Scholar 

  • Aloisi F, Ria F, Penna G, Adorini L. 1998. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol 160: 4671–4680.

    CAS  PubMed  Google Scholar 

  • Ambrosini E, Remoli ME, Giacomini E, Rosicarelli B, Serafini B, et al. 2005. Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J Neuropathol Exp Neurol 64: 706–715.

    Article  CAS  PubMed  Google Scholar 

  • Bailey SL, Schreiner B, McMahon EJ, Miller SD. 2007. CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4 (+) T(H)-17 cells in relapsing EAE. Nat Immunol 8: 172–180.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin GC, Benveniste EN, Chung GY, Gasson JC, Golde DW. 1993. Identification and characterization of a high-affinity granulocyte-macrophage colony-stimulating factor receptor on primary rat oligodendrocytes. Blood 82: 3279–3282.

    CAS  PubMed  Google Scholar 

  • Ballestas ME, Benveniste EN. 1995. Interleukin 1-β- and tumor necrosis factor-α-mediated regulation of ICAM-1 gene expression in astrocytes requires protein kinase C activity. Glia 14: 267–278.

    Article  CAS  PubMed  Google Scholar 

  • Barker CF, Billingham RE. 1977. Immunologically privileged sites. Adv Immunol 25: 1–54.

    Article  CAS  PubMed  Google Scholar 

  • Barnea A, Aguila-Mansilla N, Bigio EH, Worby C, Roberts J. 1998. Evidence for regulated expression of neuropeptide Y gene by rat and human cultured astrocytes. Regul Pept 75–76: 293–300.

    Article  PubMed  Google Scholar 

  • Bauer HC, Bauer H. 2000. Neural induction of the blood–brain barrier: Still an enigma. Cell Mol Neurobiol 20: 13–28.

    Article  CAS  PubMed  Google Scholar 

  • Bazzoni G, Dejana E. 2004. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol Rev 84: 869–901.

    Article  CAS  PubMed  Google Scholar 

  • Becher B, Bechmann I, Greter M. 2006. Antigen presentation in autoimmunity and CNS inflammation: How T lymphocytes recognize the brain. J Mol Med 84: 532–543.

    Article  CAS  PubMed  Google Scholar 

  • Becher B, D'Souza SD, Troutt AB, Antel JP. 1998. Fas expression on human fetal astrocytes without susceptibility to fas-mediated cytotoxicity. Neuroscience 84: 627–634.

    Article  CAS  PubMed  Google Scholar 

  • Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ. 2001. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193: 967–974.

    Article  CAS  PubMed  Google Scholar 

  • Bechmann I, Galea I, Perry VH. 2007. What is the blood–brain barrier (not)? Trends Immunol 28: 5–11.

    Article  CAS  PubMed  Google Scholar 

  • Bechmann I, Lossau S, Steiner B, Mor G, Gimsa U, et al. 2000. Reactive astrocytes upregulate Fas (CD95) and Fas ligand (CD95L) expression but do not undergo programmed cell death during the course of anterograde degeneration. Glia 32: 25–41.

    Article  CAS  PubMed  Google Scholar 

  • Bechmann I, Mor G, Nilsen J, Eliza M, Nitsch R, et al. 1999. FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: Evidence for the existence of an immunological brain barrier. Glia 27: 62–74.

    Article  CAS  PubMed  Google Scholar 

  • Bechmann I, Steiner B, Gimsa U, Mor G, Wolf S, et al. 2002. Astrocyte-induced T cell elimination is CD95 ligand dependent. J Neuroimmunol 132: 60–65.

    Article  CAS  PubMed  Google Scholar 

  • Bellgrau D, Duke RC. 1999. Apoptosis and CD95 ligand in immune privileged sites. Int Rev Immunol 18: 547–562.

    CAS  PubMed  Google Scholar 

  • Benveniste EN. 1988. Lymphokines and monokines in the neuroendocrine system. Prog Allergy 43: 84–120.

    CAS  PubMed  Google Scholar 

  • Benveniste EN. 1992. Inflammatory cytokines within the central nervous system: Sources, function, and mechanism of action. Am J Physiol 263: C1–C16.

    CAS  PubMed  Google Scholar 

  • Benveniste EN. 1994. Cytokine circuits in brain. Implications for AIDS dementia complex. Res Publ Assoc Res Nerv Ment Dis 72: 71–88.

    CAS  PubMed  Google Scholar 

  • Benveniste EN. 1998. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9: 259–275.

    Article  CAS  PubMed  Google Scholar 

  • Benveniste EN, Huneycutt BS, Shrikant P, Ballestas ME. 1995. Second messenger systems in the regulation of cytokines and adhesion molecules in the central nervous system. Brain Behav Immun 9: 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Benveniste EN, Sparacio SM, Norris JG, Grenett HE, Fuller GM. 1990. Induction and regulation of interleukin-6 gene expression in rat astrocytes. J Neuroimmunol 30: 201–212.

    Article  CAS  PubMed  Google Scholar 

  • Berezowski V, Landry C, Dehouck MP, Cecchelli R, Fenart L. 2004. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Res 1018: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Bethea JR, Gillespie GY, Benveniste EN. 1992. Interleukin-1 β induction of TNF-α gene expression: Involvement of protein kinase C. J Cell Physiol 152: 264–273.

    Article  CAS  PubMed  Google Scholar 

  • Bethea JR, Gillespie GY, Chung IY, Benveniste EN. 1990. Tumor necrosis factor production and receptor expression by a human malignant glioma cell line, D54-MG. J Neuroimmunol 30: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Bettelli E, Das MP, Howard ED, Weiner HL, Sobel RA, et al. 1998. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J Immunol 161: 3299–3306.

    CAS  PubMed  Google Scholar 

  • Biedl A, Kraus R. 1898. Ueber eine bisher unbekannte toxische Wirkung der Gallensauren auf das Zentralnervesystem. Zentralbl inn Med 19: 1185–1190.

    Google Scholar 

  • Biernacki K, Prat A, Blain M, Antel JP. 2001. Regulation of Th1 and Th2 lymphocyte migration by human adult brain endothelial cells. J Neuropathol Exp Neurol 60: 1127–1136.

    CAS  PubMed  Google Scholar 

  • Billingham RE, Boswell T. 1953. Studies on the problem of corneal homografts. Proc R Soc Lond B Biol Sci 141: 392–406.

    Article  CAS  PubMed  Google Scholar 

  • Blum AM, Elliott DE, Metwali A, Li J, Qadir K, et al. 1998. Substance P regulates somatostatin expression in inflammation. J Immunol 161: 6316–6322.

    CAS  PubMed  Google Scholar 

  • Blum AM, Metwali A, Cook G, Mathew RC, Elliott D, et al. 1993. Substance P modulates antigen-induced, IFN-,γ production in murine Schistosomiasis mansoni. J Immunol 151: 225–233.

    CAS  PubMed  Google Scholar 

  • Blum AM, Metwali A, Kim-Miller M, Li J, Qadir K, et al. 1999. The substance P receptor is necessary for a normal granulomatous response in murine schistosomiasis mansoni. J Immunol 162: 6080–6085.

    CAS  PubMed  Google Scholar 

  • Bo L, Mork S, Kong PA, Nyland H, Pardo CA, et al. 1994. Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol 51: 135–146.

    Article  CAS  PubMed  Google Scholar 

  • Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, et al. 1999. Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol 276: R818–R823.

    CAS  PubMed  Google Scholar 

  • Boulton M, Young A, Hay J, Armstrong D, Flessner M, et al. 1996. Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: Measurement of 125I-albumin clearance. Neuropathol Appl Neurobiol 22: 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Brankin B, Hart MN, Cosby SL, Fabry Z, Allen IV. 1995. Adhesion molecule expression and lymphocyte adhesion to cerebral endothelium: Effects of measles virus and herpes simplex 1 virus. J Neuroimmunol 56: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Brodsky FM, Guagliardi LE. 1991. The cell biology of antigen processing and presentation. Annu Rev Immunol 9: 707–744.

    Article  CAS  PubMed  Google Scholar 

  • Carson MJ, Reilly CR, Sutcliffe JG, Lo D. 1999. Disproportionate recruitment of CD8 + T cells into the central nervous system by professional antigen-presenting cells. Am J Pathol 154: 481–494.

    CAS  PubMed  Google Scholar 

  • Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, et al. 2007. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 182, 124–134.

    Article  CAS  PubMed  Google Scholar 

  • Catania A, Delgado R, Airaghi L, Cutuli M, Garofalo L, et al. 1999. α-MSH in systemic inflammation. Central and peripheral actions. Ann N Y Acad Sci 885: 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zhao Z, Ventura E, Gran B, Shindler KS, et al. 2007. The PD-1/PD-L pathway is up-regulated during IL-12-induced suppression of EAE mediated by IFN-γ. J Neuroimmunol 185: 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Choi C, Benveniste EN. 2004. Fas ligand/Fas system in the brain: Regulator of immune and apoptotic responses. Brain Res Brain Res Rev 44: 65–81.

    Article  CAS  PubMed  Google Scholar 

  • Choi C, Jeong E, Benveniste EN. 2004. Caspase-1 mediates Fas-induced apoptosis and is up-regulated by interferon-γ in human astrocytoma cells. J Neurooncol 67: 167–176.

    Article  PubMed  Google Scholar 

  • Choi K, Benveniste EN, Choi C. 2003. Induction of intercellular adhesion molecule-1 by Fas ligation: Proinflammatory roles of Fas in human astroglioma cells. Neurosci Lett 352: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Chorny A, Gonzalez-Rey E, Ganea D, Delgado M. 2006. Vasoactive intestinal peptide generates CD4 + CD25 + regulatory T cells in vivo: Therapeutic applications in autoimmunity and transplantation. Ann N Y Acad Sci 1070: 190–195.

    Article  CAS  PubMed  Google Scholar 

  • Chung IY, Norris JG, Benveniste EN. 1991. Differential tumor necrosis factor α expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J Exp Med 173: 801–811.

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF, Harling-Berg CJ, Knopf PM. 1992. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2: 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Cuadros MA, Navascues J. 1998. The origin and differentiation of microglial cells during development. Prog Neurobiol 56: 173–189.

    Article  CAS  PubMed  Google Scholar 

  • Curtin JF, King GD, Barcia C, Liu C, Hubert FX, et al. 2006. Fms-like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain. J Immunol 176: 3566–3577.

    CAS  PubMed  Google Scholar 

  • De Groot CJ, Montagne L, Barten AD, Sminia P, Van Der P. Valk 1999. Expression of transforming growth factor (TGF)-β1, -β2, and -β3 isoforms and TGF-β type I and type II receptors in multiple sclerosis lesions and human adult astrocyte cultures. J Neuropathol Exp Neurol 58: 174–187.

    Article  CAS  PubMed  Google Scholar 

  • De la Fuente M, Delgado M, del Rio M, Martinez C, Hernanz A, et al. 1993. Stimulation by vasoactive intestinal peptide (VIP) of phagocytic function in rat macrophages. Protein kinase C involvement. Regul Pept 48: 345–353.

    Article  CAS  PubMed  Google Scholar 

  • De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, et al. 1995. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol 54: 175–187.

    Article  CAS  PubMed  Google Scholar 

  • de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, et al. 1996. The influence of cytokines on the integrity of the blood–brain barrier in vitro. J Neuroimmunol 64: 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R. 1994. Upregulation of the low density lipoprotein receptor at the blood–brain barrier: Intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 126: 465–473.

    Article  CAS  PubMed  Google Scholar 

  • Delgado M. 2002a. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit CBP-NF-kB interaction in activated microglia. Biochem Biophys Res Commun 297: 1181–1185.

    Article  CAS  Google Scholar 

  • Delgado M. 2002b. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in endotoxin-activated microglia. Biochem Biophys Res Commun 293: 771–776.

    Article  CAS  Google Scholar 

  • Delgado M. 2003. Inhibition of interferon (IFN) γ-induced Jak-STAT1 activation in microglia by vasoactive intestinal peptide: Inhibitory effect on CD40, IFN-induced protein-10, and inducible nitric-oxide synthase expression. J Biol Chem 278: 27620–27629.

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Chorny A, Ganea D, Gonzalez-Rey E. 2006a. Vasoactive intestinal polypeptide induces regulatory dendritic cells that prevent acute graft versus host disease and leukemia relapse after bone marrow transplantation. Ann N Y Acad Sci 1070: 226–232.

    Article  CAS  Google Scholar 

  • Delgado M, Ganea D. 2001a. Inhibition of endotoxin-induced macrophage chemokine production by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide in vitro and in vivo. J Immunol 167: 966–975.

    CAS  Google Scholar 

  • Delgado M, Ganea D. 2001b. Inhibition of endotoxin-induced macrophage chemokine production by VIP and PACAP in vitro and in vivo. Arch Physiol Biochem 109: 377–382.

    CAS  Google Scholar 

  • Delgado M, Gonzalez-Rey E, Ganea D. 2004a. VIP/PACAP preferentially attract Th2 effectors through differential regulation of chemokine production by dendritic cells. FASEB J 18: 1453–1455.

    CAS  Google Scholar 

  • Delgado M, Gonzalez-Rey E, Ganea D. 2006b. Vasoactive intestinal peptide: The dendritic cell – > regulatory T cell axis. Ann N Y Acad Sci 1070: 233–238.

    Article  CAS  Google Scholar 

  • Delgado M, Jonakait GM, Ganea D. 2002a. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39: 148–161.

    Article  Google Scholar 

  • Delgado M, Leceta J, Ganea D. 2002b. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide promote in vivo generation of memory Th2 cells. FASEB J 16: 1844–1846.

    CAS  Google Scholar 

  • Delgado M, Leceta J, Ganea D. 2003. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 73: 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Pozo D, Ganea D. 2004b. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56: 249–290.

    Article  CAS  Google Scholar 

  • Dhein J, Walczak H, Baumler C, Debatin KM, Krammer PH. 1995a. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373: 438–441.

    Article  CAS  Google Scholar 

  • Dhein J, Walczak H, Westendorp MO, Baumler C, Stricker K, et al. 1995b. Molecular mechanisms of APO-1/Fas(CD95)-mediated apoptosis in tolerance and AIDS. Behring Inst Mitt 96: 13–20.

    CAS  Google Scholar 

  • Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C. 1993. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7: 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Dittel BN, Visintin I, Merchant RM, Janeway CA, Jr. 1999. Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J Immunol 163: 32–39.

    CAS  PubMed  Google Scholar 

  • Dohgu S, Yamauchi A, Takata F, Naito M, Tsuruo T, et al. 2004. Transforming growth factor-β1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol Neurobiol 24: 491–497.

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhu G, Tamada K, Chen L. 1999. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5: 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  • Dureus P, Louis D, Grant AV, Bilfinger TV, Stefano GB. 1993. Neuropeptide Y inhibits human and invertebrate immunocyte chemotaxis, chemokinesis, and spontaneous activation. Cell Mol Neurobiol 13: 541–546.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich P. 1885. Das Sauerstoff-Bedurfnis des Organismus: Eine Farbenanalytische Studie. Berlin: Hirchwald.

    Google Scholar 

  • Ehrlich P. 1906. Uber Beziehunger Von Chemisher Constitution, Vertheilung, und Pharmakologisher Wirlung. New York: John Wiley.

    Google Scholar 

  • el Hafny B, Bourre JM, Roux F. 1996. Synergistic stimulation of γ-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J Cell Physiol 167: 451–460.

    Article  CAS  PubMed  Google Scholar 

  • Eugster HP, Frei K, Kopf M, Lassmann H, Fontana A. 1998. IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol 28: 2178–2187.

    Article  CAS  PubMed  Google Scholar 

  • Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, et al. 1993. Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 47: 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Fabry Z, Raine CS, Hart MN. 1994. Nervous tissue as an immune compartment: The dialect of the immune response in the CNS. Immunol Today 15: 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Fabry Z, Topham DJ, Fee D, Herlein J, Carlino JA, et al. 1995. TGF-β 2 decreases migration of lymphocytes in vitro and homing of cells into the central nervous system in vivo. J Immunol 155: 325–332.

    CAS  PubMed  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. 1998. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273: 29745–29753.

    Article  CAS  PubMed  Google Scholar 

  • Feindt J, Schmidt A, Mentlein R. 1998. Receptors and effects of the inhibitory neuropeptide somatostatin in microglial cells. Brain Res Mol Brain Res 60: 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson TA. 1997. The molecular basis of anterior associated immune deviation (ACAID). Ocul Immunol Inflamm 5: 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson TA, Griffith TS. 1997a. A vision of cell death: Insights into immune privilege. Immunol Rev 156: 167–184.

    Article  CAS  Google Scholar 

  • Ferguson TA, Griffith TS. 1997b. Cell death and the immune response: A lesson from the privileged. J Clin Immunol 17: 1–10.

    Article  CAS  Google Scholar 

  • Ferguson TA, Griffith TS. 2006. A vision of cell death: Fas ligand and immune privilege 10 years later. Immunol Rev 213: 228–238.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Martin A, Gonzalez-Rey E, Chorny A, Martin J, Pozo D, et al. 2006. VIP prevents experimental multiple sclerosis by downregulating both inflammatory and autoimmune components of the disease. Ann N Y Acad Sci 1070: 276–281.

    Article  CAS  PubMed  Google Scholar 

  • Fischer HG, Bielinsky AK. 1999. Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. Int Immunol 11: 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  • Fischer HG, Bonifas U, Reichmann G. 2000. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164: 4826–4834.

    CAS  PubMed  Google Scholar 

  • Fischer HG, Reichmann G. 2001. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166: 2717–2726.

    CAS  PubMed  Google Scholar 

  • Fontana A, Fierz W, Wekerle H. 1984. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307: 273–276.

    Article  CAS  PubMed  Google Scholar 

  • Ford AL, Goodsall AL, Hickey WF, Sedgwick JD. 1995. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4 + T cells compared. J Immunol 154: 4309–4321.

    CAS  PubMed  Google Scholar 

  • Frohman EM, Frohman TC, Dustin ML, Vayuvegula B, Choi B, et al. 1989. The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-γ, tumor necrosis factor-α, lymphotoxin, and interleukin-1: Relevance to intracerebral antigen presentation. J Neuroimmunol 23: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Galimberti D, Baron P, Meda L, Prat E, Scarpini E, et al. 1999. α-MSH peptides inhibit production of nitric oxide and tumor necrosis factor-α by microglial cells activated with β-amyloid and interferon-γ. Biochem Biophys Res Commun 263: 251–256.

    Article  CAS  PubMed  Google Scholar 

  • Ganea D, Delgado M. 2002. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as modulators of both innate and adaptive immunity. Crit Rev Oral Biol Med 13: 229–237.

    Article  PubMed  Google Scholar 

  • Geijtenbeek TB, Krooshoop DJ, Bleijs DA, van Vliet SJ, van Duijnhoven GC, et al. 2000a. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 1: 353–357.

    Article  CAS  Google Scholar 

  • Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, et al. 2000b. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100: 587–597.

    Article  CAS  Google Scholar 

  • Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, et al. 2000c. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100: 575–585.

    Article  CAS  Google Scholar 

  • Giese H, Mertsch K, Blasig IE. 1995. Effect of MK-801 and U83836E on a porcine brain capillary endothelial cell barrier during hypoxia. Neurosci Lett 191: 169–172.

    Article  CAS  PubMed  Google Scholar 

  • Girardin F. 2006. Membrane transporter proteins: A challenge for CNS drug development. Dialogues Clin Neurosci 8: 311–321.

    PubMed  Google Scholar 

  • Glabinski AR, Bielecki B, Ransohoff RM. 2003. Chemokine upregulation follows cytokine expression in chronic relapsing experimental autoimmune encephalomyelitis. Scand J Immunol 58: 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Goldman E. 1913. Vital Faubung am Zentralnervensystem.Akad Wiss Phys-Math K1: Abh Preuss

    Google Scholar 

  • Gonzalez-Rey E, Delgado M. 2005. Role of vasoactive intestinal peptide in inflammation and autoimmunity. Curr Opin Investig Drugs 6: 1116–1123.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M. 2006. Vasoactive intestinal peptide induces CD4 +, CD25 + T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum 54: 864–876.

    Article  CAS  PubMed  Google Scholar 

  • Gordon LB, Knopf PM, Cserr HF. 1992. Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. J Neuroimmunol 40: 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, et al. 2002. Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J Clin Invest 109: 383–392.

    CAS  PubMed  Google Scholar 

  • Greenwald RJ, Freeman GJ, Sharpe AH. 2005. The B7 family revisited. Annu Rev Immunol 23: 515–548.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood J, Amos CL, Walters CE, Couraud PO, Lyck R, et al. 2003. Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration. J Immunol 171: 2099–2108.

    CAS  PubMed  Google Scholar 

  • Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, et al. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328–334.

    Article  CAS  PubMed  Google Scholar 

  • Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. 1995. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270: 1189–1192.

    Article  CAS  PubMed  Google Scholar 

  • Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA. 1996. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5: 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Hanly A, Petito CK. 1998. HLA-DR-positive dendritic cells of the normal human choroid plexus: A potential reservoir of HIV in the central nervous system. Hum Pathol 29: 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Harling-Berg C, Knopf PM, Merriam J, Cserr HF. 1989. Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J Neuroimmunol 25: 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Harling-Berg CJ, Knopf PM, Cserr HF. 1991. Myelin basic protein infused into cerebrospinal fluid suppresses experimental autoimmune encephalomyelitis. J Neuroimmunol 35: 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Harling-Berg CJ, Park TJ, Knopf PM. 1999. Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J Neuroimmunol 101: 111–127.

    Article  CAS  PubMed  Google Scholar 

  • Hart MN, Fabry Z, Love-Homan L, Keiner J, Sadewasser KL, et al. 1992. Brain microvascular smooth muscle and endothelial cells produce granulocyte macrophage colony-stimulating factor and support colony formation of granulocyte-macrophage-like cells. Am J Pathol 141: 421–427.

    CAS  PubMed  Google Scholar 

  • Hartmann C, Zozulya A, Wegener J, Galla HJ. 2007. The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: An in vitro study. Exp Cell Res 313: 1318–1325.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BT, Davis TP. 2005. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57: 173–185.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, et al. 2004. Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept 123: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Heppner FL, Greter M, Marino D, Falsig J, Raivich G, et al. 2005. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11: 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF. 2001. Basic principles of immunological surveillance of the normal central nervous system. Glia 36: 118–124.

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H. 1991. T-lymphocyte entry into the central nervous system. J Neurosci Res 28: 254–260.

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF, Kimura H. 1988. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239: 290–292.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch MR, Wietzerbin J, Pierres M, Goridis C. 1983. Expression of Ia antigens by cultured astrocytes treated with γ-interferon. Neurosci Lett 41: 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Hofman FM, von Hanwehr RI, Dinarello CA, Mizel SB, Hinton D, et al. 1986. Immunoregulatory molecules and IL 2 receptors identified in multiple sclerosis brain. J Immunol 136: 3239–3245.

    CAS  PubMed  Google Scholar 

  • Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T. 2004. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 89: 503–513.

    Article  CAS  PubMed  Google Scholar 

  • Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM. 2001. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193: 713–726.

    Article  CAS  PubMed  Google Scholar 

  • Hurst RD, Fritz IB. 1996. Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood–brain barrier. J Cell Physiol 167: 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz AA, Lyman WD, Guida MP, Calderon TM, Berman JW. 1992. Tumor necrosis factor-α induces adhesion molecule expression on human fetal astrocytes. J Exp Med 176: 1631–1636.

    Article  CAS  PubMed  Google Scholar 

  • Huynh HK, Dorovini-Zis K. 1993. Effects of interferon-γ on primary cultures of human brain microvessel endothelial cells. Am J Pathol 142: 1265–1278.

    CAS  PubMed  Google Scholar 

  • Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, et al. 1999. Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun 261: 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Inoko A, Itoh M, Tamura A, Matsuda M, Furuse M, et al. 2003. Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes Cells 8: 837–845.

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Sawada M, Ryo A, Tanahashi H, Wakatsuki T, et al. 1999. Serial analysis of gene expression in a microglial cell line. Glia 28: 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. 2000. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 192: 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Milo R, Swoveland P, Johnson KP, Panitch H, et al. 1995. Interferon β-1b reduces interferon γ-induced antigen-presenting capacity of human glial and B cells. J Neuroimmunol 61: 17–25.

    Article  PubMed  Google Scholar 

  • Joo F. 1996. Endothelial cells of the brain and other organ systems: Some similarities and differences. Prog Neurobiol 48: 255–273.

    Article  CAS  PubMed  Google Scholar 

  • Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, et al. 2006. Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 177: 7750–7760.

    CAS  PubMed  Google Scholar 

  • Karman J, Ling C, Sandor M, Fabry Z. 2004. Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol 173: 2353–2361.

    CAS  PubMed  Google Scholar 

  • Kawamura N, Tamura H, Obana S, Wenner M, Ishikawa T, et al. 1998. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation 5: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Keir ME, Sharpe AH. 2005. The B7/CD28 costimulatory family in autoimmunity. Immunol Rev 204: 128–143.

    Article  CAS  PubMed  Google Scholar 

  • Kida S, Pantazis A, Weller RO. 1993. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19: 480–488.

    Article  CAS  PubMed  Google Scholar 

  • Kida S, Weller RO, Zhang ET, Phillips MJ, Iannotti F. 1995. Anatomical pathways for lymphatic drainage of the brain and their pathological significance. Neuropathol Appl Neurobiol 21: 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Kirk J, Plumb J, Mirakhur M, McQuaid S. 2003. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J Pathol 201: 319–327.

    Article  PubMed  Google Scholar 

  • Kleindienst P, Wiethe C, Lutz MB, Brocker T. 2005. Simultaneous induction of CD4 T cell tolerance and CD8 T cell immunity by semimature dendritic cells. J Immunol 174: 3941–3947.

    CAS  PubMed  Google Scholar 

  • Kniesel, U, Wolburg H. 2000. Tight junctions of the blood–brain barrier. Cell Mol Neurobiol 20: 57–76.

    Article  CAS  PubMed  Google Scholar 

  • Kort JJ, Kawamura K, Fugger L, Weissert R, Forsthuber TG. 2006. Efficient presentation of myelin oligodendrocyte glycoprotein peptides but not protein by astrocytes from HLA-DR2 and HLA-DR4 transgenic mice. J Neuroimmunol 173: 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Kourilsky P, Claverie JM. 1989. MHC-Antigen Interaction: What Does the T Cell Receptor See? San Diego: Academic Press.

    Google Scholar 

  • Krantic S. 2000. Peptides as regulators of the immune system: Emphasis on somatostatin. Peptides 21: 1941–1964.

    Article  CAS  PubMed  Google Scholar 

  • Lauterbach H, Zuniga EI, Truong P, Oldstone MB, McGavern DB. 2006. Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection. J Exp Med 203: 1963–1975.

    Article  CAS  PubMed  Google Scholar 

  • Ledeboer A, Breve JJ, Poole S, Tilders FJ, Van Dam AM. 2000. Interleukin-10, interleukin-4, and transforming growth factor-β differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30: 134–142.

    Article  CAS  PubMed  Google Scholar 

  • Levite M. 1998. Neuropeptides, by direct interaction with T cells, induce cytokine secretion and break the commitment to a distinct T helper phenotype. Proc Natl Acad Sci USA 95: 12544–12549.

    Article  CAS  PubMed  Google Scholar 

  • Levite M. 2001. Nervous immunity: Neurotransmitters, extracellular K + and T-cell function. Trends Immunol 22: 2–5.

    Article  CAS  PubMed  Google Scholar 

  • Levite M, Chowers Y. 2001. Nerve-driven immunity: Neuropeptides regulate cytokine secretion of T cells and intestinal epithelial cells in a direct, powerful and contextual manner. Ann Oncol 12 (Suppl 2): S19–S25.

    Article  PubMed  Google Scholar 

  • Lewandowsky M. 1900. Zur Lehre von der Cerebrospinal-flussigkeit. Ztschr.kli.Med 40: 480–494.

    Google Scholar 

  • Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, et al. 2003. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33: 2706–2716.

    Article  CAS  PubMed  Google Scholar 

  • Magnus T, Schreiner B, Korn T, Jack C, Guo H, et al. 2005. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: Implications for immune responses and autoimmunity in the CNS. J Neurosci 25: 2537–2546.

    Article  CAS  PubMed  Google Scholar 

  • Maher F, Vannucci SJ, Simpson IA. 1994. Glucose transporter proteins in brain. FASEB J 8: 1003–1011.

    CAS  PubMed  Google Scholar 

  • Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, et al. 1996. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: Multiple dendritic cell subpopulations identified. J Exp Med 184: 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  • Mark KS, Miller DW. 1999. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-α exposure. Life Sci 64: 1941–1953.

    Article  CAS  PubMed  Google Scholar 

  • Matyszak MK, Perry VH. 1996. The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 74: 599–608.

    Article  CAS  PubMed  Google Scholar 

  • Matyszak MK, Townsend MJ, Perry VH. 1997. Ultrastructural studies of an immune-mediated inflammatory response in the CNS parenchyma directed against a non-CNS antigen. Neuroscience 78: 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Mayhan WG. 2002. Cellular mechanisms by which tumor necrosis factor-α produces disruption of the blood–brain barrier. Brain Res 927: 144–152.

    Article  CAS  PubMed  Google Scholar 

  • McColl SR. 2002. Chemokines and dendritic cells: A crucial alliance. Immunol Cell Biol 80: 489–496.

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, et al. 1993. Microglia in degenerative neurological disease. Glia 7: 84–92.

    Article  CAS  PubMed  Google Scholar 

  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. 2005. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11: 335–339.

    Article  CAS  PubMed  Google Scholar 

  • McMenamin PG. 1999. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405: 553–562.

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, et al. 2001. Granulocyte macrophage colony-stimulating factor: A new putative therapeutic target in multiple sclerosis. J Exp Med 194: 873–882.

    Article  CAS  PubMed  Google Scholar 

  • Mercure L, Tannenbaum GS, Schipper HM, Phaneuf D, Wainberg MA. 1996. Expression of the somatostatin gene in human astrocytoma cell lines. Clin Diagn Lab Immunol 3: 151–155.

    CAS  PubMed  Google Scholar 

  • Merrill JE, Benveniste EN. 1996. Cytokines in inflammatory brain lesions: Helpful and harmful. Trends Neurosci 19: 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Michalopoulou M, Nikolaou C, Tavernarakis A, Alexandri NM, Rentzos M, et al. 2004. Soluble interleukin-6 receptor (sIL-6R) in cerebrospinal fluid of patients with inflammatory and non inflammatory neurological diseases. Immunol Lett 94: 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Milner R, Campbell IL. 2006. Increased expression of the β4 and α5 integrin subunits in cerebral blood vessels of transgenic mice chronically producing the pro-inflammatory cytokines IL-6 or IFN-α in the central nervous system. Mol Cell Neurosci 33: 429–440.

    Article  CAS  PubMed  Google Scholar 

  • Minagar A, Long A, Ma T, Jackson TH, Kelley RE, et al. 2003. Interferon (IFN)-β 1a and IFN-β 1b block IFN-γ-induced disintegration of endothelial junction integrity and barrier. Endothelium 10: 299–307.

    Article  CAS  PubMed  Google Scholar 

  • Mustafa MI, Diener P, Hojeberg B, Van der Meide P, Olsson T. 1991. T cell immunity and interferon-γ secretion during experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 31: 165–177.

    Article  CAS  PubMed  Google Scholar 

  • Newman TA, Galea I, van Rooijen N, Perry VH. 2005. Blood-derived dendritic cells in an acute brain injury. J Neuroimmunol 166: 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Niederkorn JY. 2006. See no evil, hear no evil, do no evil: The lessons of immune privilege. Nat Immunol 7: 354–359.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Minato N, Nakano T, Honjo T. 1998. Immunological studies on PD-1 deficient mice: Implication of PD-1 as a negative regulator for B cell responses. Int Immunol 10: 1563–1572.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, et al. 2001. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291: 319–322.

    Article  CAS  PubMed  Google Scholar 

  • Norris JG, Benveniste EN. 1993. Interleukin-6 production by astrocytes: Induction by the neurotransmitter norepinephrine. J Neuroimmunol 45: 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, et al. 2003. Interleukin-17 promotes angiogenesis and tumor growth. Blood 101: 2620–2627.

    Article  CAS  PubMed  Google Scholar 

  • Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, et al. 2000. Tight junctions are membrane microdomains. J Cell Sci 113 (Pt 10): 1771–1781.

    CAS  PubMed  Google Scholar 

  • O'Keefe GM, Nguyen VT, Benveniste EN. 1999. Class II transactivator and class II MHC gene expression in microglia: Modulation by the cytokines TGF-β, IL-4, IL-13 and IL-10. Eur J Immunol 29: 1275–1285.

    Article  PubMed  Google Scholar 

  • Okazaki T, Iwai Y, Honjo T. 2002. New regulatory co-receptors: Inducible co-stimulator and PD-1. Curr Opin Immunol 14: 779–782.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. 2001. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98: 13866–13871.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, et al. 2003. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9: 1477–1483.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Wang J. 2005. PD-1/PD-L pathway and autoimmunity. Autoimmunity 38: 353–357.

    Article  CAS  PubMed  Google Scholar 

  • Okuda Y, Sakoda S, Bernard CC, Fujimura H, Saeki Y, et al. 1998. IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol 10: 703–708.

    Article  CAS  PubMed  Google Scholar 

  • Okuda Y, Sakoda S, Saeki Y, Kishimoto T, Yanagihara T. 2000. Enhancement of Th2 response in IL-6-deficient mice immunized with myelin oligodendrocyte glycoprotein. J Neuroimmunol 105: 120–123.

    Article  CAS  PubMed  Google Scholar 

  • Oshima T, Laroux FS, Coe LL, Morise Z, Kawachi S, et al. 2001. Interferon-γ and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res 61: 130–143.

    Article  CAS  PubMed  Google Scholar 

  • Pashenkov M, Huang YM, Kostulas V, Haglund M, Soderstrom M, et al. 2001. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124: 480–492.

    Article  CAS  PubMed  Google Scholar 

  • Pashenkov M, Soderstrom M, Huang YM, Link H. 2002a. Cerebrospinal fluid affects phenotype and functions of myeloid dendritic cells. Clin Exp Immunol 128: 379–387.

    Article  CAS  Google Scholar 

  • Pashenkov M, Teleshova N, Kouwenhoven M, Kostulas V, Huang YM, et al. 2002b. Elevated expression of CCR5 by myeloid (CD11c+) blood dendritic cells in multiple sclerosis and acute optic neuritis. Clin Exp Immunol 127: 519–526.

    Article  CAS  Google Scholar 

  • Pashenkov M, Teleshova N, Kouwenhoven M, Smirnova T, Jin YP, et al. 2002c. Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections. J Neuroimmunol 122: 106–116.

    Article  CAS  Google Scholar 

  • Perry VH. 1998. A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol 90: 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Plumb J, McQuaid S, Mirakhur M, Kirk J. 2002. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 12: 154–169.

    Article  PubMed  Google Scholar 

  • Pozo D, Delgado M. 2004. The many faces of VIP in neuroimmunology: A cytokine rather a neuropeptide? FASEB J 18: 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  • Pulendran B, Lingappa J, Kennedy MK, Smith J, Teepe M, et al. 1997. Developmental pathways of dendritic cells in vivo: Distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol 159: 2222–2231.

    CAS  PubMed  Google Scholar 

  • Qing Z, Sewell D, Sandor M, Fabry Z. 2000. Antigen-specific T cell trafficking into the central nervous system. J Neuroimmunol 105: 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ. 1967. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Reinke EK, Lee J, Zozulya A, Karman J, Muller WA, et al. 2007. Short-term sPECAM-Fc treatment ameliorates EAE while chronic use hastens onset of symptoms. J Neuroimmunol 186: 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Reyes TM, Fabry Z, Coe CL. 1999. Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res 851: 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Rist RJ, Romero IA, Chan MW, Couraud PO, Roux F, et al. 1997. F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: Effects of cyclic AMP and astrocytic factors. Brain Res 768: 10–18.

    Article  CAS  PubMed  Google Scholar 

  • Robertson B, Dostal K, Daynes RA. 1988. Neuropeptide regulation of inflammatory and immunologic responses. The capacity of α-melanocyte-stimulating hormone to inhibit tumor necrosis factor and IL-1-inducible biologic responses. J Immunol 140: 4300–4307.

    CAS  PubMed  Google Scholar 

  • Rosenman SJ, Shrikant P, Dubb L, Benveniste EN, Ransohoff RM. 1995. Cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) by astrocytes and astrocytoma cell lines. J Immunol 154: 1888–1899.

    CAS  PubMed  Google Scholar 

  • Roux E, Borell A. 1898. Tetanos cerebral et immunite contre le tetanos. Ann Inst Pasteur 12: 225–230.

    Google Scholar 

  • Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, et al. 1991. A cell culture model of the blood–brain barrier. J Cell Biol 115: 1725–1735.

    Article  CAS  PubMed  Google Scholar 

  • Rubin LL, Staddon JM. 1999. The cell biology of the blood–brain barrier. Annu Rev Neurosci 22: 11–28.

    Article  CAS  PubMed  Google Scholar 

  • Sabelko-Downes KA, Cross AH, Russell JH. 1999. Dual role for Fas ligand in the initiation of and recovery from experimental allergic encephalomyelitis. J Exp Med 189: 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  • Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, et al. 2003. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Samoilova EB, Horton JL, Chen Y. 1998a. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: Roles of interleukin-10 in disease progression and recovery. Cell Immunol 188: 118–124.

    Article  CAS  Google Scholar 

  • Samoilova EB, Horton JL, Hilliard B, Liu TS, Chen Y. 1998b. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: Roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol 161: 6480–6486.

    CAS  Google Scholar 

  • Sandor M, Weinstock JV, Wynn TA. 2003. Granulomas in schistosome and mycobacterial infections: A model of local immune responses. Trends Immunol 24: 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, et al. 2001. Developmental plasticity of CNS microglia. Proc Natl Acad Sci USA 98: 6295–6300.

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, et al. 1994. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77: 491–502.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt J, Metselaar JM, Gold R. 2003. Intravenous liposomal prednisolone downregulates in situ TNF-α production by T-cells in experimental autoimmune encephalomyelitis. J Histochem Cytochem 51: 1241–1244.

    CAS  PubMed  Google Scholar 

  • Schulz M, Engelhardt B. 2005. The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res 2: 8.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JP, Nishiyama N, Wilson D, Taniwaki T. 1994. Receptor-mediated regulation of neuropeptide gene expression in astrocytes. Glia 11: 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer AN, Sharpe AH. 1998. The complexity of the B7-CD28/CTLA-4 costimulatory pathway. Agents Actions Suppl 49: 33–43.

    CAS  PubMed  Google Scholar 

  • Sellebjerg F, Madsen HO, Jensen CV, Jensen J, Garred P. 2000. CCR5 δ32, matrix metalloproteinase-9 and disease activity in multiple sclerosis. J Neuroimmunol 102: 98–106.

    Article  CAS  PubMed  Google Scholar 

  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, et al. 2006. Dendritic cells in multiple sclerosis lesions: Maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 65: 124–141.

    Article  CAS  PubMed  Google Scholar 

  • Serot JM, Bene MC, Foliguet B, Faure GC. 2000. Monocyte-derived IL-10-secreting dendritic cells in choroid plexus epithelium. J Neuroimmunol 105: 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AH, Freeman GJ. 2002. The B7-CD28 superfamily. Nat Rev Immunol 2: 116–126.

    Article  CAS  PubMed  Google Scholar 

  • Shaver SW, Pang JJ, Wainman DS, Wall KM, Gross PM. 1992. Morphology and function of capillary networks in subregions of the rat tuber cinereum. Cell Tissue Res 267: 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Shirai Y. 1921. On the transplantation of the rat sarcoma in adult heterogenous animals. Jap Med World 1: 14–15.

    Google Scholar 

  • Shurin MR, Pandharipande PP, Zorina TD, Haluszczak C, Subbotin VM, et al. 1997. FLT3 ligand induces the generation of functionally active dendritic cells in mice. Cell Immunol 179: 174–184.

    Article  CAS  PubMed  Google Scholar 

  • Silverman MD, Zamora DO, Pan Y, Texeira PV, Baek SH, et al. 2003. Constitutive and inflammatory mediator-regulated fractalkine expression in human ocular tissues and cultured cells. Invest Ophthalmol Vis Sci 44: 1608–1615.

    Article  PubMed  Google Scholar 

  • Simpson IA, Vannucci SJ, Maher F. 1994. Glucose transporters in mammalian brain. Biochem Soc Trans 22: 671–675.

    CAS  PubMed  Google Scholar 

  • Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, et al. 1999. Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35: 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Staddon JM, Rubin LL. 1996. Cell adhesion, cell junctions and the blood–brain barrier. Curr Opin Neurobiol 6: 622–627.

    Article  CAS  PubMed  Google Scholar 

  • Steiniger B, Falk P, Van der Meide PH. 1988. Interferon-γ in vivo. Induction and loss of class II MHC antigens and immature myelomonocytic cells in rat organs. Eur J Immunol 18: 661–669.

    Article  CAS  PubMed  Google Scholar 

  • Steinman L. 2007. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM. 1991. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271–296.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson BR, Keon BH. 1998. The tight junction: Morphology to molecules. Annu Rev Cell Dev Biol 14: 89–109.

    Article  CAS  PubMed  Google Scholar 

  • Straub RH, Schaller T, Miller LE, von Horsten S, Jessop DS, et al. 2000. Neuropeptide Y cotransmission with norepinephrine in the sympathetic nerve-macrophage interplay. J Neurochem 75: 2464–2471.

    Article  CAS  PubMed  Google Scholar 

  • Suter T, Biollaz G, Gatto D, Bernasconi L, Herren T, et al. 2003. The brain as an immune privileged site: Dendritic cells of the central nervous system inhibit T cell activation. Eur J Immunol 33: 2998–3006.

    Article  CAS  PubMed  Google Scholar 

  • Tilling T, Korte D, Hoheisel D, Galla HJ. 1998. Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J Neurochem 71: 1151–1157.

    Article  CAS  PubMed  Google Scholar 

  • Tivol EA, Schweitzer AN, Sharpe AH. 1996. Costimulation and autoimmunity. Curr Opin Immunol 8: 822–830.

    Article  CAS  PubMed  Google Scholar 

  • Tomimoto H, Akiguchi I, Akiyama H, Kimura J, Yanagihara T. 1993. T-cell infiltration and expression of MHC class II antigen by macrophages and microglia in a heterogeneous group in leukoencephalopathy. Am J Pathol 143: 579–586.

    CAS  PubMed  Google Scholar 

  • Townsend A, Bodmer H. 1989. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunology 7: 601–624.

    CAS  Google Scholar 

  • Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. 1998. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161: 3767–3775.

    CAS  PubMed  Google Scholar 

  • Trebst C, Sorensen TL, Kivisakk P, Cathcart MK, Hesselgesser J, et al. 2001. CCR1 +  /CCR5 + mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 159: 1701–1710.

    CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M. 1999. Occludin and claudins in tight-junction strands: Leading or supporting players? Trends Cell Biol 9: 268–273.

    Article  CAS  PubMed  Google Scholar 

  • Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, et al. 1994a. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol 56: 732–740.

    CAS  Google Scholar 

  • Ulvestad E, Williams K, Bo L, Trapp B, Antel J, et al. 1994b. HLA class II molecules (HLA-DR, -DP, -DQ) on cells in the human CNS studied in situ and in vitro. Immunology 82: 535–541.

    CAS  Google Scholar 

  • Unanue ER. 1984. Antigen-presenting function of the macrophage. Annu Rev Immnol 2: 395–428.

    Article  CAS  Google Scholar 

  • Van Wagoner NJ, Benveniste EN. 1999. Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 100: 124–139.

    Article  CAS  PubMed  Google Scholar 

  • Vass K, Lassmann H. 1990. Intrathecal application of interferon-γ. Progressive appearance of MHC antigens within the rat nervous system. Am J Pathol 137: 789–800.

    CAS  PubMed  Google Scholar 

  • Verma S, Nakaoke R, Dohgu S, Banks WA. 2006. Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain Behav Immun 20: 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Vidovic M, Sparacio SM, Elovitz M, Benveniste EN. 1990. Induction and regulation of class II major histocompatibility complex mRNA expression in astrocytes by interferon-γ and tumor necrosis factor-α. J Neuroimmunol 30: 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Waldner H, Sobel RA, Howard E, Kuchroo VK. 1997. Fas- and FasL-deficient mice are resistant to induction of autoimmune encephalomyelitis. J Immunol 159: 3100–3103.

    CAS  PubMed  Google Scholar 

  • Waldschmidt MM, Fabry Z, Keiner J, Love-Homan L, Hart MN. 1991. Adhesion of splenocytes to brain microvascular endothelium in the BALB/c and SJL/j mouse systems. J Neuroimmunol 35: 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Walker WS, Gatewood J, Olivas E, Askew D, Havenith CE. 1995. Mouse microglial cell lines differing in constitutive and interferon-γ-inducible antigen-presenting activities for naive and memory CD4 + and CD8 + T cells. J Neuroimmunol 63: 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Weir CR, Nicolson K, Backstrom BT. 2002. Experimental autoimmune encephalomyelitis induction in naive mice by dendritic cells presenting a self-peptide. Immunol Cell Biol 80: 14–20.

    Article  CAS  PubMed  Google Scholar 

  • Wekerle H. 2006. Breaking ignorance: The case of the brain. Curr Top Microbiol Immunol 305: 25–50.

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Kida S, Zhang ET. 1992. Pathways of fluid drainage from the brain – morphological aspects and immunological significance in rat and man. Brain Pathol 2: 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Whartenby KA, Calabresi PA, McCadden E, Nguyen B, Kardian D, et al. 2005. Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease. Proc Natl Acad Sci USA 102: 16741–16746.

    Article  CAS  PubMed  Google Scholar 

  • Willenborg DO, Staykova MA. 2003. Cytokines in the pathogenesis and therapy of autoimmune encephalomyelitis and multiple sclerosis. Adv Exp Med Biol 520: 96–119.

    CAS  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, et al. 2003. Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol (Berl) 105: 586–592.

    CAS  Google Scholar 

  • Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW. 1984. Inducible expression of H-2 and Ia antigens on brain cells. Nature 310: 688–691.

    Article  CAS  PubMed  Google Scholar 

  • Wong KY, Rajora N, Boccoli G, Catania A, Lipton JM. 1997. A potential mechanism of local anti-inflammatory action of α-melanocyte-stimulating hormone within the brain: Modulation of tumor necrosis factor-α production by human astrocytic cells. Neuroimmunomodulation 4: 37–41.

    CAS  PubMed  Google Scholar 

  • Wucherpfennig KW. 1994. Autoimmunity in the central nervous system: Mechanisms of antigen presentation and recognition. Clin Immunol Immunopathol 72: 293–306.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ling EA. 1994. Upregulation and induction of surface antigens with special reference to MHC class II expression in microglia in postnatal rat brain following intravenous or intraperitoneal injections of lipopolysaccharide. J Anat 184: 285–296.

    CAS  PubMed  Google Scholar 

  • Yang RB, Ng CK, Wasserman SM, Komuves LG, Gerritsen ME, et al. 2003. A novel interleukin-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling. J Biol Chem 278: 33232–33238.

    Article  CAS  PubMed  Google Scholar 

  • Yepes M. 2007. Tweak and FN14 in central nervous system health and disease. Front Biosci 12: 2772–2781.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, et al. 2004. IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25 + CD4 + regulatory T cells. Int Immunol 16: 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Winkles JA, Gongora MC, Polavarapu R, Michaelson JS, et al. 2007. TWEAK-Fn14 pathway inhibition protects the integrity of the neurovascular unit during cerebral ischemia. J Cereb Blood Flow Metab 27: 534–544.

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Guleria I, Khosroshahi A, Chitnis T, Imitola J, et al. 2006. Differential role of programmed death-ligand 1 [corrected] and programmed death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J Immunol 176: 3480–3489.

    CAS  PubMed  Google Scholar 

  • Zozulya AL, Reinke E, Baiu DC, Karman J, Sandor M, et al. 2007. Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1α chemokine and matrix metalloproteinases. J Immunol 178: 520–529.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Fabry, Z., Reinke, E., Zozulya, A., Sandor, M., Bechmann, I. (2008). The Dialect of Immune System in the CNS: The Nervous Tissue as an Immune Compartment for T Cells and Dendritic Cells. In: Lajtha, A., Galoyan, A., Besedovsky, H.O. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30398-7_8

Download citation

Publish with us

Policies and ethics