Skip to main content

Heat‐Shock Protein Regulation of Protein Folding, Protein Degradation, Protein Function, and Apoptosis

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Heat‐shock proteins (Hsps), induced by heat and other stresses via heat‐shock factor (HSF) actions on heat‐shock elements (HSEs) in Hsp promoters, bind to and regulate other proteins. Hsc70 regulates folding while proteins are being synthesized on the ribosome and chaperones proteins to intracellular organelles. Hsp70, in combination with cochaperones Hip and Hop, refolds partially denatured proteins. Hsp70, in combination with cochaperones BAG‐1 and CHIP, targets proteins for degradation in the proteasome. Hsp90 chaperones proteins—including HSF, estrogen receptor, and NOS—to regulate their availability and function. The mitochondrial Hsp70 (mtHsp70), together with cochaperones, facilitates protein/peptide entry into mitochondria. Hsps also play major roles in regulating apoptosis. Hsp70 modulates mitochondrial‐caspase‐3‐dependent apoptosis by binding apoptotic protease activation factor‐1 (Apaf‐1) and disrupting the formation of the Apaf‐1/cytochrome c/caspase‐9 apoptosome, which prevents activation of caspase‐3. Hsp70 binds AIF to prevent mitochondrial‐mediated, caspase‐independent apoptosis. JNK phosphorylation and acts upstream of the mitochondria to prevent stress‐mediated mitochondrial‐induced apoptosis. The expression of Hsp70 and other Hsps is generally protective as Hsp70 transgenic mice and viral overexpression of Hsps protect neurons, brain, and cells against ischemia and other types of injury. However, Hsp70 facilitates TNF‐mediated cell death via the extrinsic apoptotic pathway by binding IKKγ and preventing activation of NF‐κB signaling that promotes caspase‐8 activation of caspase‐3 and leads to cell death. Coincident TNF receptor activation and Hsp70 expression is lethal to the cell. The mtHsp60 and Hsp10 protect against protein aggregation and refold denatured proteins; but when released from mitochondria also activate caspase‐3 and produce apoptosis. Thus, Hsps promote proper protein folding and protein refolding, disaggregate proteins and chaperone proteins across membranes; or they can target proteins for degradation and even stimulate cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali A, Bharadwaj S, O'Carroll R, Ovsenek N. 1998. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18: 4949–4960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbe MF, Tytell M, Gower DJ, Welch WJ. 1988. Hyperthermia protects against light damage in the rat retina. Science 241: 1817–1820.

    Article  CAS  PubMed  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ. 1990. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248: 850–854.

    Article  CAS  PubMed  Google Scholar 

  • Beere HM. 2001. Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001: RE1.

    Article  CAS  PubMed  Google Scholar 

  • Beere HM. 2004. “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117: 2641–2651.

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Green DR. 2001. Stress management—heat shock protein‐70 and the regulation of apoptosis. Trends Cell Biol 11: 6–10.

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, et al. 2000. Heat‐shock protein 70 inhibits apoptosis by preventing recruitment of procaspase‐9 to the Apaf‐1 apoptosome. Nat Cell Biol 2: 469–475.

    Article  CAS  PubMed  Google Scholar 

  • Bonini NM. 2002. Chaperoning brain degeneration. Proc Natl Acad Sci USA 99: 16407–16411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366.

    Article  CAS  PubMed  Google Scholar 

  • Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, et al. 2002. Apoptosis‐inducing factor (AIF): a novel caspase‐independent death effector released from mitochondria. Biochimie 84: 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, et al. 2003. JNK‐dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 278: 17593–17596.

    Article  CAS  PubMed  Google Scholar 

  • Concannon CG, Gorman AM, Samali A. 2003. On the role of Hsp27 in regulating apoptosis. Apoptosis 8: 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. 2004. Impaired degradation of mutant alpha‐synuclein by chaperone‐mediated autophagy. Science 305: 1292–1295.

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Mancini MA, Antalffy B, De Franco DB, Orr HT, et al. 1998. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19: 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, et al. 2001. Over‐expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10: 1511–1518.

    Article  CAS  PubMed  Google Scholar 

  • Cyr DM, Hohfeld J, Patterson C. 2002. Protein quality control: U‐box‐containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27: 368–375.

    Article  CAS  PubMed  Google Scholar 

  • Frydman J, Hohfeld J. 1997. Chaperones get in touch: the Hip‐Hop connection. Trends Biochem Sci 22: 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Gabai VL, Sherman MY. 2002. Invited review: interplay between molecular chaperones and signaling pathways in survival of heat shock. J Appl Physiol 92: 1743–1748.

    Article  CAS  PubMed  Google Scholar 

  • Gabai VL, Mabuchi K, Mosser DD, Sherman MY. 2002. Hsp72 and stress kinase c‐jun N‐terminal kinase regulate the bid‐dependent pathway in tumor necrosis factor‐induced apoptosis. Mol Cell Biol 22: 3415–3424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido C, Solary E. 2003. A role of HSPs in apoptosis through “protein triage”? Cell Death Differ 10: 619–620.

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. 2001. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286, 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Glover JR, Lindquist S. 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G. 2004. The pathophysiology of mitochondrial cell death. Science 305: 626–629.

    Article  CAS  PubMed  Google Scholar 

  • Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. 2000. Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20: 306–315.

    Article  CAS  PubMed  Google Scholar 

  • Hohfeld J, Cyr DM, Patterson C. 2001. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2: 885–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaattela M. 1990. Effects of heat shock on cytolysis mediated by NK cells, LAK cells, activated monocytes and TNFs alpha and beta. Scand J Immunol 31: 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Jaattela M, Wissing D. 1993. Heat‐shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self‐protection. J Exp Med 177: 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M. 1998. Hsp70 exerts its anti‐apoptotic function downstream of caspase‐3‐like proteases. EMBO J 17: 6124–6134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin P, Zarnescu DC, Zhang F, Pearson CE, Lucchesi JC, et al. 2003. RNA‐mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39: 739–747.

    Article  CAS  PubMed  Google Scholar 

  • Kinouchi H, Sharp FR, Hill MP, Koistinaho J, Sagar SM, et al. 1993b. Induction of 70‐kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 13: 105–115.

    Article  CAS  PubMed  Google Scholar 

  • Kinouchi H, Sharp FR, Koistinaho J, Hicks K, Kamii H, et al. 1993a. Induction of heat shock hsp70 mRNA and HSP70 kDa protein in neurons in the ‘penumbra’ following focal cerebral ischemia in the rat. Brain Res 619: 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Latchman DS. 2001. Heat shock proteins and cardiac protection. Cardiovasc Res 51: 637–646.

    Article  CAS  PubMed  Google Scholar 

  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, et al. 2000. Disruption of hsp90 function results in degradation of the death domain kinase, receptor‐interacting protein (RIP), and blockage of tumor necrosis factor‐induced nuclear factor‐kappaB activation. J Biol Chem 275: 10519–10526.

    Article  CAS  PubMed  Google Scholar 

  • Li GC, Li L, Liu RY, Rehman M, Lee WM. 1992. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP‐binding domain. Proc Natl Acad Sci USA 89: 2036–2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S. 1986. The heat‐shock response. Annu Rev Biochem 55: 1151–1191.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S. 1992. Heat‐shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev 2: 748–755.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Kim G. 1996. Heat‐shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci USA 93: 5301–5306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liossis SN, Ding XZ, Kiang JG, Tsokos GC. 1997. Overexpression of the heat shock protein 70 enhances the TCR/CD3‐ and Fas/Apo‐1/CD95‐mediated apoptotic cell death in Jurkat T cells. J Immunol 158: 5668–5675.

    CAS  PubMed  Google Scholar 

  • Lu A, Ran R, Parmentier‐Batteur S, Nee A, Sharp FR. 2002a. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81: 355–364.

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Ran RQ, Clark J, Reilly M, Nee A, et al. 2002b. 17‐Beta‐estradiol induces heat shock proteins in brain arteries and potentiates ischemic heat shock protein induction in glia and neurons. J Cereb Blood Flow Metab 22: 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Luders J, Demand J, Papp O, Hohfeld J. 2000. Distinct isoforms of the cofactor BAG‐1 differentially affect Hsc70 chaperone function. J Biol Chem 275: 14817–14823.

    Article  CAS  PubMed  Google Scholar 

  • Matz P, Turner C, Weinstein PR, Massa SM, Panter SS, et al. 1996. Heme‐oxygenase‐1 induction in glia throughout rat brain following experimental subarachnoid hemorrhage. Brain Res 713: 211–222.

    Article  CAS  PubMed  Google Scholar 

  • Mehlen P, Kretz‐Remy C, Preville X, Arrigo AP. 1996. Human hsp27, Drosophila hsp27 and human alphaB‐crystallin expression‐mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha‐induced cell death. EMBO J 15: 2695–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheau O, Tschopp J. 2003. Induction of TNF receptor I‐mediated apoptosis via two sequential signaling complexes. Cell 114: 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Mogk A, Bukau B. 2004. Molecular chaperones: structure of a protein disaggregase. Curr Biol 14: R78–R80.

    Article  CAS  PubMed  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Denis‐Larose C, Massie B. 1997. Role of the human heat shock protein hsp70 in protection against stress‐induced apoptosis. Mol Cell Biol 17: 5317–5327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, et al. 2000. The chaperone function of hsp70 is required for protection against stress‐induced apoptosis. Mol Cell Biol 20: 7146–7159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nollen EA, Morimoto RI. 2002. Chaperoning signaling pathways: molecular chaperones as stress‐sensing ‘heat shock’ proteins. J Cell Sci 115: 2809–2816.

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S. 2004. Mitochondrial regulation of apoptotic cell death. Toxicol Lett 149: 19–23.

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, et al. 2000. Negative regulation of cytochrome c‐mediated oligomerization of Apaf‐1 and activation of procaspase‐9 by heat shock protein 90. EMBO J 19: 4310–4322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. 2003. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 304: 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Lee JS, Huh SH, Seo JS, Choi EJ. 2001. Hsp72 functions as a natural inhibitory protein of c‐Jun N‐terminal kinase. EMBO J 20: 446–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KJ, Gaynor RB, Kwak YT. 2003. Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha‐induced NF‐kappa B activation. J Biol Chem 278: 35272–35278.

    Article  CAS  PubMed  Google Scholar 

  • Paul C, Manero F, Gonin S, Kretz‐Remy C, Virot S, et al. 2002. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22: 816–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt WB, Toft DO. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70‐based chaperone machinery. Exp Biol Med (Maywood) 228: 111–133.

    Article  CAS  Google Scholar 

  • Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, et al. 2000. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 47: 782–791.

    Article  CAS  PubMed  Google Scholar 

  • Ran R, Lu A, Zhang L, Tang Y, Zhu H, et al. 2004. Hsp70 promotes TNF‐mediated apoptosis by binding IKK gamma and impairing NF‐kappa B survival signaling. Genes Dev 18: 1466–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, et al. 2001. Heat‐shock protein 70 antagonizes apoptosis‐inducing factor. Nat Cell Biol 3: 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Poirier MA. 2004. Protein aggregation and neurodegenerative disease. Nat Med 10, S10–S17.

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. 2000. Negative regulation of the Apaf‐1 apoptosome by Hsp70. Nat Cell Biol 2: 476–483.

    Article  CAS  PubMed  Google Scholar 

  • Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S. 1999. Presence of a pre‐apoptotic complex of pro‐caspase‐3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 18: 2040–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schett G, Steiner CW, Xu Q, Smolen JS, Steiner G. 2003. TNFalpha mediates susceptibility to heat‐induced apoptosis by protein phosphatase‐mediated inhibition of the HSF1/hsp70 stress response. Cell Death Differ 10: 1126–1136.

    Article  CAS  PubMed  Google Scholar 

  • Sharp FR. 1998. Stress genes protect brain. Ann Neurol 44: 581–583.

    Article  CAS  PubMed  Google Scholar 

  • Sharp FR, Lu A, Tang Y, Millhorn DE. 2000. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20: 1011–1032.

    Article  CAS  PubMed  Google Scholar 

  • Sherman MY, Goldberg AL. 2001. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29: 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Shorter J, Lindquist S. 2004. Hsp104 catalyzes formation and elimination of self‐replicating Sup35 prion conformers. Science 304: 1793–1797.

    Article  CAS  PubMed  Google Scholar 

  • States BA, Honkaniemi J, Weinstein PR, Sharp FR. 1996. DNA fragmentation and HSP70 protein induction in hippocampus and cortex occurs in separate neurons following permanent middle cerebral artery occlusions. J Cereb Blood Flow Metab 16: 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Lu A, Aronow BJ, Wagner KR, Sharp FR. 2002. Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur J Neurosci 15: 1937–1952.

    Article  PubMed  Google Scholar 

  • Trost SU, Omens JH, Karlon WJ, Meyer M, Mestril R, et al. 1998. Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 101, 855–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, et al. 1998. Heme oxygenase‐1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab 18: 257–273.

    Article  CAS  PubMed  Google Scholar 

  • Turner CP, Panter SS, Sharp FR. 1999. Anti‐oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO‐1/HSP32, HSP47) following subarachnoid injections of lysed blood. Brain Res Mol Brain Res 65: 87–102.

    Article  CAS  PubMed  Google Scholar 

  • Voos W, Rottgers K. 2002. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Wickner S, Maurizi MR, Gottesman S. 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286: 1888–1893.

    Article  CAS  PubMed  Google Scholar 

  • Yenari MA. 2002. Heat shock proteins and neuroprotection. Adv Exp Med Biol 513: 281–299.

    Article  CAS  PubMed  Google Scholar 

  • Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK. 1999. The neuroprotective potential of heat shock protein 70 (HSP70). Mol Med Today 5: 525–531.

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Barral JM, Hartl FU. 2003. More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 28: 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress‐sensitive complex with HSF1. Cell 94: 471–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter has relied heavily upon the summaries of many recent reviews on various aspects of Hsp function. The authors regret not citing most of the primary references to the large amount of information covered in this brief review. This review was supported in part by grants from the NIH/NINDS that funded various aspects of the authors’ own work in this area.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ran, R., Lu, A., Xu, H., Tang, Y., Sharp, F.R. (2007). Heat‐Shock Protein Regulation of Protein Folding, Protein Degradation, Protein Function, and Apoptosis. In: Lajtha, A., Chan, P.H. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30383-3_6

Download citation

Publish with us

Policies and ethics