Skip to main content

Abstract:

The cholinergic system can modulate cognitive functions efficiently in the brain acting on a rich assembly of metabotropic and ionotropic receptors. The cholinergic system operates through the cooperation of the muscarinic and the nicotinic subsystems. While muscarinic ACh receptors mediate slow responses with considerable delay, nicotinic facilitation, following activation of nicotinic ACh receptors, evokes relatively fast responses. In some cases muscarinic and nicotinic ACh receptors form a dual control striatal on certain cell types, such as the spiny interneurons of the striatum. On important aspect of nicotinic transmission is that it modulates, rather than mediate, fast synaptic transmission. Desensitization of these receptors leads to a loss of function that is a key factor in the effect of nicotine during smoking. Desensitization extends the possible states of cholinergic transmission and increases the computational power of the neuron. As most nicotinic receptors are found in nonsynaptic localizations, especially on axons. They can directly release transmitters from presynaptic boutons. Importance of studies on nicotinic and muscarinic effects is highlighted by the fact that cholinergic therapy is the mainstay treatment for Alzheimer's disease. The current view that nonsynaptic communication is dominant in cholinergic transmission also support the future perspective of drug therapy targeting high affinity nonsynaptic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

acetylcholine

AChE:

acetylcholine-esterase

ChAT:

choline-acetyltranspherase

CNS:

central nervous system

GABA:

Gamma-aminobutyric acid

mAChR:

muscarinic acetylcholine receptors

nAChR:

nicotinic acetylcholine receptors

NMDA:

N-methyl-d-aspartate

References

  • Adams CE, Stitzel JA, Collins AC, Freedman R. 2001. Alpha7-nicotinic receptor expression and the anatomical organization of hippocampal interneurons. Brain Res 922: 180–190.

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Albuquerque EX. 2003. NMDA and AMPA receptors contribute to the nicotinic cholinergic excitation of CA1 interneurons in the rat hippocampus. J Neurophysiol 90: 1613–1625.

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX. 1997. Choline is a selective agonist of α7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 9: 2734–2742.

    Article  CAS  PubMed  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, et al. 2003. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6: 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Aramakis VB, Metherate R. 1998. Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci 18: 8485–8495.

    CAS  PubMed  Google Scholar 

  • Bennett BD, Wilson CJ. 1999. Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci 19: 5586–5596.

    CAS  PubMed  Google Scholar 

  • Chang KT, Berg DK. 1999. Nicotinic acetylcholine receptors containing α7 subunits are required for reliable synaptic transmission in situ. J Neurosci 19: 3701–3710.

    CAS  PubMed  Google Scholar 

  • Chiodini FC, Tassonyi E, Hulo S, Bertrand D, Muller D. 1999. Modulation of synaptic transmission by nicotine and nicotinic antagonists in hippocampus. Brain Res Bull 48: 623–628.

    Article  CAS  PubMed  Google Scholar 

  • Dani JA, Heinemann S. 1996. Molecular and cellular aspects of nicotine abuse. Neuron 16: 905–908.

    Article  CAS  PubMed  Google Scholar 

  • Dani JA, Ji D, Zhou FM. 2001. Synaptic plasticity and nicotine addiction. Neuron 31: 349–352.

    Article  CAS  PubMed  Google Scholar 

  • Derbenev AV, Linn CL, Guth PS. 2005. Muscarinic ACh receptor activation causes transmitter release from isolated frog vestibular hair cells. J Neurophysiol 94: 3134–3142.

    Article  CAS  PubMed  Google Scholar 

  • Descarries L, Mechawar N. 2000. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125: 27–47.

    Article  CAS  PubMed  Google Scholar 

  • Didier M, Berman SA, Lindstrom J, Bursztajn S. 1995. Characterization of nicotinic acetylcholine receptors expressed in primary cultures of cerebellar granule cells. Mol Brain Res 30: 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Xiang YY, Farchi N, Ju W, Wu Y, et al. 2004. Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 24: 8950–8960.

    Article  CAS  PubMed  Google Scholar 

  • Drachman DA. 1977. Memory and cognitive function in man: Does the cholinergic system have a specific role? Neurology 27: 783–790.

    CAS  PubMed  Google Scholar 

  • Eckenstein F, Baughman RW. 1984. Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature 309: 153–155.

    Article  CAS  PubMed  Google Scholar 

  • Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, et al. 2001. Ultrastructural distribution of the α7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 21: 7993–8003.

    CAS  PubMed  Google Scholar 

  • Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV. 1998a. Synaptic potentials mediated via α-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci 18: 8228–8235.

    CAS  Google Scholar 

  • Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, et al. 1998b. Acetylcholine activates an α-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 18: 1187–1195.

    CAS  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S. 1995. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38: 22–33.

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Dani JA. 2005. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci 25: 6084–6091.

    Article  CAS  PubMed  Google Scholar 

  • Gil Z, Connors BW, Amitai Y. 1997. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19: 679–686.

    Article  CAS  PubMed  Google Scholar 

  • Girod R, Role LW. 2001. Long-lasting enhancement of glutamatergic synaptic transmission by acetylcholine contrasts with response adaptation after exposure to low-level nicotine. J Neurosci 21: 5182–5190.

    CAS  PubMed  Google Scholar 

  • Golebiewski H, Eckersdorf B, Konopacki J. 2002. Septal cholinergic mediation of hippocampal theta in the cat. Brain Res Bull 58: 323–335.

    Article  CAS  PubMed  Google Scholar 

  • Graham AJ, Ray MA, Perry EK, Jaros E, Perry RH, et al. 2003. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J Chem Neuroanat 25: 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. 1996. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383: 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Gulledge AT, Stuart GJ. 2005. Cholinergic inhibition of neocortical pyramidal neurons. J Neurosci 25: 10308–10320.

    Article  CAS  PubMed  Google Scholar 

  • Haga K, Haga T. 1990. Dual regulation by G proteins of agonistdependent phosphorylation of muscarinic acetylcholine receptors. FEBS Lett 268: 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, et al. 1997. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 94: 13311–13316.

    Article  CAS  PubMed  Google Scholar 

  • Hatton GI, Yang QZ. 2002. Synaptic potentials mediated by α7 nicotinic acetylcholine receptors in supraoptic nucleus. J Neurosci 22: 29–37.

    CAS  PubMed  Google Scholar 

  • Hefft S, Hulo S, Bertrand D, Muller D. 1999. Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slices. J Physiol 515: 769–776.

    Article  CAS  PubMed  Google Scholar 

  • Henningfield JE, Stapleton JM, Benowitz NL, Grayson RF, London ED. 1993. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Depend 33: 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Hill JA, Zoli M, Bourgeois J-P, Changeux J-P. 1993. Immunocytochemical localization of neural nicotinic receptor: The β2-subunit. J Neurosci 13: 1551–1568.

    CAS  PubMed  Google Scholar 

  • Horch HL, Sargent PB. 1995. Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J Neurosci 15: 7778–7795.

    CAS  PubMed  Google Scholar 

  • Jakubik J, Bacakova L, El-Fakahany EE, Tucek S. 1997. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol 52: 172–179.

    CAS  PubMed  Google Scholar 

  • Ji D, Lape R, Dani JA. 2001. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31: 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Yakel JL. 1997. Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol 504: 603–610.

    Article  CAS  PubMed  Google Scholar 

  • Kawai H, Zago W, Berg DK. 2002. Nicotinic α7 receptor clusters on hippocampal GABAergic neurons: Regulation by synaptic activity and neurotrophins. J Neurosci 22: 7903–7912.

    CAS  PubMed  Google Scholar 

  • Khiroug L, Giniatullin R, Klein RC, Fayuk D, Yakel JL. 2003. Functional mapping and Ca2+ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J Neurosci 23: 9024–9031.

    CAS  PubMed  Google Scholar 

  • Khiroug L, Giniatullin R, Sokolova E, Talantova M, Nistri A. 1997. Imaging of intracellular calcium during desensitization of nicotinic acetylcholine receptors of rat chromaffin cells. Br J Pharmacol 122: 1323–1332.

    Article  CAS  PubMed  Google Scholar 

  • Kiss JP, Vizi ES, Westerink BHC. 1999. Effect of neostigmine on the hippocampal noradrenaline release: Role of cholinergic receptors. Neuroreport 10: 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Kofalvi A, Sperlagh B, Zelles T, Vizi ES. 2000. Long-lasting facilitation of 4-amino-n-[2,3-3H]butyric acid ([3H]GABA) release from rat hippocampal slices by nicotinic receptor activation. J Pharmacol Exp Ther 295: 453–462.

    CAS  PubMed  Google Scholar 

  • Konopacki J, Bland BH, Roth SH. 1988. Evidence that activation of in vitro hippocampal theta rhythm only involves muscarinic receptors. Brain Res 455: 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Koos T, Tepper JM. 2002. Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22: 529–535.

    CAS  PubMed  Google Scholar 

  • Kulak JM, Nguyen TA, Olivera BM, McIntosh JM. 1997. α-Conotoxin MII blocks nicotine- stimulated dopamine release in rat striatal synaptosomes. J Neurosci 17: 5263–5270.

    CAS  PubMed  Google Scholar 

  • Lazareno S, Birdsall NJ. 1995. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: Interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol 48: 362–78.

    CAS  PubMed  Google Scholar 

  • Lena C, Changeux J-P, Mulle C. 1993. Evidence for ‘preterminal’ nicotine receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13: 2680–2688.

    CAS  PubMed  Google Scholar 

  • Lena C, Changeux J-P. 1997. Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus. J Neurosci 17: 576-585.

    CAS  PubMed  Google Scholar 

  • Lendvai B, Sershen H, Lajtha A, Santha E, Baranyi M, et al. 1996. Differential mechanisms involved in the effect of nicotinic agonists DMPP and lobeline to release [3H]5-HT from rat hippocampal slices. Neuropharmacology 35: 1769–1777.

    Article  CAS  PubMed  Google Scholar 

  • Lester RA, Dani JA. 1994. Time-dependent changes in central nicotinic acetylcholine channel kinetics in excised patches. Neuropharmacology 33: 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. 1995. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15: 4077–4092.

    CAS  PubMed  Google Scholar 

  • Levin ED, Rezvani AH. 2000. Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol 393: 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Liang SD, Vizi ES. 1997. Positive feedback modulation of acetylcholine release from isolated superior cervical ganglion. J Pharmacol Exp Ther 280: 650–655.

    CAS  PubMed  Google Scholar 

  • Lukas RJ. 1991. Effects of chronic nicotinic ligand exposure on functional activity of nicotinic acetylcholine receptors expressed by cells of the PC12 rat pheochromocytoma or the TE671/RD human clonal line. J Neurochem 56: 1134–1145.

    Article  CAS  PubMed  Google Scholar 

  • Maggi L, Le Magueresse C, Changeux JP, Cherubini E. 2003. Nicotine activates immature “silent” connections in the developing hippocampus. Proc Natl Acad Sci USA 100: 2059–2064.

    Article  CAS  PubMed  Google Scholar 

  • Mann EO, Greenfield SA. 2003. Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. J Physiol 551.2: 539–550.

    Article  Google Scholar 

  • Mansvelder HD, McGehee DS. 2000. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27: 349–357.

    Article  CAS  PubMed  Google Scholar 

  • McGehee DS, Role LW. 1995. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57: 521–546.

    Article  CAS  PubMed  Google Scholar 

  • McGehee DS, Heath MJ, Gelber S, Devay P, Role LW. 1995. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269: 1692–1696.

    Article  CAS  PubMed  Google Scholar 

  • McQuiston AR, Madison DV. 1999. Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19: 2887–2896.

    CAS  PubMed  Google Scholar 

  • Mulle C, Choquet D, Korn H, Changeux JP. 1992. Calcium influx through nicotinic receptor in rat central neurons: Its relevance to cellular regulation. Neuron 8: 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Newhouse PA, Potter A, Singh A. 2004. Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4: 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Nicoll RA, Malenka RC, Kauer JA. 1990. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70: 513–565.

    CAS  PubMed  Google Scholar 

  • Oh MM, Wu WW, Power JM, Disterhoft JF. 2005. Galantamine increases excitability of CA1 hippocampal pyramidal neurons. Neuroscience Oct 19; [Epub ahead of print].

    Google Scholar 

  • Olpe HR, Klebs K, Kung E, Campiche P, Glatt A, et al. 1987. Cholinomimetics induce theta rhythm and reduce hippocampal pyramidal cell excitability. Eur J Pharmacol 142: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, et al. 1998. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391: 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Pidoplichko VI, De Biasi M, Williams JT, Dani JA. 1997. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390: 401–404.

    Article  CAS  PubMed  Google Scholar 

  • Radcliffe KA, Dani JA. 1998. Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. J Neurosci 18: 7075–7083.

    CAS  PubMed  Google Scholar 

  • Rezvani AH, Levin ED. 2001. Cognitive effects of nicotine. Biol Psychiatry 49: 258–267.

    Article  CAS  PubMed  Google Scholar 

  • Roerig B, Nelson DA, Katz LC. 1997. Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17: 8353–8362.

    CAS  PubMed  Google Scholar 

  • Role LW, Berg DK. 1996. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16: 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  • Rowell PP, Duggan DS. 1998. Long-lasting inactivation of nicotinic receptor function in vitro by treatment with high concentrations of nicotine. Neuropharmacology 37: 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Parikh V. 2005. Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6: 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Seguela P, Wadiche J, Dineley-Miller K, Patrick JW. 1993. Molecular cloning, functional properties, and distribution of rat brain α7: A nicotinic cation channel highly permeable to calcium. J Neurosci 13: 596–604.

    CAS  PubMed  Google Scholar 

  • Sershen H, Balla A, Lajtha A, Vizi ES. 1997. Characterization of nicotinic receptors involved in the release of norepinephrine from hippocampus. Neuroscience 77: 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Vijayaraghavan S. 2003. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38: 929–939.

    Article  CAS  PubMed  Google Scholar 

  • Shoop RD, Chang KT, Ellisman MH, Berg DK. 2001. Synaptically driven calcium transients via nicotinic receptors on somatic spines. J Neurosci 21: 771–781.

    CAS  PubMed  Google Scholar 

  • Soliakov L, Wonnacott S. 1996. Voltage sensitive Ca2+ channels involved in nicotinic receptor-mediated 3Hdopamine release from rat striatal synaptosomes. J Neurochem 67: 163–170.

    Article  CAS  PubMed  Google Scholar 

  • Szasz BK, Mayer A, Zsilla G, Lendvai B, Vizi ES, et al. 2005. Carrier-mediated release of monoamines induced by the nicotinic acetylcholine receptor agonist DMPP. Neuropharmacology 49: 400–409.

    Article  CAS  PubMed  Google Scholar 

  • Towart LA, Alves SE, Znamensky V, Hayashi S, McEwen BS, et al. 2003. Subcellular relationships between cholinergic terminals and estrogen receptor-alpha in the dorsal hippocampus. J Comp Neurol 463: 390–401.

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa H, Ross WN. 1997. Muscarinic modulation of spike backpropagating in the apical dendrites of hippocampal CA1 pyramidal neurons. J Neurosci 17: 5782–5791.

    CAS  PubMed  Google Scholar 

  • Ullian EM, Sargent PB. 1995. Pronounced cellular diversity and extrasynaptic location of nicotinic acetylcholine receptor subunit immunreactivities in the chicken pretectum. J Neurosci 15: 7012–7023.

    CAS  PubMed  Google Scholar 

  • Umbriaco D, Garcia S, Beaulieu C, Descarries L. 1995. Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus 5: 605–620.

    Article  CAS  PubMed  Google Scholar 

  • Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK. 1994. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: An electron microscopic study in serial sections. J Comp Neurol 348: 351–373.

    Article  CAS  PubMed  Google Scholar 

  • van Koppen CJ, Kaiser B. 2003. Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98: 197–220.

    Article  CAS  PubMed  Google Scholar 

  • Vernino S, Amador M, Luetje CW, Patrick J, Dani JA. 1992. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8: 127–134.

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan S, Pugh PC, Zhang ZW, Rathouz MM, Berg DK. 1992. Nicotinic receptors that bind agr-bungarotoxin on neurons raise intracellular free Ca2+ . Neuron 8: 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Vizi ES. 2000. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol Rev 52: 63–89.

    CAS  PubMed  Google Scholar 

  • Vizi ES, Lendvai B. 1999. Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Rev 30: 219–235.

    Article  CAS  PubMed  Google Scholar 

  • Vizi ES, Sershen H, Balla A, Mike A, Windish K, et al. 1995. Neurochemical evidence of heterogeneity of presynaptic and somatodendritic nicotinic acetylcholine receptors. Ann NY Acad Sci 757: 84–99.

    Article  CAS  PubMed  Google Scholar 

  • Wess J. 2003. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci 24: 414–420.

    Article  CAS  PubMed  Google Scholar 

  • Williams BM, Temburni MK, Levey MS, Bertrand S, Bertrand D, et al. 1998. The long internal loop of the α3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat Neurosci 1: 557–562.

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott S. 1997. Presynaptic nicotinic ACh receptors. Trends Neurosci 20: 92–98.

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Huguenard JR, Prince DA. 1998. Cholinergic switching within neocortical inhibitory networks. Science 281: 985–988.

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, et al. 2001b. Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 98: 14096–14101.

    Article  CAS  Google Scholar 

  • Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, et al. 2001a. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410: 207–212.

    Article  CAS  Google Scholar 

  • Yoder RM, Pang KC. 2005. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus 15: 381–392.

    Article  CAS  PubMed  Google Scholar 

  • Zhou FM, Liang Y, Dani JA. 2001. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4: 1224–1229.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lendvai, B. (2008). Cholinergic Transmission. In: Lajtha, A., Vizi, E.S. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30382-6_5

Download citation

Publish with us

Policies and ethics