Skip to main content

In Vivo Imaging of Neurotransmitter Systems with PET

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

The advent of functional neuroimaging techniques has significantly widened the methodological repertoire of neurochemistry. Using positron emission tomography PET, the human and non-human primate brain's neurotransmitter and neuroreceptor systems can be studied in vivo. With the help of PET the distribution of the various neurotransmitter and neuroreceptor systems can be localized in precise anatomical context and several parameters of these systems can be measured in a quantitative manner. The basics of the technique, development of radiolabelled ligands, modeling and measuring radioligand effects in the brain are, among others, those key issues that are discussed concisely in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CT:

Computed tomography

FDG:

fluoro-deoxy-glucose

HPLC:

high performance liquid chromatography

MRI:

magnetic resonance imaging

NMSP:

N-methylspiperone

PBBS:

peripheral benzodiazepine-binding site

PET:

positron emission tomography

SA:

specific activity

SPECT:

single-photon-emission computed tomography

SR:

specific radioactivity

References

  • Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, et al. 2000. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: Validation and reproducibility. J Cereb Blood Flow Metab 20(2): 225–243.

    Article  CAS  PubMed  Google Scholar 

  • Andree B, Nyberg S, Ito H, Ginovart N, Brunner F, et al. 1998. Positron emission tomographic analysis of dose-dependent MDL 100,907 binding to 5-hydroxytryptamine-2A receptors in the human brain. J Clin Psychopharmacol 18: 317-323.

    Article  CAS  PubMed  Google Scholar 

  • Andree B, Hedman A, Thorberg SO, Nilsson D, Halldin C, et al. 2003. Positron emission tomographic analysis of dose-dependent NAD-299 binding to 5-hydroxytryptamine-1A receptors in the human brain. Psychopharmacology (Berl) 167(1): 37–45.

    CAS  Google Scholar 

  • Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, et al. 1999. [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen's encephalitis. Neurology 53(9): 2199–2203.

    CAS  PubMed  Google Scholar 

  • Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, et al. 2003. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 19(4): 1760–1769.

    Article  PubMed  Google Scholar 

  • Bergström KA, Halldin C, Hall H, Lundkvist C, Ginovart N, et al. 1997. In vitro and in vivo characterisation of nor-β-CIT: A potential radioligand for visualisation of the serotonin transporter in the brain. Eur J Nucl Med 24(6): 596–601.

    Article  PubMed  Google Scholar 

  • Bergström M, Hargreaves RJ, Burns HD, Goldberg MR, Sciberras D, et al. 2004. Human positron emission tomography studies of brain neurokinin 1 receptor occupancy by aprepitant. Biol Psychiatry 55(10): 1007–1012.

    Article  PubMed  CAS  Google Scholar 

  • Biver F, Goldman S, Luxen A, et al. 1994. Multicompartmental study of fluorine-18 altanserin binding to brain 5HT2 receptors in humans using positron emission tomography. Eur J Nucl Med 21: 937–946.

    Article  CAS  PubMed  Google Scholar 

  • Blin J, Sette G, Fiorelli M, Bletry O, Elghozi JL, et al. 1990. A method for the in vivo investigation of the serotonergic 5-HT2 receptors in the human cerebral cortex using positron emission tomography and 18F-labeled setoperone. J Neurochem 54(5): 1744–1754.

    Article  CAS  PubMed  Google Scholar 

  • Burns HD, Dannals RF, Langström B, et al. 1984. (3-N-[11C]-methyl)spiperone—a ligand binding to dopamine receptors: Radiochemical synthesis and biodistribution studies in mice. J Nucl Med 25: 1222–1227.

    CAS  PubMed  Google Scholar 

  • Burns HD, Dannals RF, Langstrom B, Ravert HT, Zemyan SE, et al. 1984. (3-N-[11C]methyl)spiperone, a ligand binding to dopamine receptors: Radiochemical synthesis and biodistribution studies in mice. J Nucl Med 25(11): 1222–1227.

    CAS  PubMed  Google Scholar 

  • Carson RE, Toczek MT, Lang L, et al. 2002. Human functional imaging with the 5-HT1A ligand 18F-FCWAY. J Nucl Med 43: 55.

    Google Scholar 

  • Carson RE, Lang L, Watabe H, Der MG, Adams HR, et al. 2000. PET evaluation of [(18)F]FCWAY, an analog of the 5-HT(1A) receptor antagonist, WAY-100635. Nucl Med Biol 27: 493–497.

    Article  CAS  PubMed  Google Scholar 

  • Chaly T, Dhawan V, Kazumata K, et al. 1996. Radiosynthesis of [18F]N-3-fluoropropyl-2-β-carbomethoxy-3-β-(4iodophenyl)nortropane and the first human study with positron emission tomography. Nucl Med Biol 23: 999–1004.

    Article  CAS  PubMed  Google Scholar 

  • Christian BT, Shi B, Mukherjee J. 2000. Quantification of striatal and extrastriatal D2 dopamine receptors using PET imaging of [18F]fallypride in nonhuman primates. Synapse 38: 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Cohen RM, Carson RE, Channing M, et al. 1998. [18F]-cyclofoxy PET imaging in man. J Nucl Med 29: 796–807.

    Google Scholar 

  • Crouzel C, Guillaume M, Barre L, Lemaire C, Pike VW. 1992. Ligands and tracers for PET studies of the 5-HT system—Current status. Nucl Med Biol-Int J Rad Appl B 19: 857–870.

    CAS  Google Scholar 

  • Dannals RF, Ravert HT, Frost JJ, Wilson AA, Burns HD, et al. 1985. Radiosynthesis of an opiate receptor binging radiotracer: (11C) Carfentanil. Int J Appl Radiat Isot 36: 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Dewey SL, Mac Gregor RR, Brodie JD, et al. 1990. Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine. Synapse 5: 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Ding YS, Fowler JS, Volkow ND, Gatley SJ, Logan J, et al. 1994. Pharmacokinetics and in vivo specificity of [11C]dl-threo-methylphenidate for the presynaptic dopaminergic neuron. Synapse 18(2): 152–160.

    Article  CAS  PubMed  Google Scholar 

  • Dolle F, Bottlaender M, Demphel S, et al. 2000. High efficient synthesis of [11C]PE2I, a selective radioliogand for the quantification of the dopamine transporter using PET. J Label Compd Radiopharm 43: 997–1004.

    Article  CAS  Google Scholar 

  • Farde L, Ginovart N, Halldin C, Chou YH, Olsson H, et al. 2000. A PET study of [11C]β-CIT-FE binding to the dopamine transporter in the monkey and human brain. Int J Neuropsychopharm 2: 203–214.

    Article  Google Scholar 

  • Farde L, Hall H, Ehrin E, Sedvall G. 1986. Quantitative analysis of dopamine D2 receptor binding in the human brain by PET. Science 231: 258–261.

    Article  CAS  PubMed  Google Scholar 

  • Farde L, Halldin C, Stone-Elander S, Sedvall G. 1987. PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology 92: 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Farde L, Ito H, Swahn C-G, Pike VW, Halldin C. 1998. Quantitative analyses of carbonyl-carbon-11-WAY-100635 binding to central 5-hydroxytryptamine-1A receptors in man. J Nucl Med 39: 1965–1971.

    CAS  PubMed  Google Scholar 

  • Finnema SJ, Seneca N, Farde L, Shchukin E, Sovago J, et al. 2005. A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey. Nucl Med Biol 32(4): 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Fischman AJ, Bonab AA, Babich JW, Livni E, Alpert NM, et al. 2001. [11C, 127I] Altropane: A highly selective ligand for PET imaging of dopamine transporter sites. Synapse 39(4): 332–342.

    Article  CAS  PubMed  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Ding YS, Dewey SL. 1999. PET and drug research and development. J Nucl Med 40(7): 1154–1163.

    CAS  PubMed  Google Scholar 

  • Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. 1989. Mapping cocaine binding sites in human and baboon brain in vivo. Synapse4(4): 371–377.

    Article  CAS  PubMed  Google Scholar 

  • Frost JJ, Douglass KH, Mayberg HS, et al. 1989. Multicompartmental analysis of [11C]-carfentanil binding to opiate receptors in humans measured by positron emission tomography. J Cereb Blood Flow Metab 9: 398–409.

    CAS  PubMed  Google Scholar 

  • Fujiwara T, Meija M, Itoh M, Anai K, Meguro K, et al. 1996. Quantitative imaging of [11C]benztropine in the human brain with graphic analysis and spectral analysis. Quantification of Brain Function Using PET. Myers R, Cunningham MG, Bailey D, Jones T, editors. San Diego: Academic Press.

    Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Sasaki T, et al. 2003. Imaging of adenosine A1 receptors in the human brain by positron emission tomography with [11C]MPDX. Ann Nucl Med 17(6): 511–515.

    Article  CAS  PubMed  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Sasaki T, et al. 2005. Adenosine A1 receptor mapping of the human brain by PET with 8-dicyclopropylmethyl-1-11C-methyl-3-propylxanthine. J Nucl Med 46(1): 32–37.

    PubMed  Google Scholar 

  • Gallezot JD, Bottlaender M, Gregoire MC, Roumenov D, Deverre JR, et al. 2004. In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-18F-fluoro-A-85380 and PET. J Nucl Med 46(2): 240–247.

    Google Scholar 

  • Gao M, Mock BH, Hutchins GD, Zheng QH. 2005. Synthesis and initial PET imaging of new potential dopamine D3 receptor radioligands (E)-4,3,2-[11C]methoxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides. Bioorg Med Chem 13(22): 6233–6243.

    Article  CAS  PubMed  Google Scholar 

  • Gulyás B, Halldin C, Vas A, Banati RB, Shchukin E, et al. 2005. [11C]Vinpocetine: A prospective peripheral benzodiazepine receptor ligand for primate PET studies. J Neurol Sci 229–230: 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Halldin C, Farde L, Hogberg T, et al. 1991. A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamides. Preparation and in vitro dopamine D2 receptor binding. Nucl Med Biol 18: 871–881.

    CAS  Google Scholar 

  • Halldin C, Farde L, Hogberg T, et al. 1995. Carbon-11-FLB 457: A radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 36: 1275–1281.

    CAS  PubMed  Google Scholar 

  • Halldin C, Farde L, Litton JE, Hall H, Sedvall G. 1992. (C-11)Ro 15-4513, a ligand for visualization of benzodiazepine receptor binding—Preparation, autoradiography and positron emission tomography. Psychopharmacology 108: 16–22.

    Article  CAS  PubMed  Google Scholar 

  • Halldin C, Farde L, Lundkvist C, et al. 1996. (11C)-β-CIT-FE, a radioligand for quantitation of the dopamine transporter in the living brain using positron emission tomography. Synapse 22: 386–390.

    Article  CAS  PubMed  Google Scholar 

  • Halldin C, Foged C, Chou YH, et al. 1998a. Carbon-11 NNC 112: A radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med 39: 2064–2068.

    Google Scholar 

  • Halldin C, Guilloteau D, Okubo Y, 1998b. PET-characterization of [C-11]PE2I binding to dopamine transporters in the monkey brain. J Nucl Med 39: 118.

    Google Scholar 

  • Halldin C, Gulyás B, Farde L. 2001. PET studies with carbon-11 radioligands in neuropsychological drug development. Curr Radiopharm Design 7: 1907–1929.

    Article  CAS  Google Scholar 

  • Halldin C, Gulyás B, Farde L. 2004. PET for drug development. From Morphological Imaging to Molecular Targeting. Berlin Heidelberg: Springer Verlag; pp. 95–110.

    Google Scholar 

  • Halldin C, Gulyás B, Langer O, Farde L. 2001. Brain radioligands—State of the art and new trends. Q J Nucl Med 2: 139–152.

    Google Scholar 

  • Halldin C, Högberg T. 1991. Radiotracers: Synthesis and use in imaging. A Textbook of Drug Design and Development. Kroogsgaard-Larsen P, Liljefors T, Madsen U, editors. Amsterdam: Harwood; pp. 174–205.

    Google Scholar 

  • Halldin C, Lundberg J, Sovago J, Gulyás B, Guilloteau D, et al. 2005. [11C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse 58(3): 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Halldin C, Stone-Elander S, Farde L, et al. 1986. Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D1 receptors using positron emission tomography. Appl Radiat Isot-Int J Rad A 37: 1039–1043.

    Article  CAS  Google Scholar 

  • Hashimoto K, Inoue O, Suzuki K, Yamasaki T, Kojima M. 1989. Synthesis and evaluation of 11C-PK 11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography. Ann Nucl Med 3(2): 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Herholz K. 2006. Brain receptor imaging. J Nucl Med 47(2): 302–312.

    CAS  PubMed  Google Scholar 

  • Hietala J, Nyman MJ, Eskola O, Laakso A, Gronroos T, et al. 2005. Visualization and quantification of neurokinin-1 (NK1) receptors in the human brain. Mol Imaging Biol 7(4): 262–272.

    Article  PubMed  Google Scholar 

  • Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA. 2000. Imaging the serotonin transporter with positron emission tomography: Initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27(11): 1719–1722.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Narendran R, Bischoff F, Guo N, Zhu Z, et al. 2005. A positron emission tomography radioligand for the in vivo labeling of metabotropic glutamate 1 receptor: (3-ethyl-2-[11C]methyl-6-quinolinyl)(cis-4-methoxycyclohexyl)methanone. J Med Chem 48(16): 5096–5099.

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L. 1998. PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. J Nucl Med 39(1): 208–214.

    CAS  PubMed  Google Scholar 

  • Iwabuchi K, Ito C, Tashiro M, Kato M, Kano M, et al. 2005. Histamine H1 receptors in schizophrenic patients measured by positron emission tomography. Eur Neuropsychopharmacol 15(2): 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Jones AK, Cunningham VJ, Ha-Kawa SK, Fujiwara T, Liyii Q, et al. 1994. Quantitation of [11C]diprenorphine cerebral kinetics in man acquired by PET using presaturation, pulse-chase and tracer-only protocols. J Neurosci Methods 51(2): 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Jovkar S, Wienhard K, Pawlik G, Coenen HH. 1990. The quantitative analysis of D2-dopamine receptors in baboon striatum in vivo with 3-N-[2′-18F]fluoroethylspiperone using positron emission tomography. J Cereb Blood Flow Metab 10(5): 720–726.

    CAS  PubMed  Google Scholar 

  • Kim SE, Szabó Z, Seki C, Ravert HT, Scheffel U, et al. 1999. Effect of tracer metabolism on PET measurement of [11C]pyrilamine binding to histamine H1 receptors. Ann Nucl Med 13(2): 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Ishii K, Fukumitsu N, Oda K, Sasaki T, et al. 2004. Quantitative analysis of adenosine A1 receptors in human brain using positron emission tomography and [1-methyl-11C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine. Nucl Med Biol 31(8): 975–981.

    Article  CAS  PubMed  Google Scholar 

  • Laakso A, Bergman J, Haaparanta M, Vilkman H, Solin O, et al. 1998. [F-18]CFT ([F-18]WIN 35,428), a radioligand to study the dopamine transporter with PET: Characterization in human subjects. Synapse 28: 244–250.

    Article  CAS  PubMed  Google Scholar 

  • Lang L, Jagoda E, Schmall B, Vuong BK, Adams HR, et al. 1999. Development of fluorine-18-labeled 5-HT1A antagonists. J Med Chem 42(9): 1576–1586.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg J, Odano I, Olsson H, Halldin C, Farde L. 2005. Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. J Nucl Med 46(9): 1505–1515.

    CAS  PubMed  Google Scholar 

  • Lundkvist C, Halldin C, Ginovart N, et al. 1996. [C-11]MDL 100907, a radioligand for selective imaging of 5-HT2A receptors with positron emission tomography. Life Sci 58:PL187–PL192.

    Article  CAS  Google Scholar 

  • Lundkvist C, Halldin C, Ginovart N, Swahn C-G, Farde L. 1997. [18F]β-CIT-FP is superior to [11C]β-CIT-FP for quantitation of the dopamine transporter. Nucl Med Biol 24: 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Madras BK, Meltzer PC, Liang AY, Elmaleh DR, Babich J, et al. 1998. Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse 29: 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Maeda J, Suhara T, Zhang MR, Okauchi T, Yasuno F, et al. 2004. Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: An imaging tool for glial cells in the brain. Synapse 52(4): 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Marchais-Oberwinkler S, Nowicki B, Pike VW, Halldin C, Sandell J, et al. 2005. N-oxide analogs of WAY-100635: New high affinity 5-HT1A receptor antagonists. Bioorg Med Chem 13(3): 883–893.

    Article  CAS  PubMed  Google Scholar 

  • Mayberg HS, Sadzot B, Meltzer CC, Fisher RS, Lesser RP, et al. 1991. Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography. Ann Neurol 30(1): 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Mazière M, Hantraye P, Prenant C, Sastre J, Comar D. 1984. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo [1,5-a] [1,4]benzodiazepine-3-carboxylate (RO 15.1788-11C): A specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 35: 973–976.

    Article  PubMed  Google Scholar 

  • McConathy J, Owens MJ, Kilts CD, Malveaux EJ, Camp VM, et al. 2004. Synthesis and biological evaluation of [11C]talopram and [11C]talsupram: Candidate PET ligands for the norepinephrine transporter. Nucl Med Biol 31(6): 705–718.

    Article  CAS  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, et al. 2006. 18F-CPFPX PET: On the generation of parametric images and the effect of scan duration. J Nucl Med 47(2): 200–207.

    PubMed  Google Scholar 

  • Mukherjee J, Yang ZY, Brown T, Lew R, Wernick M, et al. 1999. Preliminary assessment of extrastriatal dopamine D-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride. Nucl Med Biol 26: 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Mulholland GK, Kilbourn MR, Sherman P, et al. 1995. Synthesis, in vivo biodistribution and dosimetry of [C-11]N-methylpiperidyl benzilate ([C-11]NMPB), a muscarinic acetylcholine receptor antagonist. Nucl Med Biol 22: 13–17.

    Article  CAS  PubMed  Google Scholar 

  • Müller L, Halldin C, Farde L, Karlsson P, Hall H, et al. 1993. [11C] β-CIT, a cocaine analogue. Preparation, autoradiography and preliminary PET investigations. Nucl Med Biol 20(3): 249–255.

    Article  PubMed  Google Scholar 

  • Nordberg A, Hartvig P, Lundqvist H, Antoni G, Ulin J, et al. 1989. Uptake and regional distribution of (+)-(R)- and (−)-(S)-N-[methyl-11C]-nicotine in the brains of rhesus monkey. An attempt to study nicotinic receptors in vivo. J Neural Transm Park Dis Dement Sect 1(3): 195–205.

    Article  CAS  PubMed  Google Scholar 

  • Obrzut SL, Koren AO, Mandelkern MA, Brody AL, Hoh CK, et al. 2005. Whole-body radiation dosimetry of 2-[18F]Fluoro-A-85380 in human PET imaging studies. Nucl Med Biol 32(8): 869–874.

    Article  CAS  PubMed  Google Scholar 

  • Okuyama S, Chaki S, Yoshikawa R, Ogawa S, Suzuki Y, et al. 1999. Neuropharmacological profile of peripheral benzodiazepine receptor agonists, DAA1097 and DAA1106. Life Sci 64(16): 1455–1464.

    Article  CAS  PubMed  Google Scholar 

  • Olsson H, Halldin C, Swahn C-G, Farde L. 1993. Quantification of [C-11]FLB 457 binding to extrastriatal dopamine receptors in the human brain. J Cerebr Blood Flow Metab 19: 1164–1173.

    Google Scholar 

  • Persson A, Pauli S, Halldin C, et al. 1989. Saturation analysis of specific 11C-Ro 15–1788 binding to the human neocortex using positron emission tomography. Hum Psychopharmacol 4: 21–31.

    Article  Google Scholar 

  • Pike VW, Halldin C, Crouzel C, et al. 1993. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites—Current status. Nucl Med Biol 20: 503–525.

    Article  CAS  PubMed  Google Scholar 

  • Pike VW, Halldin C, McCarron JA, Lundkvist C, Hirani E, et al. 1998. [Carbonyl-11C]Desmethyl-WAY-100635 (DWAY) is a potent and selective radioligand for central 5-HT1A receptors in vitro and in vivo. Eur J Nucl Med 25(4): 338–346.

    Article  CAS  PubMed  Google Scholar 

  • Pike VW, Mccarron JA, Lammertsma AA, et al. 1996. Exquisite delineation of 5-HT1A receptors in human brain with PET and [carbonyl-C-11]WAY-100635. Eur J Pharmacol 301: R5–R7.

    Article  CAS  PubMed  Google Scholar 

  • Sandell J, Halldin C, Chou YH, Swahn CG, Thorberg SO, et al. 2002. PET-examination and metabolite evaluation in monkey of [11C]NAD-299, a radioligand for visualisation of the 5-HT1A receptor. Nucl Med Biol 29(1): 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Sandell J, Halldin C, Hall H, et al. 1999. Radiosynthesis and autoradiographic evaluation of [C-11]NAD-299, a radioligand for visualization of the 5-HT1A receptor. Nucl Med Biol 26: 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Schou M, Halldin C, Pike VW, Mozley PD, Dobson D, et al. 2005. Post-mortem human brain autoradiography of the norepinephrine transporter using (S,S)-[18F]FMeNER-D2. Eur Neuropsychopharmacol 15(5): 517–520.

    Article  CAS  PubMed  Google Scholar 

  • Schou M, Halldin C, Sovago J, Pike VW, Gulyas B, et al. 2003. Specific in vivo binding to the norepinephrine transporter demonstrated with the PET radioligand, (S,S)-[11C]MeNER. Nucl Med Biol 30(7): 707–714.

    Article  CAS  PubMed  Google Scholar 

  • Schou M, Halldin C, Sovago J, Pike VW, Hall H, et al. 2004. PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse 53(2): 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Schou M, Sóvágó J, Pike VW, Gulyás B, Bogeso KP, et al. 2006. Synthesis and positron emission tomography evaluation of three norepinephrine transporter radioligands: [C-11]desipramine, [C-11]talopram and [C-11]talsupram. Mol Imaging Biol 8(1): 1–8.

    Article  PubMed  Google Scholar 

  • Seneca N, Andree B, Sjoholm N, Schou M, Pauli S, et al. 2005. Whole-body biodistribution, radiation dosimetry estimates for the PET norepinephrine transporter probe (S,S)-[18F]FMeNER-D2 in non-human primates. Nucl Med Commun 26(8): 695–700.

    Article  CAS  PubMed  Google Scholar 

  • Sobrio F, Debruyne D, Dhilly M, Chazalviel L, Camsonne R, et al. 2005. Evaluation in rats and primates of [11C]-mecamylamine, a potential nicotinic acetylcholine receptor radioligand for positron emission tomography. Neurochem Int 46(6): 479–488.

    Article  CAS  PubMed  Google Scholar 

  • Solin O, Eskola O, Hamill TG, Bergman J, Lehikoinen P, et al. 2004. Synthesis and characterization of a potent, selective, radiolabeled substance-P antagonist for NK1 receptor quantitation: ([18F]SPA-RQ). Mol Imaging Biol 6(6): 373–384.

    Article  PubMed  Google Scholar 

  • Sóvágó J, Farde L, Halldin C, Langer O, Laszlovszky I, et al. 2004. Positron emission tomographic evaluation of the putative dopamine-D3 receptor ligand, [11C]RGH-1756 in the monkey brain. Neurochem Int 45(5): 609–617.

    Article  PubMed  CAS  Google Scholar 

  • Sóvágó J, Farde L, Halldin C, Schukin E, Schou M, et al. 2005. Lack of effect of reserpine-induced dopamine depletion on the binding of the dopamine-D3 selective radioligand, [11C]RGH-1756. Brain Res Bull 67(3): 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Szabó Z, Kao PF, Mathews WB, Ravert HT, Musachio JL, et al. 1996. Positron emission tomography of 5-HT reuptake sites in the human brain with C-11 McN5652 extraction of characteristic images by artificial neural network analysis. Behav Brain Res 73(1–2): 221–224.

    PubMed  Google Scholar 

  • Szabó Z, Ravert HT, Gozukara I, Geckle W, Seki C, et al. 1993. Noncompartmental and compartmental modeling of the kinetics of carbon-11 labeled pyrilamine in the human brain. Synapse 15(4): 263–275.

    Article  PubMed  Google Scholar 

  • Szabó Z, Scheffel U, Suehiro M, Dannals RF, Kim SE, et al. 1995. Positron emission tomography of 5-HT transporter sites in the baboon brain with [11C]McN5652. J Cereb Blood Flow Metab 15(5): 798–805.

    PubMed  Google Scholar 

  • Takahashi K, Murakami M, Miura S, Iida H, Kanno I, et al. 1999. Synthesis and autoradiographic localization of muscarinic cholinergic antagonist (+)N-[11C]methyl-3piperidyl benzylate as a potent radioligand for positron emission tomography. Appl Radiat Isot 5: 521–525.

    Article  Google Scholar 

  • Tashiro M, Sakurada Y, Iwabuchi K, Mochizuki H, Kato M, et al. 2004. Central effects of fexofenadine and cetirizine: Measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11C-doxepin positron emission tomography. J Clin Pharmacol 44(8): 890–900.

    Article  CAS  PubMed  Google Scholar 

  • Theodore WH, Carson RE, Andreasen P, et al. 1992. PET imaging of opiate receptor binding in human epilepsy using [F-18]cyclofoxy. Epilepsy Res 13: 129–139.

    Article  CAS  PubMed  Google Scholar 

  • Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, et al. 2001a. Ketamine alters the availability of striatal dopamine transporter as measured by [11C]β-CFT and [11C]β-CIT-FE in the monkey brain. Synapse 42(4): 273–280.

    Article  CAS  Google Scholar 

  • Tsukada H, Takahashi K, Miura S, Nishiyama S, Kakiuchi T, 2001b. Evaluation of novel PET ligands (+)N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB) and its stereoisomer [11C](–)3-MPB for muscarinic cholinergic receptors in the conscious monkey brain: A PET study in comparison with. Synapse 39(2): 182–192.

    Article  CAS  Google Scholar 

  • Van Dort ME, Kim JH, Tluczek L, Wieland DM. 1997. Synthesis of 11C-labeled desipramine and its metabolite 2-hydroxydesipramine: Potential radiotracers for PET studies of the norepinephrine transporter. Nucl Med Biol 24(8): 707–711.

    Article  CAS  PubMed  Google Scholar 

  • Vas A, Gulyás B. 2005. Eburnamine derivatives and the brain. Med Res Rev 25(6): 737–757.

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Ding YS, Wang GJ, Gatley SJ. 1998. Positron emission tomography radioligands for dopamine transporters and studies in human and nonhuman primates. Adv Pharmacol 42: 211–214.

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Ding YS, Wang GJ, Gatley SJ. 1999. Imaging the neurochemistry of nicotine actions: Studies with positron emission tomography. Nicotine Tob Res 1: S127–S132.

    Article  PubMed  Google Scholar 

  • Wagner HN, Burns HD, Dannals RF, et al. 1983. Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264–1266.

    Article  CAS  PubMed  Google Scholar 

  • Wienhard K, Coenen HH, Pawlik G, Rudolf J, Laufer P, et al. 1990. PET studies of dopamine receptor distribution using [18F]fluoroethylspiperone: Findings in disorders related to the dopaminergic system. J Neural Transm Gen Sect 81(3): 195–213.

    Article  CAS  PubMed  Google Scholar 

  • Wilson AA, Ginovart N, Hussey D, Meyer J, Houle S. 2002. In vitro and in vivo characterisation of [11C]-DASB: A probe for in vivo measurements of the serotonin transporter by positron emission tomography. Nucl Med Biol 29(5): 509–515.

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Tueckmantel W, Wang X, Zhu A, Kozikowski AP, et al. 2005. Methoxyphenylethynyl, methoxypyridylethynyl and phenylethynyl derivatives of pyridine: Synthesis, radiolabeling and evaluation of new PET ligands for metabotropic glutamate subtype 5 receptors. Nucl Med Biol 32(6): 631–640.

    Article  CAS  PubMed  Google Scholar 

  • Zubieta JK, Koeppe RA, Frey KA, Kilbourn MR, Mangner T, et al. 2001. Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse 39: 275–287.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Gulyás, B., Halldin, C., Mazière, B. (2008). In Vivo Imaging of Neurotransmitter Systems with PET. In: Lajtha, A., Vizi, E.S. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30382-6_3

Download citation

Publish with us

Policies and ethics