Skip to main content

Adenosine Neuromodulation and Neuroprotection

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

The adenosine moiety fulfils an important intracellular homeostatic role since it is part of molecules that play key roles in defining the status of all cells, namely energy charge (ATP), redox status (NADH), and cell division (SAH/SAM). But the signaling role of the adenosine molecule itself is restricted to a paracrine role, signaling metabolic imbalance of cells within a tissue. Apart from this general role common to most tissues in mammals, adenosine fulfils a particular role as a neuromodulator in the nervous system. This involves a predominant inhibitory effect operated by adenosine A1 receptors, which results from a combined presynaptic inhibition of the release of excitatory neurotransmitters together with a postsynaptic action leading to neuronal hyperpolarization and an ability to depress plasticity by inhibition of NMDA receptors and voltage-sensitive calcium channels. Overall, this A1 receptor-mediated inhibition is aimed at decreasing the noise of excitatory transmission in brain circuits. Adenosine can also activate facilitatory A2A receptors, which only come into play at higher frequency of nerve stimulation and are directed at selectively shutting down A1 receptor inhibition in stimulated synapses to aid implementing changes in synaptic efficiency. Therefore, the combined role of A1 and A2A receptors is designed to increase salience of information in brain circuits. Apart from this main physiological role, adenosine also plays a relevant role in controlling the demise of damage in noxious brain conditions. In fact, the inhibitory A1 receptors are able to curtail brain damage. They play a role at the onset of brain damage and function as a hurl that needs to be overcome to allow the development of brain damage. In parallel, in chronic noxious brain conditions, A2A receptors contribute for brain damage, especially when insidious damage to synapses initiates neurodegeneration. Hence, A2A receptor antagonists are now being explored as novel neuroprotective strategies to interfere with the initial processes of neurodegenerative conditions, such as Parkinson's and Alzheimer's diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCPA:

2-Chloro-N6-cyclopentyladenosine

CGS21680:

2-[p-(2-carbonyl-ethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine

Cl-IB-MECA:

1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide

CP-68,247:

8-chloro-4-cyclohexyl-amino-1-(trifluoromethyl)[1,2,4]triazolo[4,3-a] quinoxaline

CSC:

8-(3-chlorostyryl)caffeine

DPCPX:

1,3-dipropyl-8-cyclopentylxanthine

IB-MECA:

N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide

KF17837:

1,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine

MRE3008F20:

5-[[(4-methoxyphenyl)amino]carbonyl]amino-8-ethyl-2-(2-furyl)-pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine

MRS1220:

9-chloro-2-(2-furanyl)-5-[(phenylacetyl)amino][1,2,4]-triazolo[1,5-c]quinazoline

MRS1334:

1,4-Dihydro-2-methyl-6-phenyl-4-(phenylethynyl)-3,5-pyridinedicarboxylic acid 3-ethyl-5-[(3-nitrophenyl)methyl] ester

MRS1754:

N-(4-cyano-phenyl)-2-[4-(2,6-dioxo-1,3-dipropyl-2,3,4,5,6,7-hexahydro-1H-purin-8-yl)-phenoxy]acetamide

R-PIA:

R-N6-(phenylisopropyl)-adenosine

SCH58261:

5-amino-2-(2-furyl)-7-phenylethyl-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine

ZM241385:

4-(2-[7-amino-2-[2-furyl]-[1,2,4]triazolo[2,3-a]{1,3,5}triazin-5-yl-amino]ethyl)phenol

References

  • Andlin-Sobocki P, Jönsson B, Wittchen HU, Olesen J. 2005. Costs of disorders of the brain in Europe. Eur J Neurol 12 (Suppl.1): 1–27.

    Article  PubMed  Google Scholar 

  • Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia C, et al. 2006. Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain β-amyloid production. Neurosci 142: 941–952.

    Article  CAS  Google Scholar 

  • Bézard E, Gross CE, Brotchie JM. 2003. Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends Neurosci 26: 215–221.

    Article  PubMed  Google Scholar 

  • Boison D. 2006. Adenosine kinase, epilepsy and stroke: Mechanisms and therapies. Trends Pharmacol Sci 27: 652–658.

    Article  CAS  PubMed  Google Scholar 

  • Choi DS, Cascini MG, Mailliard W, Young H, Paredes P, et al. 2004. The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference. Nat Neurosci 7: 855–861.

    Article  CAS  PubMed  Google Scholar 

  • Collingridge GL, Watkins JC. 1995. The NMDA Receptor. USA: Oxford University Press.

    Google Scholar 

  • Cunha RA. 2001. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem Int 38: 107–125.

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA. 2005. Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade. Purinergic Signal 1: 111–134.

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA. 2007. Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. Neurochem Int (in press).

    Google Scholar 

  • Cunha RA, Chen JF, Sitkovsky MV. 2007. Opposite modulation of peripheral inflammation and neuroinflammation by adenosine A2A receptors. Interactions Between Neurons and Glia in Aging and Disease. Malva JO, Rego AC, Cunha RA, Oliveira CR, editors. Berlin: Springer-Verlag.

    Google Scholar 

  • Dale N. 2002. Resetting intrinsic purinergic modulation of neural activity: An associative mechanism? J Neurosci 22: 10461–10469.

    CAS  PubMed  Google Scholar 

  • Dall'Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, et al. 2007. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol 203: 241–245.

    Article  PubMed  Google Scholar 

  • Dauer W, Przedborski S. 2003. Parkinson's disease: Mechanisms and models. Neuron 39: 889–909.

    Article  CAS  PubMed  Google Scholar 

  • de Mendonça A, Ribeiro JA. 2001. Adenosine and synaptic plasticity. Drug Dev Res 52: 283-290.

    Article  Google Scholar 

  • de Mendonça A, Costenla AR, Ribeiro JA. 2002. Persistence of the neuromodulatory effects of adenosine on synaptic transmission after long-term potentiation and long-term depression. Brain Res 932: 56–60.

    Article  PubMed  Google Scholar 

  • de Mendonça A, Sebastião AM, Ribeiro JA. 2000. Adenosine: Does it have a neuroprotective role after all? Brain Res Rev 33: 258–274.

    Article  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA. 2001. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24: 31–55.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SS. 2001. Evolving concepts in G protein-coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharmacol Rev 53: 1–24.

    CAS  PubMed  Google Scholar 

  • Fields RD, Burnstock G. 2006. Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7: 423–436.

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. 1999. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51: 83–133.

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. 2005. Adenosine and brain function. Int Rev Neurobiol 63: 191–270.

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J. 2001. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53: 527–552.

    CAS  PubMed  Google Scholar 

  • Geiger JD, Fyda DM 1991. Adenosine transport in nervous system tissues. Adenosine in the nervous system. Stone TW, editor. London: Academic Press; pp. 1–23.

    Google Scholar 

  • Graybiel AM, Aosaki T, Flaherty AW, Kimura M. 1994. The basal ganglia and adaptive motor control. Science 265: 1826–1831.

    Article  CAS  PubMed  Google Scholar 

  • Halassa MM, Fellin T, Haydon PG. 2007. The tripartite synapse: Roles for gliotransmission in health and disease. Trends Mol Med 13: 54–63.

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Kozlow M, Kritz-Silverstein D, Barrett-Connor E, Morton D. 2002. Coffee consumption and cognitive function among older adults. Am J Epidemiol 156: 842–850.

    Article  PubMed  Google Scholar 

  • Katz PS. 1999. Beyond Neurotransmission: Neuromodulation and its Importance for Information Processing. USA: Oxford University Press.

    Google Scholar 

  • Latini S, Pedata F. 2001. Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J Neurochem 79: 463–484.

    Article  CAS  PubMed  Google Scholar 

  • Lautt WW. 1996. Intrinsic regulation of hepatic blood flow. Can J Physiol Pharmacol 74: 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Rosenberg PA. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330: 613–622.

    Article  CAS  PubMed  Google Scholar 

  • Lynch MA. 2004. Long-term potentiation and memory. Physiol Rev 84: 87–136.

    Article  CAS  PubMed  Google Scholar 

  • Lynch GS, Dunwiddie T, Gribkoff V. 1977. Heterosynaptic depression: A postsynaptic correlate of long-term potentiation. Nature 266: 737–739.

    Article  CAS  PubMed  Google Scholar 

  • Maia L, de Mendonça A. 2002. Does caffeine intake protect from Alzheimer's disease? Eur J Neurol 9: 377–382.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JB, Miller K, Dunwiddie TV. 1993. Adenosine-induced suppression of synaptic responses and the initiation and expression of long-term potentiation in the CA1 region of the hippocampus. Hippocampus 3: 77–86.

    Article  CAS  PubMed  Google Scholar 

  • Olesen J, Baker MG, Freund T, Luca M, Mendlewicz J, et al. 2006. Consensus document on European brain research. J Neurol Neurosurg Psychiatry 77(Suppl 1): i1–i49.

    Article  PubMed  Google Scholar 

  • Osswald H, Vallon V, Mühlbauer B. 1996. Role of adenosine in tubuloglomerular feedback and acute renal failure. J Auton Pharmacol 16: 377–380.

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC. 2004. Mild cognitive impairment as a diagnostic entity. J Intern Med 256: 183–194.

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD, Batista LC, Takahashi RN. 2005. Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol Aging 26: 957–964.

    Article  CAS  PubMed  Google Scholar 

  • Ralevic V, Burnstock G. 1998. Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492.

    CAS  PubMed  Google Scholar 

  • Rego AC, Oliveira CR. 2003. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28: 1563–1574.

    Article  CAS  PubMed  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. 1999. Spikes: Exploring the Neural Code. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ritchie K, Carrière I, Portet F, de Mendonça A, Dartigues JF, et al. 2007. The neuro-protective effects of caffeine: A prospective population study (the Three City Study). Neurology 69: 536-545.

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S. 2007. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol (in press).

    Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. 2006. Targeting adenosine A2A receptors in Parkinson's disease. Trends Neurosci 29: 647–654.

    Article  CAS  PubMed  Google Scholar 

  • Serrano A, Haddjeri N, Lacaille JC, Robitaille R. 2006. GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26: 5370–5382.

    Article  CAS  PubMed  Google Scholar 

  • Shryock JC, Belardinelli, L. 1997. Adenosine and adenosine receptors in the cardiovascular system: Biochemistry, physiology, and pharmacology. Am J Cardiol 79: 2–10.

    Article  CAS  PubMed  Google Scholar 

  • Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, et al. 2004. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22: 657–682.

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Stark CE, Clark RE. 2004. The medial temporal lobe. Annu Rev Neurosci 27: 279–306.

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Le Moine C, Fisone G, Fredholm BB. 1999. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59: 355–396.

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ. 2004. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44: 181–193.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H. 2000. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362: 299–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Although I sign this manuscript alone, it is the product of daily discussion with all who worked in my lab and with all colleagues with whom I share the passion of adenosine. A special word of thanks should go to Alexandre de Mendonça and Jiang-Fan Chen for the frequency of the discussions. Finally, I should like to apologize all the colleagues not quoted in this short reference list which was based in some (few) review articles rather than the important original contributions

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Cunha, R.A. (2008). Adenosine Neuromodulation and Neuroprotection. In: Lajtha, A., Vizi, E.S. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30382-6_11

Download citation

Publish with us

Policies and ethics