Skip to main content

Erythropoietin Signaling Pathways in Neuroprotection

  • Reference work entry
  • First Online:
  • 786 Accesses

Abstract:

Erythropoietin (EPO) is the principal regulator of red blood cell production and is synthesized by the adult kidney. Insulin‐like growth factor‐I (IGF‐I) is a neuroprotective cytokine that supports neuronal development and survival. As neuroprotectants, EPO and IGF‐I have synergistic effects when combined. Both EPO and IGF‐I and their receptor are expressed in the mammalian central nervous system (CNS) where they have been shown to play a neuroprotective role. The aim of this chapter is to identify and discuss the key signaling molecules and events published in numerous reports that are involved in EPO‐ and IGF‐I‐mediated neuroprotection. Better understanding of the intricacies of EPO signaling and EPO/IGF‐I synergy in the central and peripheral nervous system provide new strategies for novel therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BAD:

Bcl2‐antagonist of cell death

c‐myc:

myc protooncogene protein; casp‐3, caspain‐3

CNS:

central nervous system

EPO:

erythropoietin

EPO‐R:

erythropoietin receptor

GSK‐3β:

glycogen synthase kinase‐3β

IAP:

inhibitors of apoptosis

IGF‐I:

insulin‐like growth factor‐I

IGF‐IR:

IGF‐I receptor

IKK:

inhibitor of nuclear factor kappa‐B kinase

JAK2:

janus family of protein tyrosine kinase‐2

MnSOD:

Mn‐superoxide dismutase

NF‐κB:

nuclear factor kappa‐B

PI‐3 kinase:

phosphatidylinositol‐3 kinase

PI‐3,4‐P2 :

phosphatidylinositol‐3,4,‐diphosphate

PI‐3,4,5‐P3 :

phosphatidylinositol‐3,4,5‐trisphosphate

STAT5:

nuclear translocation of the signal transducer and activator of transcription‐5

XIAP:

X‐linked IAP

References

  • Aleyasin H, Cregan SP, Iyirhiaro G, O'Hare MJ, Callaghan SM, et al 2004. Nuclear factor‐(kappa)B modulates the p53 response in neurons exposed to DNA damage. J Neurosci 24: 2963–2973.

    Article  CAS  PubMed  Google Scholar 

  • Barkett M, Gilmore TD. 1999. Control of apoptosis by Rel/NF‐kappaB transcription factors. Oncogene 18: 6910–6924.

    Article  CAS  PubMed  Google Scholar 

  • Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, et al 2000. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase‐3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci 97: 11074–11079.

    Article  CAS  PubMed  Google Scholar 

  • Bittorf T, Buchse T, Sasse T, Jaster R, Brock J. 2001. Activation of the transcription factor NF‐kappaB by the erythropoietin receptor. Structural requirements and biological significance. Cell Signal 13: 673–681.

    Article  CAS  PubMed  Google Scholar 

  • Bossy‐Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, et al 2004. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38‐activated K+ channels. Neuron 41: 351–365.

    Article  PubMed  Google Scholar 

  • Botchkina GI, Geimonen E, Bilof ML, Villarreal O, Tracey KJ. 1999. Loss of NF‐kappaB activity during cerebral ischemia and TNF cytotoxicity. Mol Med 5: 372–381.

    CAS  PubMed  Google Scholar 

  • Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, et al 2000. Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 97: 10526–10531.

    Article  CAS  PubMed  Google Scholar 

  • Burow ME, Weldon CB, Melnik LI, Duong BN, Collins‐Burow BM, et al 2000. PI3‐K/AKT regulation of NF‐kappaB signaling events in suppression of TNF‐induced apoptosis. Biochem Biophys Res Commun 271: 342–345.

    Article  CAS  PubMed  Google Scholar 

  • Celik M, Gokmen N, Erbayraktar S, Akhisaroglu M, Konakc S, et al 2002. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci USA 99: 2258–2263.

    Article  CAS  PubMed  Google Scholar 

  • Chin K, Yu X, Beleslin‐Cokic B, Liu C, Shen K, et al 2000. Production and processing of erythropoietin receptor transcripts in brain. Brain Res Mol Brain Res 81: 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Chong ZZ, Kang JQ, Maiese K. 2002. Hematopoietic factor erythropoietin fosters neuroprotection through novel signal transduction cascades. J Cereb Blood Flow Metab 22: 503–514.

    Article  CAS  PubMed  Google Scholar 

  • Chong ZZ, Maiese KJ. 2003. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase‐mediated pathways. Br J Pharmacol 138: 1107–1118.

    Article  CAS  PubMed  Google Scholar 

  • Crowder RJ, Freeman RS. 2000. Glycogen synthase kinase‐3 beta activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3‐kinase or Akt but not for death caused by nerve growth factor withdrawal. J Biol Chem 275: 34266–34271.

    Article  CAS  PubMed  Google Scholar 

  • D'Andrea AD, Lodish HF, Wong GG. 1989. Expression cloning of the murine erythropoietin receptor. Cell 57: 277–285.

    Article  PubMed  Google Scholar 

  • Damen JE, Cutler RL, Jiao H, Yi T, Krystal G. 1995a. Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3‐kinase and for EpR‐associated PI 3‐kinase activity. J Biol Chem 270: 23402–23408.

    Article  CAS  Google Scholar 

  • Damen JE, Mui AL, Puil L, Pawson T, Krystal G. 1993. Phosphatidylinositol 3‐kinase associates, via its Src homology 2 domains, with the activated erythropoietin receptor. Blood 81: 3204–3210.

    CAS  PubMed  Google Scholar 

  • Damen JE, Wakao H, Miyajima A, Krosl J, Humphries RK, et al 1995b. Tyrosine 343 in the erythropoietin receptor positively regulates erythropoietin‐induced cell proliferation and Stat5 activation. Embo J 14: 5557–5568.

    CAS  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, et al 1997. Akt phosphorylation of BAD couples survival signals to the cell‐intrinsic death machinery. Cell 91: 231–241.

    Article  CAS  PubMed  Google Scholar 

  • De‐Fraja C, Conti L, Magrassi L, Govoni S, Cattaneo E. 1998. Members of the JAK/STAT proteins are expressed and regulated during development in the mammalian forebrain. J Neurosci Res 54: 320–330.

    Article  PubMed  Google Scholar 

  • Deveraux QL, Reed JC. 1999. IAP family proteins—suppressors of apoptosis. Genes Dev 13: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas LA, et al 1995. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA 92: 3717–3720.

    Article  CAS  PubMed  Google Scholar 

  • Digicaylioglu M, Garden G, Timberlake S, Fletcher L, Lipton SA. 2004a. Acute neuroprotective synergy of erythropoietin and insulin‐like growth factor I. Proc Natl Acad Sci USA 101: 9855–9860.

    Article  CAS  Google Scholar 

  • Digicaylioglu M, Kaul M, Fletcher L, Dowen R, Lipton SA. 2004b. Erythropoietin protects cerebrocortical neurons from HIV‐1/gp120‐induced damage. Neuroreport 15: 761–763.

    Article  Google Scholar 

  • Digicaylioglu M, Lipton SA. 2001. Erythropoietin‐mediated neuroprotection involves cross‐talk between Jak2 and NF‐kappaB signalling cascades. Nature 412: 641–647.

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, et al 2002. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8: 495–505.

    CAS  PubMed  Google Scholar 

  • Fry MJ, Waterfield MD. 1993. Structure and function of phosphatidylinositol 3‐kinase: a potential second messenger system involved in growth control. Philos Trans R Soc Lond B Biol Sci 340: 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Fujio Y, Walsh K. 1999. Akt mediates cytoprotection of U S Aendothelial cells by vascular endothelial growth factor in an anchorage‐dependent manner. J Biol Chem 274: 16349–16354.

    Article  CAS  PubMed  Google Scholar 

  • Gustin JA, Ozes ON, Akca H, Pincheira R, Mayo LD, Li Q, Guzman JR, Korgaonkar CK, Donner DB. 2004. Cell type‐specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3‐kinase/Akt signaling to NF‐kappa B activation. J Biol Chem 279: 1615–1620.

    Article  CAS  PubMed  Google Scholar 

  • Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, et al 2002. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 99: 9450–9455.

    Article  CAS  PubMed  Google Scholar 

  • Grilli M, Pizzi M, Memo M, Spano P. 1996. Neuroprotection by aspirin and sodium salicylate through blockade of NF‐kappaB activation. Science 274: 1383–1385.

    Article  CAS  PubMed  Google Scholar 

  • Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, et al 2002. HIF‐1‐induced erythropoietin in the hypoxic retina protects against light‐induced retinal degeneration. Nat Med 8: 718–724.

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Cavanaugh JE, Kimelman D, Xia Z. 2000. Role of glycogen synthase kinase‐3beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci 20: 2567–2574.

    CAS  PubMed  Google Scholar 

  • Higuchi M, Onishi K, Masuyama N, Gotoh Y. 2003. The phosphatidylinositol‐3 kinase (PI3K)‐Akt pathway suppresses neurite branch formation in NGF‐treated PC12 cells. Gene Cells 8: 657–669.

    Article  CAS  Google Scholar 

  • Holcik M, Korneluk RG. 2001. XIAP, the guardian angel. Nat Rev Mol Cell Biol 2: 550–556.

    Article  CAS  PubMed  Google Scholar 

  • Ihle JN, Kerr IM. 1995. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11: 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O. 1995. Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol 13: 369–398.

    Article  CAS  PubMed  Google Scholar 

  • Jelkmann W. 1992. Erythropoietin: structure, control of production, and function. Physiol Rev 72: 449–489.

    CAS  PubMed  Google Scholar 

  • Jones DM, Tucker BA, Rahimtula M, Mearow KM. 2003. The synergistic effects of NGF and IGF‐1 on neurite growth in adult sensory neurons: convergence on the PI 3‐kinase signaling pathway. J Neurochem 86: 11116–11128.

    Article  Google Scholar 

  • Junk AK, Mammis A, Savitz SI, Singh M, Roth S, et al 2002. Erythropoietin administration protects retinal neurons from acute ischemia‐reperfusion injury. Proc Natl Acad Sci USA 99: 10659–10664.

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Lannes‐Vieira J, Kreutzberg GW, Wekerle H, et al 1994a. Transcription factor NF‐kappa B is activated in microglia during experimental autoimmune encephalomyelitis. J Neuroimmunol 55: 99–106.

    Article  CAS  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle PA. 1994b. Constitutive NF‐kappa B activity in neurons. Mol Cell Biol 14: 3981–3992.

    CAS  Google Scholar 

  • Karin M, Ben‐Neriah Y. 2000. Phosphorylation meets ubiquitination: the control of NF‐[kappa]B activity. Annu Rev Immunol 18: 621–663.

    Article  CAS  PubMed  Google Scholar 

  • Kirito K, Uchida M, Yamada M, Miura Y, Komatsu N. 1997. A distinct function of STAT proteins in erythropoietin signal transduction. J Biol Chem 272: 16507–16513.

    Article  CAS  PubMed  Google Scholar 

  • Klingmuller U, Wu H, Hsiao JG, Toker A, Duckworth BC, et al 1997. Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors. Proc Natl Acad Sci USA 94: 3016–3021.

    Article  CAS  PubMed  Google Scholar 

  • Koury MJ. 1992. Programmed cell death (apoptosis) in hematopoiesis. Exp Hematol 20: 391–394.

    CAS  PubMed  Google Scholar 

  • Koury MJ, Bondurant MC. 1990. Control of red cell production: the roles of programmed cell death (apoptosis) and erythropoietin. Transfusion 30: 673–674.

    Article  CAS  PubMed  Google Scholar 

  • Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, et al 1999. Release of caspase‐9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 96: 5752–5757.

    Article  CAS  PubMed  Google Scholar 

  • Kumral A, Ozer E, Yilmaz O, Akhisaroglu M, Gokmen N, et al 2003. Neuroprotective effect of erythropoietin on hypoxic‐ischemic brain injury in neonatal rats. Biol Neonate 83: 224–228.

    Article  CAS  PubMed  Google Scholar 

  • LeRoith D, Roberts CT Jr. 1993. Insulin‐like growth factors. Ann N Y Acad Sci 692: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Li JD, Feng W, Gallup M, Kim JH, Gum J, et al 1998. Activation of NF‐kappaB via a src‐dependent ras‐MAPK‐pp90rsk pathway is required for pseudomonas aeruginosa‐induced mucin overproduction in epithelial cells [In Process Citation]. Proc Natl Acad Sci USA 95: 5718–5723.

    Article  CAS  PubMed  Google Scholar 

  • Lin KI, Di Donato JA, Hoffmann A, Hardwick JM, Ratan RR. 1998. Suppression of steady‐state, but not stimulus‐induced NF‐kappaB activity inhibits alphavirus‐induced apoptosis. J Cell Biol 141: 1479–1487.

    Article  CAS  PubMed  Google Scholar 

  • Liu RY, Snider W. 2001. Different signaling pathways mediate regenerative versus developmental sensory axon growth. J Neurosci 21: RC164.

    PubMed  Google Scholar 

  • Lucas JJ, Hernandez F, Gomez‐Ramos P, Moran MA, Hen R, et al 2001. Decreased nuclear beta‐catenin, tau hyperphosphorylation and neurodegeneration in GSK‐3beta conditional transgenic mice. Embo J 20: 27–39.

    Article  CAS  PubMed  Google Scholar 

  • Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, et al 1996. Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8: 666–676.

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Nagao M, Takahata K, Konishi Y, Gallyas F Jr, et al 1993. Functional erythropoietin receptors of the cells with neuronal characteristics‐comparison with receptor properties from erythroid cells. J Biol Chem 268: 11208–11216.

    CAS  PubMed  Google Scholar 

  • Mayeux P, Dusanter‐Fourt I, Muller O, Mauduit P, Sabbah M, et al 1993. Erythropoietin induces the association of phosphatidylinositol 3′‐kinase with a tyrosine‐phosphorylated protein complex containing the erythropoietin receptor. Eur J Biochem 216: 821–828.

    Article  CAS  PubMed  Google Scholar 

  • Min Y, Park JH, Chong SA, Kim YS, Ahn YS, et al 2003. Pyrrolidine dithiocarbamate‐induced neuronal cell death is mediated by Akt, casein kinase 2, c‐Jun N‐terminal kinase, and IkappaB kinase in embryonic hippocampal progenitor cells. J Neurosci Res 71: 689–700.

    Article  CAS  PubMed  Google Scholar 

  • Mora A, Sabio G, Gonzalez‐Polo RA, Cuenda A, Alessi DR, et al 2001. Lithium inhibits caspase 3 activation and dephosphorylation of PKB and GSK3 induced by K+ deprivation in cerebellar granule cells. J Neurochem 78: 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Morishita E, Masuda S, Nagao M, Sasaki R. 1997. Erythropoietin receptor is expressed in rat hippocampal cerebral cortical neurons, and erythropoietin prevents in vitro glutamate‐induced neuronal death. Neuroscience 76: 105–116.

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Manna SK, Chaturvedi MM, Aggarwal BB. 1998. Protein tyrosine kinase inhibitors block tumor necrosis factor‐induced activation of nuclear factor‐kappaB, degradation of IkappaBalpha, nuclear translocation of p65, and subsequent gene expression. Arch Biochem Biophys 352: 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MH, Ho JM, Beattie BK, Barber DL. 2001. TEL‐JAK2 mediates constitutive activation of the phosphatidylinositol 3′‐kinase/protein kinase B signaling pathway. J Biol Chem 276: 32704–32713.

    Article  CAS  PubMed  Google Scholar 

  • Noshita N, Lewen A, Sugawara T, Chan PH. 2002. Akt phosphorylation and neuronal survival after traumatic brain injury in mice. Neurobiol Dis 9: 294–304.

    Article  CAS  PubMed  Google Scholar 

  • Oda A, Sawada K, Druker BJ, Ozaki K, Takano H, et al 1998. Erythropoietin induces tyrosine phosphorylation of jak2, STAT5A, and STAT5B in primary cultured human erythroid precursors. Blood 92: 443–451.

    CAS  PubMed  Google Scholar 

  • Okamoto S, Li Z, Ju C, Scholzke MN, Mathews E, et al 2002. Dominant‐interfering forms of MEF2 generated by caspase cleavage contribute to NMDA‐induced neuronal apoptosis. Proc Natl Acad Sci USA 99: 3974–3979.

    Article  CAS  PubMed  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, et al 1999. NF‐kappaB activation by tumour necrosis factor requires the Akt serine‐threonine kinase. Nature 401: 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Park J, Hill MM, Hess D, Brazil DP, Hofsteenge J, et al 2001. Identification of tyrosine phosphorylation sites on 3‐phosphoinositide‐dependent protein kinase‐1 and their role in regulating kinase activity. J Biol Chem 276: 37459–37471.

    Article  CAS  PubMed  Google Scholar 

  • Pleiman CM, Hertz WM, Cambier JC. 1994. Activation of phosphatidylinositol‐3′ kinase by Src‐family kinase SH3 binding to the p85 subunit. Science 263: 1609–1612.

    Article  CAS  PubMed  Google Scholar 

  • Prass K, Schraff A, Ruscher K, Lowl D, Muselmann C, et al 2003. Hypoxia‐induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34: 1981–1986.

    Article  CAS  PubMed  Google Scholar 

  • Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, et al 1999. Nuclear factor kappaB nuclear translocation upregulates c‐Myc and p53 expression during NMDA receptor‐mediated apoptosis in rat striatum. J Neurosci 19: 4023–4033.

    CAS  PubMed  Google Scholar 

  • Quelle FW, Wang D, Nosaka T, Thierfelder WE, Stravopodis D, et al 1996. Erythropoietin induces activation of Stat5 through association with specific tyrosines on the receptor that are not required for a mitogenic response. Mol Cell Biol 16: 1622–1631.

    CAS  PubMed  Google Scholar 

  • Rothman SM, Olney JW. 1986. Glutamate and the pathophysiology of hypoxic‐ischemic brain damage. Ann Neurol 19: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, et al 2002. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22: 10291–10301.

    CAS  PubMed  Google Scholar 

  • Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, et al 1998. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95: 4635–4640.

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Martin‐Villalba A, Weih F, Vogel J, Wirth T, et al 1999. NF‐kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5: 554–559.

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, et al 2004. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101: 3100–3105.

    Article  CAS  PubMed  Google Scholar 

  • Schwaiger FW, Hager G, Schmitt AB, Horvat A, Streif R, et al 2000. Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). Eur J Neurosci 12: 1165–1176.

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Zhang C, Zhang G. 2002. Nuclear factor kappaB activation is mediated by NMDA and non‐NMDA receptor and L‐type voltage‐gated Ca(2+) channel following severe global ischemia in rat hippocampus. Brain Res 933: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Sinor AD, Greenberg DA. 2000. Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neurosci Lett 290: 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, et al 2001. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 20: 20.

    Google Scholar 

  • Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF. 1999. Fetal anemia and apoptosis of red cell progenitors in Stat5a‐/‐5b‐/‐ mice: a direct role for Stat5 in Bcl‐X(L) induction. Cell 98: 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Solaroglu I, Solaroglu A, Kaptanoglu E, Dede S, Haberal A, et al 2003. Erythropoietin prevents ischemia–reperfusion from inducing oxidative damage in fetal rat brain. Childs Nerv Syst 19: 19–22.

    PubMed  Google Scholar 

  • Stoica BA, Movsesyan VA, Lea PM, Faden AI. 2003. Ceramide‐induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK‐3beta, and induction of the mitochondrial‐dependent intrinsic caspase pathway. Mol Cell Neurosci 22: 365–382.

    Article  CAS  PubMed  Google Scholar 

  • Trapp T, Korhonen L, Besselmann M, Martinez R, Mercer EA, et al 2003. Transgenic mice overexpressing XIAP in neurons show better outcome after transient cerebral ischemia. Mol Cell Neurosci 23: 302–313.

    Article  CAS  PubMed  Google Scholar 

  • Uddin S, Kottegoda S, Stigger D, Platanias LC, Wickrema A. 2000. Activation of the Akt/FKHRL1 pathway mediates the antiapoptotic effects of erythropoietin in primary human erythroid progenitors. Biochem Biophys Res Commun 275: 16–19.

    Article  CAS  PubMed  Google Scholar 

  • Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, et al 1998. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem 273: 28185–28190.

    Article  CAS  PubMed  Google Scholar 

  • Villa P, Bigini P, Mennini T, Agnello D, Laragione T, et al 2003. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198: 971–975.

    Article  CAS  PubMed  Google Scholar 

  • Weishaupt JH, Rohde G, Polking E, Siren AL, Ehrenreich H, et al 2004. Effect of erythropoietin axotomy‐induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 45: 1514–1522.

    Article  PubMed  Google Scholar 

  • Wilson IA, Jolliffe LK. 1999. The structure, organization, activation and plasticity of the erythropoietin receptor. Curr Opin Struct Biol 9: 696–704.

    Article  CAS  PubMed  Google Scholar 

  • Yousouffian H, Longmore G, Neumann D, Yoshimura A, Lodish HF. 1993. Structure, Function, and activation of the erythropoietin receptor. Blood 81: 2223–2236.

    Google Scholar 

  • Yu X, Shacka JJ, Eells JB, Suarez‐Quian C, Przygodzki RM, et al 2002. Erythropoietin receptor signalling is required for normal brain development. Development 129: 505–516.

    CAS  PubMed  Google Scholar 

  • Zhou H, Li XM, Meinkoth J, Pittman RN. 2000. Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151: 483–494.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Lauren Fletcher for her brilliant scientific contribution and excellent help during the preparation of this manuscript. I would also like to thank Stuart A. Lipton and Marcus Kaul for their encouragements and countless discussions.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Digicaylioglu, M. (2006). Erythropoietin Signaling Pathways in Neuroprotection. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_8

Download citation

Publish with us

Policies and ethics