Skip to main content

IGF-1 in Brain Growth and Repair Processes

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

This chapter addresses the role of insulin‐like growth factor 1 (IGF‐1) and the IGF‐1 receptor (IGF1R) in brain development, injury response, and aging. We concentrate mainly on recent information from murine model systems, with consideration of interesting and relevant data from invertebrates and humans. IGF‐1 and its cognate receptor are both highly expressed in the developing brain, supporting both autocrine and paracrine activity for this anabolic peptide. IGF‐1 deletion or inhibition during brain development attenuates brain growth, with reductions in both cell number and cell size. Cell numbers are notably reduced in the olfactory system, the dentate gyrus of the hippocampus, and the striatum. Brain volume is globally decreased due to a loss of neuropil, with significant reductions in neuronal soma volume, dendritic length and complexity, and synapse number. Myelination is reduced in proportion to the decreases in neuron number and nerve processes in the IGF‐1‐null brain. Conversely, transgenic IGF‐1 overexpression results in increased brain size with increases in cell number, cell size, and dendrite growth with proportionate increases in myelination. Metabolic activity as measured by glucose utilization is significantly decreased in the IGF‐1‐null brain and increased in the transgenic IGF‐1‐overexpressing brain. IGF‐1 deletion in humans is associated with mental retardation and sensorineural deafness. IGF‐1 deletion is also associated with deafness in mice, but no other obvious neurological or behavioral phenotypes have been identified.

IGF‐1 prevents neuronal death in response to a variety of insults in vitro, but cell death appears to be a minor effect in the IGF‐1‐null brain. IGF‐1's physiological effects in brain depend on when and where the peptide is expressed. For example, IGF‐1 is expressed in an olfactory neuron germinal zone early in development, enhancing proliferation of these neurons, which are correspondingly reduced in number in the IGF‐1‐null mouse. IGF‐1 is expressed in long‐axon projection neurons at a later, postmitotic stage, promoting somatic and dendritic growth for these neurons, which are normal in number but small with hypotrophic dendritic arbors in the IGF‐1‐null brain. Increased circulating or brain IGF‐1 is associated with increased hippocampal neurogenesis in adult rodents, and treatment with exogenous IGF‐1 may protect against neurodegeneration in response to brain injury. IGF‐1's anabolic effects in brain are executed via the IRS2‐PI3K‐Akt signaling system. The multifunctional enzyme glycogen synthase kinase 3 (GSK3) is a major target of this pathway. Inhibitory phosphorylation of GSK3 by IGF‐1 enhances glucose utilization and protein synthesis, promoting somatic growth and dendritogenesis in IGF‐1‐expressing projection neurons. Brain IGF‐1 also inhibits the phosphorylation of tau, a microtubule‐associated protein, via the PI3K‐Akt‐GSK3 pathway. This neurofibrillary tangle (NFT) protein is hyperphosphorylated in both IGF‐1‐ and IRS2‐null brains. IGF‐1's role in brain aging is unclear at present. Data obtained from worms to primates suggest that suppression of the IGF system slows the aging process, but it is not yet known if brain aging is altered in IGF‐1‐null or ‐deficient mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer's disease

Akt:

serine/threonine protein kinase

BAD:

bcl‐associated death promoter

BBB:

blood–brain barrier

BRDU:

bromodeoxyuridine

CNPase:

2′,3′‐cyclic nucleotide, 3′‐phosphodiesterase

EGF:

epidermal growth factor

eIF2B:

eukaryotic initiation factor 2B

FOXO:

forkhead transcription factors

GH:

growth hormone

GLUT:

glucose transporter

GSK3:

glycogen synthase kinase 3

IGF:

insulin‐like growth factor

IGFBP:

IGF‐binding protein

IGF1R:

IGF‐1 receptor

IRS:

insulin receptor substrate

MAG:

myelin‐associated protein

MAPK:

mitogen‐activated protein kinase

MBP:

myelin basic protein

mTOR:

mammalian target of rapamycin

NF‐κB:

nuclear factor kappa B

NFT:

neurofibrillary tangle

NO:

nitric oxide

PCR:

polymerase chain reaction

PDK1:

2, 3‐phosphoinositide‐dependent protein kinase 1, 2

PI3K:

phosphoinositide‐3 kinase

PIP3:

phosphatidylinositol‐3,4,5‐trisphosphate

PLP:

myelin proteolipid protein

PTEN:

phosphatase and tensin homolog

S6K:

ribosomal protein S6 kinase

References

  • Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS. 2000. Peripheral infusion of IGF‐I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20: 2896–2903.

    CAS  PubMed  Google Scholar 

  • Aizenman Y, de Vellis J. 1987. Brain neurons develop in a serum and glial free environment: effects of transferrin, insulin, insulin‐like growth factor‐I and thyroid hormone on neuronal survival, growth, and differentiation. Brain Res 406: 32–42.

    CAS  PubMed  Google Scholar 

  • Aleman A, Verhaar HJ, De Haan EH, De Vries WR, Samson MM, et al 1999. Insulin‐like growth factor‐I and cognitive function in healthy older men. J Clin Endocrinol Metab 84: 471–475.

    CAS  PubMed  Google Scholar 

  • Ang LC, Bhaumick B, Munoz DG, Sass J, Juurlink BH. 1992. Effects of astrocytes, insulin, and insulin‐like growth factor I on the survival of motoneurons in vitro. J Neurol Sci 109: 168–172.

    CAS  PubMed  Google Scholar 

  • Arsenijevic Y, Weiss S, Schneider B, Aebischer P. 2001. Insulin‐like growth factor‐I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor‐2. J Neurosci 21: 7194–7202.

    CAS  PubMed  Google Scholar 

  • Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, et al 2001. Deletion of Pten in mouse brain causes seizures, ataxia, and defects in soma size resembling Lhermitte‐Duclos disease. Nat Genet 29: 396–403.

    CAS  PubMed  Google Scholar 

  • Baker J, Liu JP, Robertson EJ, Efstratiadis A. 1993. Role of insulin‐like growth factors in embryonic and postnatal growth. Cell 75: 73–82.

    CAS  PubMed  Google Scholar 

  • Barghorn S, Zheng‐Fischhofer Q, Ackmann M, Biernat J, von Bergen M, et al 2000. Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry 39: 11714–11721.

    CAS  PubMed  Google Scholar 

  • Barres BA, Raff MC. 1999. Axonal control of oligodendrocyte development. J Cell Biol 147: 1123–1128.

    CAS  PubMed  Google Scholar 

  • Bartlett WP, Li XS, Williams M, Benkovic S. 1991. Localization of insulin‐like growth factor‐1 mRNA in murine central nervous system during postnatal development. Dev Biol 147: 239–250.

    CAS  PubMed  Google Scholar 

  • Beck KD, Powell‐Braxton L, Widmer HR, Valverde J, Hefti F. 1995. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin‐containing neurons. Neuron 14: 717–730.

    CAS  PubMed  Google Scholar 

  • Blair LA, Bence‐Hanulec KK, Mehta S, Franke T, Kaplan D, et al 1999. Akt‐dependent potentiation of L channels by insulin‐like growth factor‐1 is required for neuronal survival. J Neurosci 19: 1940–1951.

    CAS  PubMed  Google Scholar 

  • Bohannon NJ, Corp ES, Wilcox BJ, Figlewicz DP, Dorsa DM, et al 1988. Localization of binding sites for insulin‐like growth factor‐I (IGF‐I) in the rat brain by quantitative autoradiography. Brain Res 444: 205–213.

    CAS  PubMed  Google Scholar 

  • Bonapace G, Concolino D, Formicola S, Strisciuglio P. 2003. A novel mutation in a patient with insulin‐like growth factor 1 (IGF1) deficiency. J Med Genet 40: 913–917.

    CAS  PubMed  Google Scholar 

  • Bondy C, Bach M, Lee W. 1992a. Mapping of brain insulin and insulin‐like growth factor receptor gene expression by in situ hybridization. Neuroprotocols 1: 240–249.

    CAS  Google Scholar 

  • Bondy C, Lee WH. 1993a. Correlation between insulin‐like growth factor (IGF)‐binding protein 5 and IGF‐I gene expression during brain development. J Neurosci 13: 5092–5104.

    CAS  Google Scholar 

  • Bondy C, Werner H, Roberts CT Jr, LeRoith D. 1992b. Cellular pattern of type‐I insulin‐like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin‐like growth factors I and II. Neuroscience 46: 909–923.

    CAS  Google Scholar 

  • Bondy CA. 1991. Transient IGF‐I gene expression during the maturation of functionally related central projection neurons. J Neurosci 11: 3442–3455.

    CAS  PubMed  Google Scholar 

  • Bondy CA, Cheng CM. 2004. Signaling by insulin‐like growth factor 1 in brain. Eur J Pharmacol 490: 25–31.

    CAS  PubMed  Google Scholar 

  • Bondy CA, Lee WH. 1993b. Patterns of insulin‐like growth factor and IGF receptor gene expression in the brain: functional implications. Ann N Y Acad Sci 692: 33–43.

    CAS  Google Scholar 

  • Bondy CA, Werner H, Roberts CT, Leroith D. 1990. Cellular pattern of insulin‐like growth factor‐I and type‐I IGF receptor gene expression in early organogenesis: comparison with IGF‐II gene expression. Mol Endocrinol 4: 1386–1398.

    CAS  PubMed  Google Scholar 

  • Brar AK, Chernausek SD. 1993. Localization of insulin‐like growth factor binding protein‐4 expression in the developing and adult rat brain: analysis by in situ hybridization. J Neurosci Res 35: 103–114.

    CAS  PubMed  Google Scholar 

  • Breese CR, Ingram RL, Sonntag WE. 1991. Influence of age and long‐term dietary restriction on plasma insulin‐like growth factor‐1 (IGF‐1), IGF‐1 gene expression, and IGF‐1 binding proteins. J Gerontol 46: B180–B187.

    CAS  PubMed  Google Scholar 

  • Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, et al 2000. Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122–2125.

    CAS  PubMed  Google Scholar 

  • Busiguina S, Fernandez AM, Barrios V, Clark R, Tolbert DL, et al 2000. Neurodegeneration is associated to changes in serum insulin‐like growth factors. Neurobiol Dis 7: 657–665.

    CAS  PubMed  Google Scholar 

  • Caroni P. 1993. Activity‐sensitive signaling by muscle‐derived insulin‐like growth factors in the developing and regenerating neuromuscular system. Ann N Y Acad Sci 692: 209–222.

    CAS  PubMed  Google Scholar 

  • Carro E, Torres‐Aleman I. 2004. The role of insulin and insulin‐like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease. Eur J Pharmacol 490: 127–133.

    CAS  PubMed  Google Scholar 

  • Carro E, Trejo JL, Gomez‐Isla T, Le Roith D, Torres‐Aleman I. 2002. Serum insulin‐like growth factor I regulates brain amyloid‐beta levels. Nat Med 8: 1390–1397.

    CAS  PubMed  Google Scholar 

  • Carson MJ, Behringer RR, Brinster RL, McMorris FA. 1993. Insulin‐like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10: 729–740.

    CAS  PubMed  Google Scholar 

  • Cediel R, Riquelme R, Contreras J, Diez A, Varela‐Neito I. 2006. Sensorineural hearing loss in insulin‐like growth factor 1‐null mice: a new model of human deafness. Eur J Neurosci 23: 587–590.

    CAS  PubMed  Google Scholar 

  • Cheng CM, Cohen M, Tseng V, Bondy CA. 2001. Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus. J Neurosci Res 64: 341–347.

    CAS  PubMed  Google Scholar 

  • Cheng CM, Joncas G, Reinhardt RR, Farrer R, Quarles R, et al. 1998. Biochemical and morphometric analyses show that myelination in the insulin‐like growth factor 1 null brain is proportionate to its neuronal composition. J Neurosci 18: 5673–5681.

    Google Scholar 

  • Cheng CM, Kelley B, Wang J, Strauss D, Eagles DA, et al 2003a. A ketogenic diet increases brain insulin‐like growth factor receptor and glucose transporter gene expression. Endocrinology 144: 2676–2682.

    CAS  Google Scholar 

  • Cheng CM, Mervis RF, Niu SL, Salem N Jr, Witters LA, et al 2003b. Insulin‐like growth factor 1 is essential for normal dendritic growth. J Neurosci Res 73: 1–9.

    CAS  Google Scholar 

  • Cheng CM, Reinhardt RR, Lee WH, Joncas GS, Patel C, et al 2000. Insulin‐like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 97: 10236–10241.

    CAS  PubMed  Google Scholar 

  • Cheng CM, Tseng V, Wang J, Wang D, Matyakhina L, Bondy, CA. 2005. Tau is hyperphosphorylated in the insulin‐like growth factor‐1 null brain. Endocrinology 146: 5086‐5091.

    Google Scholar 

  • Chowen JA, Goya L, Ramos S, Busiguina S, Garcia‐Segura LM, et al 2002. Effects of early undernutrition on the brain insulin‐like growth factor‐I system. J Neuroendocrinol 14: 163–169.

    CAS  PubMed  Google Scholar 

  • Clawson TF, Vannucci SJ, Wang GM, Seaman LB, Yang XL, et al 1999. Hypoxia–ischemia‐induced apoptotic cell death correlates with IGF‐I mRNA decrease in neonatal rat brain. Biol Signals Recept 8: 281–293.

    CAS  PubMed  Google Scholar 

  • Clemmons DR. 1989. Structural and functional analysis of insulin‐like growth factors. Br Med Bull 45: 465–480.

    CAS  PubMed  Google Scholar 

  • Clemmons DR. 1998. Role of insulin‐like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol 140: 19–24.

    CAS  PubMed  Google Scholar 

  • Coker GT, 3rd, Studelska D, Harmon S, Burke W, O'Malley KL. 1990. Analysis of tyrosine hydroxylase and insulin transcripts in human neuroendocrine tissues. Brain Res Mol Brain Res 8: 93–98.

    CAS  PubMed  Google Scholar 

  • Crouch MF, Hendry IA. 1991. Co‐activation of insulin‐like growth factor‐I receptors and protein kinase C results in parasympathetic neuronal survival. J Neurosci Res 28: 115–120.

    CAS  PubMed  Google Scholar 

  • Dani S. 1997. Dani S, Hori A, Walter HJ, editors. Histological markers of neuronal aging and their meaning. Amsterdam: Elsevier; Oxford, p. 263.

    Google Scholar 

  • Daughaday WH, Rotwein P. 1989. Insulin‐like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10: 68–91.

    CAS  Google Scholar 

  • DeChiara TM, Efstratiadis A, Robertson EJ. 1990. A growth‐deficiency phenotype in heterozygous mice carrying an insulin‐like growth factor II gene disrupted by targeting. Nature 345: 78–80.

    CAS  PubMed  Google Scholar 

  • Dempsey RJ, Sailor KA, Bowen KK, Tureyen K, Vemuganti R. 2003. Stroke‐induced progenitor cell proliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF‐1 and GDNF. J Neurochem 87: 586–597.

    CAS  PubMed  Google Scholar 

  • Dentremont KD, Ye P, D'Ercole AJ, O'Kusky JR. 1999. Increased insulin‐like growth factor‐I (IGF‐I) expression during early postnatal development differentially increases neuron number and growth in medullary nuclei of the mouse. Brain Res Dev Brain Res 114: 135–141.

    CAS  PubMed  Google Scholar 

  • D'Mello SR, Borodezt K, Soltoff SP. 1997. Insulin‐like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3‐kinase in IGF‐1 signaling. J Neurosci 17: 1548–1560.

    PubMed  Google Scholar 

  • D'Mello SR, Galli C, Ciotti T, Calissano P. 1993. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin‐like growth factor I and cAMP. Proc Natl Acad Sci USA 90: 10989–10993.

    PubMed  Google Scholar 

  • Dore S, Kar S, Quirion R. 1997. Insulin‐like growth factor I protects and rescues hippocampal neurons against beta‐amyloid‐ and human amylin‐induced toxicity. Proc Natl Acad Sci USA 94: 4772–4777.

    CAS  PubMed  Google Scholar 

  • Duan C. 2002. Specifying the cellular responses to IGF signals: roles of IGF‐binding proteins. J Endocrinol 175: 41–54.

    CAS  PubMed  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, et al 1997. Regulation of neuronal survival by the serine–threonine protein kinase Akt. Science 275: 661–665.

    CAS  PubMed  Google Scholar 

  • Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, et al 2005. Role for Akt3/protein kinase Bγ in attainment of normal brain size. Mol Cell Biol 25: 1869–1878.

    CAS  PubMed  Google Scholar 

  • Favelyukis S, Till JH, Hubbard SR, Miller WT. 2001. Structure and autoregulation of the insulin‐like growth factor 1 receptor kinase. Nat Struct Biol 8: 1058–1063.

    CAS  PubMed  Google Scholar 

  • Finch CE, Ruvkun G. 2001. The genetics of aging. Annu Rev Genomics Hum Genet 2: 435–462.

    CAS  PubMed  Google Scholar 

  • Foulstone E, Prince S, Zaccheo O, Burns JL, Harper J, et al 2005. Insulin‐like growth factor ligands, receptors, and binding proteins in cancer. J Pathol 205: 145–153.

    CAS  PubMed  Google Scholar 

  • Fukudome Y, Tabata T, Miyoshi T, Haruki S, Araishi K, et al 2003. Insulin‐like growth factor‐I as a promoting factor for cerebellar Purkinje cell development. Eur J Neurosci 17: 2006–2016.

    PubMed  Google Scholar 

  • Gao WQ, Shinsky N, Ingle G, Beck K, Elias KA, et al 1999. IGF‐I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF‐I treatment. J Neurobiol 39: 142–152.

    CAS  PubMed  Google Scholar 

  • Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, et al 2001. Stimulation of beta‐amyloid precursor protein trafficking by insulin reduces intraneuronal beta‐amyloid and requires mitogen‐activated protein kinase signaling. J Neurosci 21: 2561–2570.

    CAS  PubMed  Google Scholar 

  • Gehrmann J, Yao DL, Bonetti B, Bondy CA, Brenner M, et al 1994. Expression of insulin‐like growth factor‐I and related peptides during motoneuron regeneration. Exp Neurol 128: 202–210.

    CAS  PubMed  Google Scholar 

  • Groszer M, Erickson R, Scripture‐Adams DD, Lesche R, Trumpp A, et al 2001. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294: 2186–2189.

    CAS  PubMed  Google Scholar 

  • Guan J, Bennet L, Gluckman PD, Gunn AJ. 2003. Insulin‐like growth factor‐1 and post‐ischemic brain injury. Prog Neurobiol 70: 443–462.

    CAS  PubMed  Google Scholar 

  • Guan J, Bennet TL, George S, Waldvogel HJ, Faull RL, et al 2000a. Selective neuroprotective effects with insulin‐like growth factor‐1 in phenotypic striatal neurons following ischemic brain injury in fetal sheep. Neuroscience 95: 831–839.

    CAS  Google Scholar 

  • Guan J, Gunn AJ, Sirimanne ES, Tuffin J, Gunning MI, et al 2000b. The window of opportunity for neuronal rescue with insulin‐like growth factor‐1 after hypoxia–ischemia in rats is critically modulated by cerebral temperature during recovery. J Cereb Blood Flow Metab 20: 513–519.

    CAS  Google Scholar 

  • Guan J, Miller OT, Waugh KM, McCarthy DC, Gluckman PD. 2001. Insulin‐like growth factor‐1 improves somatosensory function and reduces the extent of cortical infarction and ongoing neuronal loss after hypoxia–ischemia in rats. Neuroscience 105: 299–306.

    CAS  PubMed  Google Scholar 

  • Guan J, Williams C, Gunning M, Mallard C, Gluckman P. 1993. The effects of IGF‐1 treatment after hypoxic–ischemic brain injury in adult rats. J Cereb Blood Flow Metab 13: 609–616.

    CAS  PubMed  Google Scholar 

  • Gutierrez‐Ospina G, Calikoglu AS, Ye P, D'Ercole AJ. 1996. In vivo effects of insulin‐like growth factor‐I on the development of sensory pathways: analysis of the primary somatic sensory cortex (S1) of transgenic mice. Endocrinology 137: 5484–5492.

    PubMed  Google Scholar 

  • Gutierrez‐Ospina G, Saum L, Calikoglu AS, Diaz‐Cintra S, Barrios FA, et al 1997. Increased neural activity in transgenic mice with brain IGF‐I overexpression: a [3H]2DG study. Neuroreport 8: 2907–2911.

    PubMed  Google Scholar 

  • Harper SJ, Macaulay AJ, Hill RG, Priestley T. 1996. The effects of insulin‐like growth factor analogues on survival of cultured cerebral cortex and cerebellar granule neurones. Brain Res 709: 303–310.

    CAS  PubMed  Google Scholar 

  • Haspel HC, Stephenson KN, Davies‐Hill T, El‐Barbary A, Lobo JF, et al 1999. Effects of barbiturates on facilitative glucose transporters are pharmacologically specific and isoform selective. J Membr Biol 169: 45–53.

    CAS  PubMed  Google Scholar 

  • Hawkes C, Kar S. 2004. The insulin‐like growth factor‐II/mannose‐6‐phosphate receptor: structure, distribution, and function in the central nervous system. Brain Res Rev 44: 117–140.

    CAS  PubMed  Google Scholar 

  • Hill JM, Lesniak MA, Pert CB, Roth J. 1986. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17: 1127–1138.

    CAS  PubMed  Google Scholar 

  • Hof P, Mobb C. 2001. Functional neurobiology of aging. San Diego: Academic Press.

    Google Scholar 

  • Hong M, Lee VM. 1997. Insulin and insulin‐like growth factor‐1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272: 19547–19553.

    CAS  PubMed  Google Scholar 

  • Hoyer S. 2004. Glucose metabolism and insulin receptor signal transduction in Alzheimer's disease. Eur J Pharmacol 490: 115–125.

    CAS  PubMed  Google Scholar 

  • Hubbard SR. 1999. Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol 71: 343–358.

    CAS  PubMed  Google Scholar 

  • Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, et al 2002. The IGF‐1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev Cell 2: 831–837.

    CAS  PubMed  Google Scholar 

  • Ikeya T, Galic M, Belawat P, Nairz K, Hafen E. 2002. Nutrient‐dependent expression of insulin‐like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12: 1293–1300.

    CAS  PubMed  Google Scholar 

  • Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, et al 1993. Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 325: 167–172.

    CAS  PubMed  Google Scholar 

  • Johnston BM, Mallard EC, Williams CE, Gluckman PD. 1996. Insulin‐like growth factor‐1 is a potent neuronal rescue agent after hypoxic–ischemic injury in fetal lambs. J Clin Invest 97: 300–308.

    CAS  PubMed  Google Scholar 

  • Jope RS, Johnson GV. 2004. The glamour and gloom of glycogen synthase kinase‐3. Trends Biochem Sci 29: 95–102.

    CAS  PubMed  Google Scholar 

  • Katic M, Kahn CR. 2005. The role of insulin and IGF‐1 signaling in longevity. Cell Mol Life Sci 62: 320–343.

    CAS  PubMed  Google Scholar 

  • Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F. 2004. Alterations in IGF‐I, BDNF, and NT‐3 levels following experimental brain trauma and the effect of IGF‐I administration. Exp Neurol 186: 221–234.

    CAS  PubMed  Google Scholar 

  • Kiess W, Blickenstaff G, Sklar M, Thomas C, Nissley S, et al 1988. Biochemical evidence that the type II insulin‐like growth factor receptor is identical to the cation‐independent mannose 6‐phosphate receptor. J Biol Chem 263: 9339–9344.

    CAS  PubMed  Google Scholar 

  • Kinney BA, Meliska CJ, Steger RW, Bartke A. 2001. Evidence that Ames dwarf mice age differently from their normal siblings in behavioral and learning and memory parameters. Horm Behav 39: 277–284.

    CAS  PubMed  Google Scholar 

  • Kohn AD, Summers SA, Birnbaum MJ, Roth RA. 1996. Expression of a constitutively active Akt Ser/Thr kinase in 3T3‐L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271: 31372–31378.

    CAS  PubMed  Google Scholar 

  • Komoly S, Hudson LD, Webster HD, Bondy CA. 1992. Insulin‐like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc Natl Acad Sci USA 89: 1894–1898.

    CAS  PubMed  Google Scholar 

  • Koulich E, Nguyen T, Johnson K, Giardina C, D'Mello S. 2001. NF‐κB is involved in the survival of cerebellar granule neurons: association of Iκβ phosphorylation with cell survival. J Neurochem 76: 1188–1198.

    CAS  PubMed  Google Scholar 

  • Kwon C‐H, Zhu X, Zhang J, Baker SJ. 2003. mTor is required for hypertrophy of Pten‐deficient neuronal soma in vivo. Proc Natl Acad Sci USA 100: 12923–12928.

    CAS  PubMed  Google Scholar 

  • Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, et al 2001. Pten regulates neuronal soma size: a mouse model of Lhermitte‐Duclos disease. Nat Genet 29: 404–411.

    CAS  PubMed  Google Scholar 

  • Lai M, Hibberd CJ, Gluckman PD, Seckl JR. 2000. Reduced expression of insulin‐like growth factor 1 messenger RNA in the hippocampus of aged rats. Neurosci Lett 288: 66–70.

    CAS  PubMed  Google Scholar 

  • Laron Z. 2001. Insulin‐like growth factor 1 (IGF‐1): a growth hormone. Mol Pathol 54: 311–316.

    CAS  PubMed  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ. 2001. Neurodegenerative tauopathies. Annu Rev Neurosci 24: 1121–1159.

    CAS  PubMed  Google Scholar 

  • Lee W, Clemens J, Bondy C. 1992a. Insulin‐like growth factors in the response to cerebral ischemia. Mol Cell Neurosci 3: 36–43.

    CAS  Google Scholar 

  • Lee WH, Bondy C. 1993. Insulin‐like growth factors and cerebral ischemia. Ann N Y Acad Sci 679: 418–422.

    CAS  PubMed  Google Scholar 

  • Lee WH, Javedan S, Bondy CA. 1992b. Coordinate expression of insulin‐like growth factor system components by neurons and neuroglia during retinal and cerebellar development. J Neurosci 12: 4737–4744.

    CAS  Google Scholar 

  • Lee WH, Michels KM, Bondy CA. 1993. Localization of insulin‐like growth factor binding protein‐2 messenger RNA during postnatal brain development: correlation with insulin‐like growth factors I and II. Neuroscience 53: 251–265.

    CAS  PubMed  Google Scholar 

  • Lee WH, Wang GM, Seaman LB, Vannucci SJ. 1996. Coordinate IGF‐I and IGFBP5 gene expression in perinatal rat brain after hypoxia–ischemia. J Cereb Blood Flow Metab 16: 227–236.

    CAS  PubMed  Google Scholar 

  • Le Roith D. 1996. Insulin‐like growth factor receptors and binding proteins. Baillieres Clin Endocrinol Metab 10: 49–73.

    CAS  Google Scholar 

  • Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. 2001. The somatomedin hypothesis: 2001. Endocr Rev 22: 53–74.

    CAS  PubMed  Google Scholar 

  • Le Roith D, Delahunty G, Wilson GL, Roberts CT Jr, Shemer J, et al 1986. Evolutionary aspects of the endocrine and nervous systems. Recent Prog Horm Res 42: 549–587.

    CAS  Google Scholar 

  • Le Roith D, Kavsan VM, Koval AP, Roberts CT Jr. 1993. Phylogeny of the insulin‐like growth factors (IGFs) and receptors: a molecular approach. Mol Reprod Dev 35: 332–6; discussion 337–338.

    CAS  Google Scholar 

  • Li XS, Williams M, Bartlett WP. 1998. Induction of IGF‐1 mRNA expression following traumatic injury to the postnatal brain. Brain Res Mol Brain Res 57: 92–96.

    CAS  PubMed  Google Scholar 

  • Lin SY, Cui H, Yusta B, Belsham DD. 2004. IGF‐I signaling prevents dehydroepiandrosterone (DHEA)‐induced apoptosis in hypothalamic neurons. Mol Cell Endocrinol 214: 127–135.

    CAS  PubMed  Google Scholar 

  • Linseman DA, Phelps RA, Bouchard RJ, Le SS, Laessig TA, et al 2002. Insulin‐like growth factor‐I blocks Bcl‐2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J Neurosci 22: 9287–9297.

    CAS  PubMed  Google Scholar 

  • Logan A, Gonzalez AM, Hill DJ, Berry M, Gregson NA, et al 1994. Coordinated pattern of expression and localization of insulin‐like growth factor‐II (IGF‐II) and IGF‐binding protein‐2 in the adult rat brain. Endocrinology 135: 2255–2264.

    CAS  PubMed  Google Scholar 

  • Luo RZ‐T, Beniac DR, Fernandes A, Yip CC, Ottensmeyer FP. 1999. Quaternary structure of the insulin–insulin receptor complex. Science 285: 1077–1080.

    CAS  PubMed  Google Scholar 

  • Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A. 2001. Roles of growth hormone and insulin‐like growth factor 1 in mouse postnatal growth. Dev Biol 229: 141–162.

    CAS  PubMed  Google Scholar 

  • Markowska AL, Mooney M, Sonntag WE. 1998. Insulin‐like growth factor‐1 ameliorates age‐related behavioral deficits. Neuroscience 87: 559–569.

    CAS  PubMed  Google Scholar 

  • Mason JL, Xuan S, Dragatsis I, Efstratiadis A, Goldman JE. 2003. Insulin‐like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23: 7710–7718.

    CAS  PubMed  Google Scholar 

  • Matsuzaki H, Tamatani M, Mitsuda N, Namikawa K, Kiyama H, et al 1999. Activation of Akt kinase inhibits apoptosis and changes in Bcl‐2 and Bax expression induced by nitric oxide in primary hippocampal neurons. J Neurochem 73: 2037–2046.

    CAS  PubMed  Google Scholar 

  • McMorris FA, McKinnon RD. 1996. Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathol 6: 313–329.

    CAS  PubMed  Google Scholar 

  • Miller TM, Tansey MG, Johnson EM Jr, Creedon DJ. 1997. Inhibition of phosphatidylinositol 3‐kinase activity blocks depolarization‐ and insulin‐like growth factor I‐mediated survival of cerebellar granule cells. J Biol Chem 272: 9847–9853.

    CAS  PubMed  Google Scholar 

  • Mozell RL, McMorris FA. 1991. Insulin‐like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures. J Neurosci Res 30: 382–390.

    CAS  PubMed  Google Scholar 

  • Nakao N, Odin P, Lindvall O, Brundin P. 1996. Differential trophic effects of basic fibroblast growth factor, insulin‐like growth factor‐1, and neurotrophin‐3 on striatal neurons in culture. Exp Neurol 138: 144–157.

    CAS  PubMed  Google Scholar 

  • Navarro I, Leibush B, Moon TW, Plisetskaya EM, Banos N, et al 1999. Insulin, insulin‐like growth factor‐I (IGF‐I) and glucagon: the evolution of their receptors. Comp Biochem Physiol B Biochem Mol Biol 122: 137–153.

    CAS  PubMed  Google Scholar 

  • Neeper SA, Gomez‐Pinilla F, Choi J, Cotman C. 1995. Exercise and brain neurotrophins. Nature 373: 109.

    CAS  PubMed  Google Scholar 

  • Niblock MM, Brunso‐Bechtold JK, Riddle DR. 2000. Insulin‐like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 20: 4165–4176.

    CAS  PubMed  Google Scholar 

  • Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS. 1999. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 39: 569–578.

    CAS  PubMed  Google Scholar 

  • Nitta A, Zheng WH, Quirion R. 2004. Insulin‐like growth factor 1 prevents neuronal cell death induced by corticosterone through activation of the PI3k/Akt pathway. J Neurosci Res 76: 98–103.

    CAS  PubMed  Google Scholar 

  • Offen D, Shtaif B, Hadad D, Weizman A, Melamed E, et al 2001. Protective effect of insulin‐like‐growth‐factor‐1 against dopamine‐induced neurotoxicity in human and rodent neuronal cultures: possible implications for Parkinson's disease. Neurosci Lett 316: 129–132.

    CAS  PubMed  Google Scholar 

  • O'Kusky JR, Ye P, D'Ercole AJ. 2000. Insulin‐like growth factor‐I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 20: 8435–8442.

    PubMed  Google Scholar 

  • Pei J‐J, Braak E, Braak H, Grundke‐Iqbal I, Iqbal K, et al 1999. Distribution of active glycogen synthase kinase 3β (GSK‐3β) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58: 1010–1019.

    CAS  PubMed  Google Scholar 

  • Porte D, Jr., Baskin DG, Schwartz MW. 2005. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54: 1264–1276.

    CAS  PubMed  Google Scholar 

  • Potter CJ, Xu T. 2001. Mechanisms of size control. Curr Opin Genet Dev 11: 279–286.

    CAS  PubMed  Google Scholar 

  • Rangone H, Pardo R, Colin E, Girault JA, Saudou F, Humbert S. 2005. Phosphorylation of arfaptin 2 at Ser260 by Akt Inhibits PolyQ‐huntingtin‐induced toxicity by rescuing proteasome impairment. J Biol Chem 280: 22021‐22028.

    Google Scholar 

  • Reijnders C, Koster J, van Buul‐Offers S. 2004. Overexpression of human IGF‐II mRNA in the brain of transgenic mice modulates IGFBP‐2 gene expression in the medulla oblongata. J Endocrinol 182: 445–455.

    CAS  PubMed  Google Scholar 

  • Reinecke M, Collet C. 1998. The phylogeny of the insulin‐like growth factors. Int Rev Cytol 183: 1–94.

    CAS  PubMed  Google Scholar 

  • Reinhardt RR, Bondy CA. 1994. Insulin‐like growth factors cross the blood–brain barrier. Endocrinology 135: 1753–1761.

    CAS  PubMed  Google Scholar 

  • Rice JE 3rd, Vannucci RC, Brierley JB. 1981. The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol 9: 131–141.

    PubMed  Google Scholar 

  • Richardson A, Liu F, Adamo ML, Remmen HV, Nelson JF. 2004. The role of insulin and insulin‐like growth factor‐I in mammalian ageing. Best Prac Res Clin Endo Metab 18: 393–406.

    CAS  Google Scholar 

  • Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, et al 2001. Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009–1013.

    CAS  PubMed  Google Scholar 

  • Rotwein P, Burgess SK, Milbrandt JD, Krause JE. 1988. Differential expression of insulin‐like growth factor genes in rat central nervous system. Proc Nat Acad Sci USA 85: 265–269.

    CAS  PubMed  Google Scholar 

  • Rulifson EJ, Kim SK, Nusse R. 2002. Ablation of insulin‐producing neurons in flies: growth and diabetic phenotypes. Science 296: 1118–1120.

    CAS  PubMed  Google Scholar 

  • Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, et al 1997. Insulin‐like growth factor‐1 (IGF‐1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 147: 418–427.

    CAS  PubMed  Google Scholar 

  • Saltiel AR, Kahn CR. 2001. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414: 799–806.

    CAS  PubMed  Google Scholar 

  • Sara VR, Carlsson‐Skwirut C. 1986. The biosynthesis of somatomedins and their role in the fetus. Acta Endocrinol Suppl (Copenhagen) 279: 82–85.

    CAS  Google Scholar 

  • Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, et al 2003. Insulin receptor substrate‐2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23: 7084–7092.

    CAS  PubMed  Google Scholar 

  • Schuman EM. 1999. Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol 9: 105–109.

    CAS  PubMed  Google Scholar 

  • Shi L, Linville MC, Tucker EW, Sonntag WE, Brunso‐Bechtold JK. 2005. Differential effects of aging and insulin‐like growth factor‐1 on synapses in CA1 of rat hippocampus. Cereb Cortex 15: 571–577.

    PubMed  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, et al 2001. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410: 372–376.

    CAS  PubMed  Google Scholar 

  • Sonntag WE, Lynch CD, Bennett SA, Khan AS, Thornton PL, et al 1999. Alterations in insulin‐like growth factor‐1 gene and protein expression and type 1 insulin‐like growth factor receptors in the brains of ageing rats. Neuroscience 88: 269–279.

    CAS  PubMed  Google Scholar 

  • Soos MA, Field CE, Siddle K. 1993. Purified hybrid insulin/insulin‐like growth factor‐I receptors bind insulin‐like growth factor‐I, but not insulin, with high affinity. Biochem J 290: 419–426.

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Goedert M. 1998. Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21: 428–433.

    CAS  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, et al 2005. Impaired insulin and insulin‐like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J Alzheimers Dis 7: 63–80.

    CAS  PubMed  Google Scholar 

  • Sullivan KA, Feldman EL. 1994. Immunohistochemical localization of insulin‐like growth factor‐II (IGF‐II) and IGF‐binding protein‐2 during development in the rat brain. Endocrinology 135: 540–547.

    CAS  PubMed  Google Scholar 

  • Summers SA, Birnbaum MJ. 1997. A role for the serine/threonine kinase, Akt, in insulin‐stimulated glucose uptake. Biochem Soc Trans 25: 981–988.

    CAS  PubMed  Google Scholar 

  • Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, et al 1999. The role of glycogen synthase kinase 3β in insulin‐stimulated glucose metabolism. J Biol Chem 274: 17934–17940.

    CAS  PubMed  Google Scholar 

  • Sun LY, Evans MS, Hsieh J, Panici J, Bartke A. 2005. Increased neurogenesis in dentate gyrus of long‐lived Ames dwarf mice. Endocrinology 146: 1138–1144.

    CAS  PubMed  Google Scholar 

  • Sussenbach JS. 1989. The gene structure of the insulin‐like growth factor family. Prog Growth Factor Res 1: 33–48.

    CAS  PubMed  Google Scholar 

  • Tagami M, Ikeda K, Nara Y, Fujino H, Kubota A, et al 1997a. Insulin‐like growth factor‐1 attenuates apoptosis in hippocampal neurons caused by cerebral ischemia and reperfusion in stroke‐prone spontaneously hypertensive rats. Lab Invest 76: 613–617.

    CAS  Google Scholar 

  • Tagami M, Yamagata K, Nara Y, Fujino H, Kubota A, et al 1997b. Insulin‐like growth factors prevent apoptosis in cortical neurons isolated from stroke‐prone spontaneously hypertensive rats. Lab Invest 76: 603–612.

    CAS  Google Scholar 

  • Tager HS, Steiner DF, Patzelt C. 1981. Biosynthesis of insulin and glucagon. Methods Cell Biol 23: 73–88.

    CAS  PubMed  Google Scholar 

  • Tamatani M, Ogawa S, Nunez G, Tohyama M. 1998. Growth factors prevent changes in Bcl‐2 and Bax expression and neuronal apoptosis induced by nitric oxide. Cell Death Differ 5: 911–919.

    CAS  PubMed  Google Scholar 

  • Torres‐Aleman I, Barrios V, Berciano J. 1998. The peripheral insulin‐like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis. Neurology 50: 772–776.

    PubMed  Google Scholar 

  • Torres‐Aleman I, Barrios V, Lledo A, Berciano J. 1996. The insulin‐like growth factor I system in cerebellar degeneration. Ann Neurol 39: 335–342.

    PubMed  Google Scholar 

  • Torres‐Aleman I, Naftolin F, Robbins RJ. 1990. Trophic effects of insulin‐like growth factor‐I on fetal rat hypothalamic cells in culture. Neuroscience 35: 601–608.

    PubMed  Google Scholar 

  • Torres‐Aleman I, Pons S, Santos‐Benito FF. 1992. Survival of Purkinje cells in cerebellar cultures is increased by insulin‐like growth factor I. Eur J Neurosci 4: 864–869.

    PubMed  Google Scholar 

  • Trejo JL, Carro E, Torres‐Aleman I. 2001. Circulating insulin‐like growth factor I mediates exercise‐induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21: 1628–1634.

    CAS  PubMed  Google Scholar 

  • Walenkamp MJ, Karperien M, Pereira AM, Hilhorst‐Hofstee Y, van Doorn J, et al 2005. Homozygous and heterozygous expression of a novel insulin‐like growth factor‐I mutation. J Clin Endocrinol Metab 90: 2855–2864.

    CAS  PubMed  Google Scholar 

  • Walter HJ, Berry M, Hill DJ, Logan A. 1997. Spatial and temporal changes in the insulin‐like growth factor (IGF) axis indicate autocrine/paracrine actions of IGF‐I within wounds of the rat brain. Endocrinology 138: 3024–3034.

    CAS  PubMed  Google Scholar 

  • Wang J, Zhou J, Powell‐Braxton L, Bondy C. 1999. Effects of Igf1 gene deletion on postnatal growth patterns. Endocrinology 140: 3391–3394.

    CAS  PubMed  Google Scholar 

  • Watson GS, Craft S. 2003. The role of insulin resistance in the pathogenesis of Alzheimer's disease: implications for treatment. CNS Drugs 17: 27–45.

    CAS  PubMed  Google Scholar 

  • Woods KA, Camacho‐Hubner C, Barter D, Clark AJ, Savage MO. 1997. Insulin‐like growth factor I gene deletion causing intrauterine growth retardation and severe short stature. Acta Paediatr Suppl 423: 39–45.

    CAS  PubMed  Google Scholar 

  • Woods KA, Camacho‐Hubner C, Savage MO, Clark AJ. 1996. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin‐like growth factor I gene. N Engl J Med 335: 1363–1367.

    CAS  PubMed  Google Scholar 

  • Wylie AA, Pulford DJ, McVie‐Wylie AJ, Waterland RA, Evans HK, et al 2003. Tissue‐specific inactivation of murine M6P/IGF2R. Am J Pathol 162: 321–328.

    CAS  PubMed  Google Scholar 

  • Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, et al 2001. Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem 276: 5256–5264.

    CAS  PubMed  Google Scholar 

  • Yao DL, West NR, Bondy CA, Brenner M, Hudson LD, et al 1995. Cryogenic spinal cord injury induces astrocytic gene expression of insulin‐like growth factor I and insulin‐like growth factor binding protein 2 during myelin regeneration. J Neurosci Res 40: 647–659.

    CAS  PubMed  Google Scholar 

  • Ye P, Carson J, D'Ercole AJ. 1995. In vivo actions of insulin‐like growth factor‐I (IGF‐I) on brain myelination: studies of IGF‐I and IGF binding protein‐1 (IGFBP‐1) transgenic mice. J Neurosci 15: 7344–7356.

    CAS  PubMed  Google Scholar 

  • Ye P, D'Ercole J. 1998. Insulin‐like growth factor I (IGF‐I) regulates IGF binding protein‐5 gene expression in the brain. Endocrinology 139: 65–71.

    CAS  PubMed  Google Scholar 

  • Ye P, Popken GJ, Kemper A, McCarthy K, Popko B, et al 2004. Astrocyte‐specific overexpression of insulin‐like growth factor‐I promotes brain overgrowth and glial fibrillary acidic protein expression. J Neurosci Res 78: 472–484.

    CAS  PubMed  Google Scholar 

  • Ye P, Xing Y, Dai Z, D'Ercole AJ. 1996. In vivo actions of insulin‐like growth factor‐I (IGF‐I) on cerebellum development in transgenic mice: evidence that IGF‐I increases proliferation of granule cell progenitors. Brain Res Dev Brain Res 95: 44–54.

    CAS  PubMed  Google Scholar 

  • Young WS. 1986. Periventricular hypothalamic cells in rat brain contain insulin mRNA. Neuropeptides 8: 93–97.

    CAS  PubMed  Google Scholar 

  • Zackenfels K, Oppenheim RW, Rohrer H. 1995. Evidence for an important role of IGF‐I and IGF‐II for the early development of chick sympathetic neurons. Neuron 14: 731–741.

    CAS  PubMed  Google Scholar 

  • Zhang RL, Zhang ZG, Zhang L, Chopp M. 2001. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105: 33–41.

    CAS  PubMed  Google Scholar 

  • Zheng WH, Quirion R. 2004. Comparative signaling pathways of insulin‐like growth factor‐1 and brain‐derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J Neurochem 89: 844–852.

    CAS  PubMed  Google Scholar 

  • Zhong J, Deng J, Ghetti B, Lee WH. 2002. Inhibition of insulin‐like growth factor I activity contributes to the premature apoptosis of cerebellar granule neuron in weaver mutant mice: in vitro analysis. J Neurosci Res 70: 36–45.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Bondy, C., Cheng, C., Zhong, J., Lee, W. (2006). IGF-1 in Brain Growth and Repair Processes. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_7

Download citation

Publish with us

Policies and ethics