Skip to main content

GDNF and Related Proteins

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Members of the glial‐cell‐line‐derived neurotrophic factor (GDNF) family serve important functions in development and maintenance of distinct sets of central and peripheral neurons. All four GDNF family ligands (GFLS), GDNF, neurturin (NRTN), artemin (ARTN), and persephin (PSPN), interact with a multi‐subunit receptor complex formed by the c‐Ret tyrosine kinase, Ret, and a cysteine‐rich glycosyl phosphatidylinositol‐anchored receptor (GDNF receptor alpha 1‐4). Since their discovery, GFLS have received particular attention because of their therapeutic potential in numerous neurological diseases, such as Parkinson's disease (PD), motor neuron diseases, or sensory regeneration and neuropathic pain. Targeted mutagenesis in transgenic mice has shown that Ret and GFL are required for multiple developmental events including the development of the enteric nervous system (ENS), which is affected in Hirschsprung's disease (HD). This chapter focuses on the molecular mechanisms of the initiation and the contextual dependence of signal transduction by GFL, their neuroprotective and neuroregenerative potential, and their involvement in developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aa:

amino acid

ARTN:

artemin

CG:

ciliary ganglion

DRG:

dorsal root ganglion

ENS:

enteric nervous system

ERK:

extracellular signal‐regulated kinase

EST:

expressed sequence tag

FAK:

focal adhesion kinase

FMTC:

familial medullary thyroid carcinoma

GABA:

gamma‐aminobutyric acid

GDNF:

glial‐cell‐line‐derived neurotrophic factor

GFL:

GDNF family ligands

GFRα:

GDNF receptor alpha

GPI:

glycosyl phosphatidylinositol

HD:

Hirschsprung's disease

JNK:

Jun N‐terminal kinase

MAPK:

mitogen‐activated protein kinase

MEN2:

multiple endocrine neoplasia type 2

NCAM:

neuronal cell adhesion molecule

NGF:

nerve growth factor

NRTN:

neurturin

PC12:

pheochromocytoma cell line

PCR:

polymerase chain reaction

PD:

Parkinson's disease

PI3K:

phosphatidylinositol‐3 kinase

PLCγ:

phospholipase C gamma

PSPN:

persephin

Ret:

rearranged in transformation

Ret/PTC:

rearranged in transformation/papillary thyroid carcinomas

RTK:

receptor protein tyrosine kinase

SCG:

superior cervical ganglion

TGFβ:

transforming growth factor beta

References

  • Acsadi G, Anguelov RA, Yang H, Toth G, Thomas R, et al 2002. Increased survival and function of SOD1 mice after glial cell‐derived neurotrophic factor gene therapy. Hum Gene Ther 13: 1047–1059.

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen MS, Saarma M. 2002. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3: 383–394.

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen MS, Titievsky A, Saarma M. 1999. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13: 313–325.

    Article  CAS  PubMed  Google Scholar 

  • Akerud P, Holm PC, Castelo‐Branco G, Sousa K, Rodriguez FJ, et al 2002. Persephin‐overexpressing neural stem cells regulate the function of nigral dopaminergic neurons and prevent their degeneration in a model of Parkinson's disease. Mol Cell Neurosci 21: 205–222.

    Article  CAS  PubMed  Google Scholar 

  • Anders J, Kjaer S, Ibanez CF. 2001. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin‐like domains and a calcium‐binding site. J Biol Chem 276: 35808–35817.

    Article  CAS  PubMed  Google Scholar 

  • Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A. 1996. Germline mutations in glial cell line‐derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14: 341–344.

    Article  CAS  PubMed  Google Scholar 

  • Asai N, Murakami H, Iwashita T, Takahashi M. 1996. A mutation at tyrosine 1062 in MEN2A‐Ret and MEN2B‐Ret impairs their transforming activity and association with shc adaptor proteins. J Biol Chem 271: 17644–17649.

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH, Gorodinsky A, Golden JP, Tansey MG, Keck CL, et al 1998b. GFRalpha3 is an orphan member of the GDNF/neurturin/persephin receptor family. Proc Natl Acad Sci USA 95: 5801–5806.

    Article  CAS  Google Scholar 

  • Baloh RH, Tansey MG, Golden JP, Creedon DJ, Heuckeroth RO, et al 1997. TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron 18: 793–802.

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH, Tansey MG, Johnson EM Jr, Milbrandt J. 2000. Functional mapping of receptor specificity domains of glial cell line‐derived neurotrophic factor (GDNF) family ligands and production of GFRalpha1 Ret‐specific agonists. J Biol Chem 275: 3412–3420.

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, et al 1998a. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3–RET receptor complex. Neuron 21: 1291–1302.

    Article  CAS  Google Scholar 

  • Barnett MW, Fisher CE, Perona‐Wright G, Davies JA. 2002. Signalling by glial cell line‐derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. J Cell Sci 115: 4495–4503.

    Article  CAS  PubMed  Google Scholar 

  • Baudet C, Mikaels A, Westphal H, Johansen J, Johansen TE, et al 2000. Positive and negative interactions of GDNF, NTN and ART in developing sensory neuron subpopulations, and their collaboration with neurotrophins. Development 127: 4335–4344.

    CAS  PubMed  Google Scholar 

  • Besset V, Scott RP, Ibanez CF. 2000. Signaling complexes and protein–protein interactions involved in the activation of the Ras and phosphatidylinositol 3‐kinase pathways by the c‐Ret receptor tyrosine kinase. J Biol Chem 275: 39159–39166.

    Article  CAS  PubMed  Google Scholar 

  • Bilak MM, Shifrin DA, Corse AM, Bilak SR, Kuncl RW. 1999. Neuroprotective utility and neurotrophic action of neurturin in postnatal motor neurons: comparison with GDNF and persephin. Mol Cell Neurosci 13: 326–336.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, et al 2000. Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886: 82–98.

    Article  CAS  PubMed  Google Scholar 

  • Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, et al 1996. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol 16: 2151–2163.

    CAS  PubMed  Google Scholar 

  • Borrello MG, Mercalli E, Perego C, Degl'Innocenti D, Ghizzoni S, et al 2002. Differential interaction of Enigma protein with the two RET isoforms. Biochem Biophys Res Commun 296: 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Brown MD, Cornejo BJ, Kuhn TB, Bamburg JR. 2000. Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia. J Neurobiol 43: 352–364.

    Article  CAS  PubMed  Google Scholar 

  • Bueker ED. 1948. Implantation of tumors in the hind limb field of the embryonic chick and the developmental response of the lumbosacral nervous system. Anat Rec 102: 369–390.

    Article  CAS  PubMed  Google Scholar 

  • Buj‐Bello A, Adu J, Pinon LG, Horton A, Thompson J, et al 1997. Neurturin responsiveness requires a GPI‐linked receptor and the Ret receptor tyrosine kinase. Nature 387: 721–724.

    Article  PubMed  CAS  Google Scholar 

  • Burau K, Stenull I, Huber K, Misawa H, Berse B, et al 2004. c‐ret regulates cholinergic properties in mouse sympathetic neurons: evidence from mutant mice. Eur J Neurosci 20: 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, et al 1998. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21: 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Chiariello M, Visconti R, Carlomagno F, Melillo RM, Bucci C, et al 1998. Signalling of the Ret receptor tyrosine kinase through the c‐Jun NH2‐terminal protein kinases (JNKS): evidence for a divergence of the ERKs and JNKs pathways induced by Ret. Oncogene 16: 2435–2445.

    Article  CAS  PubMed  Google Scholar 

  • Choi‐Lundberg DL, Bohn MC. 1995. Ontogeny and distribution of glial cell line‐derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev Brain Res 85: 80–88.

    Article  PubMed  Google Scholar 

  • Coulpier M, Ibáñez CF. 2004. Retrograde propagation of GDNF‐mediated signals in sympathetic neurons. Mol Cell Neurosci 27: 132–139.

    Article  CAS  PubMed  Google Scholar 

  • de Graaff E, Srinivas S, Kilkenny C, D'Agati V, Mankoo BS, et al 2001. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 15: 2433–2444.

    Article  CAS  PubMed  Google Scholar 

  • Doray B, Salomon R, Amiel J, Pelet A, Touraine R, et al 1998. Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet 7: 1449–1452.

    Article  CAS  PubMed  Google Scholar 

  • Durbec P, Marcos‐Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, et al 1996. GDNF signalling through the Ret receptor tyrosine kinase. Nature 381: 789–793.

    Article  CAS  PubMed  Google Scholar 

  • Durick K, Gill GN, Taylor SS. 1998. Shc and Enigma are both required for mitogenic signaling by Ret/ptc2. Mol Cell Biol 18: 2298–2308.

    CAS  PubMed  Google Scholar 

  • Edery P, Eng C, Munnich A, Lyonnet S. 1997. RET in human development and oncogenesis. Bioessays 19: 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrot C, Gerber N. 1997. X‐ray structure of glial cell‐derived neurotrophic factor at 1.9 A resolution and implications for receptor binding. Nat Struct Mol Biol 4: 435–438.

    Article  CAS  Google Scholar 

  • Eketjäll S, Ibanez CF. 2002. Functional characterization of mutations in the GDNF gene of patients with Hirschsprung disease. Hum Mol Genet 11: 325–329.

    Article  PubMed  Google Scholar 

  • Eketjäll S, Fainzilber M, Murray‐Rust J, Ibanez CF. 1999. Distinct structural elements in GDNF mediate binding to GFRalpha1 and activation of the GFRalpha1–c‐Ret receptor complex. EMBO J 18: 5901–5910.

    Article  PubMed  Google Scholar 

  • Encinas M, Crowder RJ, Milbrandt J, Johnson EM Jr. 2004. Tyrosine 981, a novel ret autophosphorylation site, binds c‐Src to mediate neuronal survival. J Biol Chem 279: 18262–18269.

    Article  CAS  PubMed  Google Scholar 

  • Eng C, Mulligan LM. 1997. Mutations of the RET proto‐oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and Hirschsprung disease. Hum Mutat 9: 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Enokido Y, de Sauvage F, Hongo J‐A, Ninkina N, Rosenthal A, et al 1998. GFRα4 and the tyrosine kinase Ret form a functional receptor complex for persephin. Curr Biol 8: 1019–1022.

    Article  CAS  PubMed  Google Scholar 

  • Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, et al 1998. GFR alpha1‐deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21: 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson EM Jr, et al 2001. RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 128: 3963–3974.

    CAS  PubMed  Google Scholar 

  • Enomoto H, Hughes I, Golden J, Baloh RH, Yonemura S, et al 2004. GFRα1 expression in cells lacking RET is dispensable for organogenesis and nerve regeneration. Neuron 44: 623–636.

    Article  CAS  PubMed  Google Scholar 

  • Garces A, Haase G, Airaksinen MS, Livet J, Filippi P, et al 2000. GFRα1 is required for development of distinct subpopulations of motoneuron. J Neurosci 20: 4992–5000.

    CAS  PubMed  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, et al 1996. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252–255.

    Article  CAS  PubMed  Google Scholar 

  • Geneste O, Bidaud C, De Vita G, Hofstra RM, Tartare‐Deckert S, et al 1999. Two distinct mutations of the RET receptor causing Hirschsprung's disease impair the binding of signalling effectors to a multifunctional docking site. Hum Mol Genet 8: 1989–1999.

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, et al 2003. Direct brain infusion of glial cell line‐derived neurotrophic factor in Parkinson disease. Nat Med 9: 589–595.

    Article  CAS  PubMed  Google Scholar 

  • Golden JP, DeMaro JA, Osborne PA, Milbrandt J, Johnson EM Jr. 1999. Expression of neurturin, GDNF, and GDNF family‐receptor mRNA in the developing and mature mouse. Exp Neurol 158: 504–528.

    Article  CAS  PubMed  Google Scholar 

  • Granholm AC, Reyland M, Albeck D, Sanders L, Gerhardt G, et al 2000. Glial cell line‐derived neurotrophic factor is essential for postnatal survival of midbrain dopamine neurons. J Neurosci 20: 3182–3190.

    CAS  PubMed  Google Scholar 

  • Grimm J, Sachs M, Britsch S, Di Cesare S, Schwarz‐Romond T, et al 2001. Novel p62dok family members, dok‐4 and dok‐5, are substrates of the c‐Ret receptor tyrosine kinase and mediate neuronal differentiation. J Cell Biol 154: 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Grondin R, Gash DM. 1998. Glial cell line‐derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson's disease. J Neurol 245: 35–42.

    Article  Google Scholar 

  • Grondin R, Zhang Z, Yi A, Cass WA, Masswood N, et al 2002. Striatal GDNF infusion promotes structral and functional recovery in advanced parkinsonian monkeys. Brain 125: 2190–2200.

    Article  Google Scholar 

  • Haase G, Dessaud E, Garces A, de Bovis B, Birling M, et al 2002. GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools. Neuron 35: 893–905.

    Article  CAS  PubMed  Google Scholar 

  • Haniu M, Hui J, Young Y, Le J, Katta V, et al 1996. Glial cell line‐derived neurotrophic factor: selective reduction of the intermolecular disulfide linkage and characterization of its disulfide structure. Biochemistry 35: 16799–16805.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Iwashita T, Murakamai H, Kato Y, Kawai K, et al 2001. Activation of BMK1 via tyrosine 1062 in RET by GDNF and MEN2A mutation. Biochem Biophys Res Commun 281: 682–689.

    Article  CAS  PubMed  Google Scholar 

  • Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. 1996. Embryonic expression of glial cell‐line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial–mesenchymal interactions. Mech Dev 54: 95–105.

    Article  CAS  PubMed  Google Scholar 

  • Heuckeroth RO, Enomoto H, Grider JR, Golden JP, Hanke JA, et al 1999. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22: 253–263.

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen JO, Laurikainen A, Airaksinen MS, Saarma M. 2000. GDNF family receptors in the embryonic and postnatal rat heart and reduced cholinergic innervation in mice hearts lacking ret or GFRalpha2. Dev Dyn 219: 28–39.

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen PH, Airaksinen MS. 2004. Sympathetic cholinergic target innervation requires GDNF family receptor GFRalpha2. Mol Cell Neurosci 26: 450–457.

    Article  CAS  PubMed  Google Scholar 

  • Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, et al 2002. Artemin is a vascular‐derived neurotrophic factor for developing sympathetic neurons. Neuron 35: 267–282.

    Article  CAS  PubMed  Google Scholar 

  • Huse M, Kuriyan J. 2002. The conformational plasticity of protein kinases. Cell 109: 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Ibanez CF. 1998. Emerging themes in structural biology of neurotrophic factors. Trends Neurosci 21: 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Ichihara M, Murakumo Y, Takahashi M. 2004. RET and neuroendocrine tumors. Cancer Lett 204: 197–211.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto T, Taniguchi M, Asai N, Ohkusu K, Nakashima I, et al 1993. cDNA cloning of mouse ret proto‐oncogene and its sequence similarity to the cadherin superfamily. Oncogene 8: 1087–1091.

    CAS  PubMed  Google Scholar 

  • Jaszai J, Farkas L, Galter D, Reuss B, Strelau J, et al 1998. GDNF‐related factor persephin is widely distributed throughout the nervous system. J Neurosci Res 53: 494–501.

    Article  CAS  PubMed  Google Scholar 

  • Jing S, Wen D, Yu Y, Holst PL, Luo Y, et al 1996. GDNF‐induced activation of the ret protein tyrosine kinase is mediated by GDNFR‐alpha, a novel receptor for GDNF. Cell 85: 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  • Jing S, Yu Y, Fang M, Hu Z, Holst PL, et al 1997. GFRalpha‐2 and GFRalpha‐3 are two new receptors for ligands of the GDNF family. J Biol Chem 272: 33111–33117.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DR, Miller FD. 2000. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10: 381–391.

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto K, Yagi M, Stöver T, Kanzaki S, Raphael Y. 2003. Hearing and hair cells are protected by adenoviral gene therapy with TGFβ1 and GDNF. Mol Ther 7: 484–492.

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, et al 2004. Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem 279: 14213–14224.

    Article  CAS  PubMed  Google Scholar 

  • Kjaer S, Ibanez CF. 2003a. Identification of a surface for binding to the GDNF–GFR alpha 1 complex in the first cadherin‐like domain of RET. J Biol Chem 278: 47898–47904.

    Article  CAS  Google Scholar 

  • Kjaer S, Ibanez CF. 2003b. Intrinsic susceptibility to misfolding of a hot‐spot for Hirschsprung disease mutations in the ectodomain of RET. Hum Mol Genet 12: 2133–2144.

    Article  CAS  Google Scholar 

  • Klein RD, Sherman D, Ho WH, Stone D, Bennett GI, et al 1997. A GPI‐linked protein that interacts with Ret to form a candidate neurturin receptor. Nature 387: 717–721.

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Choi BH. 2001. Expression of glial cell line‐derived neurotrophic factor (GDNF) in the developing human fetal brain. Int J Dev Neurosci 19: 549–558.

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, et al 2000. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290: 767–773.

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, et al 1999. Clinicopathological findings following intraventricular glial‐derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann Neurol 46: 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Korsching S. 1993. The neurotrophic factor concept: a reexamination. J Neurosci 13: 2739–2748.

    CAS  PubMed  Google Scholar 

  • Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, et al 1996. Neurturin, a relative of glial‐cell‐line‐derived neurotrophic factor. Nature 384: 467–470.

    Article  CAS  PubMed  Google Scholar 

  • Kozma R, Sarner S, Ahmed S, Lim L. 1997. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17: 1201–1211.

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, et al 1998. Glial cell line‐derived neurotrophic factor requires transforming growth factor‐β for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 18: 9822–9834.

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K. 2002. TGF‐beta and the regulation of neuron survival and death. J Physiol Paris 96: 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Kuma K, Iwabe N, Miyata T. 1993. Motifs of cadherin‐ and fibronectin type III‐related sequences and evolution of the receptor‐type‐protein tyrosine kinases: sequence similarity between proto‐oncogene ret and cadherin family. Mol Biol Evol 10: 539–551.

    CAS  PubMed  Google Scholar 

  • Kurokawa K, Iwashita T, Murakami H, Hayashi H, Kawai K, et al 2001. Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction. Oncogene 20: 1929–1938.

    Article  CAS  PubMed  Google Scholar 

  • Laurikainen A, Hiltunen JO, Vanhatalo S, Klinge E, Saarma M. 2000. Glial cell line‐derived neurotrophic factor is expressed in penis of adult rat and retrogradely transported in penile parasympathetic and sensory nerves. Cell Tissue Res 302: 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Ledda F, Paratcha G, Ibanez CF. 2002. Target‐derived GFRalpha1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron 36: 387–401.

    Article  CAS  PubMed  Google Scholar 

  • Lee DC, Chan KW, Chan SY. 2002. RET receptor tyrosine kinase isoforms in kidney function and disease. Oncogene 21: 5582–5592.

    Article  CAS  PubMed  Google Scholar 

  • Leitner ML, Molliver DC, Osborne PA, Vejsada R, Golden JP, et al 1999. Analysis of the retrograde transport of glial cell line‐derived neurotrophic factor (GDNF), neurturin, and persephin suggests that in vivo signaling for the GDNF family is GFRalpha coreceptor‐specific. J Neurosci 19: 9322–9331.

    CAS  PubMed  Google Scholar 

  • Leppanen VM, Bespalov MM, Runeberg‐Roos P, Puurand U, Merits A, et al 2004. The structure of GFRalpha1 domain 3 reveals new insights into GDNF binding and RET activation. EMBO J 23: 1452–1462.

    Article  PubMed  CAS  Google Scholar 

  • Lewin GR, Barde YA. 1996. Physiology of the neurotrophins. Annu Rev Neurosci 19: 289–317.

    Article  CAS  PubMed  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. 1993. GDNF: a glial cell line‐derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl M, Timmusk T, Rossi J, Saarma M, Airaksinen MS. 2000. Expression and alternative splicing of mouse Gfra4 suggest roles in endocrine cell development. Mol Cell Neurosci 15: 522–533.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Cavanaugh JE, Wang Y, Sakagami H, Mao Z, et al 2003. ERK5 activation of MEF2‐mediated gene expression plays a critical role in BDNF‐promoted survival of developing but not mature cortical neurons. Proc Natl Acad Sci USA 100: 8532–8537.

    Article  CAS  PubMed  Google Scholar 

  • Manabe Y, Nagano I, Gazi MS, Murakami T, Shiote M, et al 2002. Adenovirus‐mediated gene transfer of glial cell line‐derived neurotrophic factor prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Apoptosis 7: 329–334.

    Article  CAS  PubMed  Google Scholar 

  • Manie S, Santoro M, Fusco A, Billaud M. 2001. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet 17: 580–589.

    Article  CAS  PubMed  Google Scholar 

  • Martucciello G, Ceccherini I, Lerone M, Jasonni V. 2000. Pathogenesis of Hirschsprung's disease. J Pediatr Surg 35: 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  • Massoll N, Mazzaferri EL. 2004. Diagnosis and management of medullary thyroid carcinomas. Clin Lab Med 24: 49–83.

    Article  PubMed  Google Scholar 

  • Masure S, Geerts H, Cik M, Hoefnagel E, Kieboom Van Den G, et al 1999. Enovin, a member of the glial cell‐line‐derived neurotrophic factor (GDNF) family with growth promoting activity on neuronal cells. Existence and tissue‐specific expression of different splice variants. Eur J Biochem 266: 892–902.

    Article  CAS  PubMed  Google Scholar 

  • Masure S, Cik M, Hoefnagel E, Nosrat CA, Linden Van der I, et al 2000. Mammalian GFRalpha‐4, a divergent member of the GFRalpha family of coreceptors for glial cell line‐derived neurotrophic factor family ligands, is a receptor for the neurotrophic factor persephin. J Biol Chem 275: 39427–39434.

    Article  CAS  PubMed  Google Scholar 

  • Melillo RM, Carlomagno F, De Vita G, Formisano P, Vecchio G, et al 2001b. The insulin receptor substrate (IRS)‐1 recruits phosphatidylinositol 3‐kinase to Ret: evidence for a competition between Shc and IRS‐1 for the binding to Ret. Oncogene 20: 209–218.

    Article  CAS  Google Scholar 

  • Melillo RM, Santoro M, Ong SH, Billaud M, Fusco A, et al 2001a. Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen‐activated protein kinase signaling cascade. Mol Cell Biol 21: 4177–4187.

    Article  CAS  Google Scholar 

  • Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, et al 2000. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287: 1489–1493.

    Article  CAS  PubMed  Google Scholar 

  • Meng X, de Rooij DG, Westerdahl K, Saarma M, Sariola H. 2001. Promotion of seminomatous tumors by targeted overexpression of glial cell line‐derived neurotrophic factor in mouse testis. Cancer Res 61: 3267–3272.

    CAS  PubMed  Google Scholar 

  • Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, et al 1998. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, et al 1996. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382: 76–79.

    Article  CAS  PubMed  Google Scholar 

  • Murakami H, Yamamura Y, Shimono Y, Kawai K, Kurokawa K, et al 2002. Role of Dok1 in cell signaling mediated by RET tyrosine kinase. J Biol Chem 277: 32781–32790.

    Article  CAS  PubMed  Google Scholar 

  • Naveilhan P, Baudet C, Mikaels A, Shen L, Westphal H, et al 1998. Expression and regulation of GFRalpha3, a glial cell line‐derived neurotrophic factor family receptor. Proc Natl Acad Sci USA 95: 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  • Nijhawan D, Honarpour N, Wang X. 2000. Apoptosis in neural development and disease. Annu Rev Neurosci 23: 73–87.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov Y E. 2002. RET/PTC rearrangement in thyroid tumors. Endocr Pathol 13: 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Nosrat CA, Tomac A, Hoffer BJ, Olson L. 1997. Cellular and developmental patterns of expression of Ret and glial cell line‐derived neurotrophic factor receptor alpha mRNAs. Exp Brain Res 115: 410–422.

    Article  CAS  PubMed  Google Scholar 

  • Nosrat CA, Tomac A, Lindqvist E, Lindskog S, Humpel C, et al 1996. Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res 286: 191–207.

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, et al 2003. Implanted intracerebroventricular. Glial cell line‐derived neurotrophic factor. Randomized, double‐blind trial of glial cell line‐derived neurotrophic factor (GDNF) in PD. Neurology 60: 69–73.

    CAS  PubMed  Google Scholar 

  • Oppenheim RW. 1989. The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci 12: 252–255.

    Article  CAS  PubMed  Google Scholar 

  • Pachnis V, Mankoo B, Costantini F. 1993. Expression of the c‐ret proto‐oncogene during mouse embryogenesis. Development 119: 1005–1017.

    CAS  PubMed  Google Scholar 

  • Paratcha G, Ledda F, Baars L, Coulpier M, Besset V, et al 2001. Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c‐Ret to lipid rafts. Neuron 29: 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Paratcha G, Ledda F, Ibanez CF. 2003. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113: 867–879.

    Article  CAS  PubMed  Google Scholar 

  • Pasini B, Ceccherini I, Romeo G. 1996. RET mutations in human disease. Trends Genet 12: 138–144.

    Article  CAS  PubMed  Google Scholar 

  • Pawson T. 2002. Regulation and targets of receptor tyrosine kinases. Eur J Cancer 38: S3–S10.

    Article  PubMed  Google Scholar 

  • Peterziel H, Unsicker K, Krieglstein K. 2002. TGFβ induces GDNF responsiveness in neurons by recruitment of GFRα1 to the plasma membrane. J Cell Biol 159: 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Pezeshki G, Franke B, Engele J. 2001. Evidence for a ligand‐specific signaling through GFRalpha‐1, but not GFRalpha‐2, in the absence of Ret. J Neurosci Res 66: 390–395.

    Article  CAS  PubMed  Google Scholar 

  • Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, et al 1996. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382: 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Pochon NA, Menoud A, Tseng JL, Zurn AD, Aebischer P. 1997. Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 9: 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Popsueva A, Poteryaev D, Arighi E, Meng X, Angers‐Loustau A, et al 2003. GDNF promotes tubulogenesis of GFRalpha1‐expressing MDCK cells by Src‐mediated phosphorylation of Met receptor tyrosine kinase. J Cell Biol 161: 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Poteryaev D, Titievsky A, Sun YF, Thomas‐Crusells J, Lindahl M, et al 1999. GDNF triggers a novel ret‐independent Src kinase family‐coupled signaling via a GPI‐linked GDNF receptor alpha1. FEBS Lett 463: 63–66.

    Article  CAS  PubMed  Google Scholar 

  • Pozas E, Ibáñez CF. 2005. GDNF and GFRα1 promote differentiation and tangential migration of cortical GABAergic neurons. Neuron 45: 701–713.

    Article  CAS  PubMed  Google Scholar 

  • Purves D, Rubin E, Snider WD, Lichtman J. 1986. Relation of animal size to convergence, divergence, and neuronal number in peripheral sympathetic pathways. J Neurosci 6: 158–163.

    CAS  PubMed  Google Scholar 

  • Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, et al 1994. Point mutations affecting the tyrosine kinase domain of the RET proto‐oncogene in Hirschsprung's disease. Nature 367: 377–378.

    Article  CAS  PubMed  Google Scholar 

  • Rossi J, Luukko K, Poteryaev D, Laurikainen A, Sun YF, et al 1999. Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron 22: 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Salomon R, Attie T, Pelet A, Bidaud C, Eng C, et al 1996. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet 14: 345–347.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez MP, Silos‐Santiago I, Frisen J, He B, Lira SA, et al 1996. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382: 70–73.

    Article  CAS  PubMed  Google Scholar 

  • Sarabi A, Hoffer BJ, Olson L, Morales M. 2003. Glial cell line neurotrophic factor‐family receptor alpha‐1 is present in central neurons with distinct phenotypes. Neuroscience 116: 261–273.

    Article  CAS  PubMed  Google Scholar 

  • Sariola H, Saarma M. 1999. GDNF and its receptors in the regulation of the ureteric branching. Int J Dev Biol 43: 413–418.

    CAS  PubMed  Google Scholar 

  • Sariola H, Saarma M. 2003. Novel functions and signalling pathways for GDNF. J Cell Sci 116: 3855–3862.

    Article  CAS  PubMed  Google Scholar 

  • Schaar DG, Sieber BA, Sherwood AC, Dean D, Mendoza G, et al 1994. Multiple astrocyte transcripts encode nigral trophic factors in rat and human. Exp Neurol 130: 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger J. 2000. Cell signaling by receptor tyrosine kinases. Cell 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  • Schober A, Hertel R, Arumae U, Farkas L, Jaszai J, et al 1999. Glial cell line‐derived neurotrophic factor rescues target‐deprived sympathetic spinal cord neurons but requires transforming growth factor‐beta as cofactor in vivo. J Neurosci 19: 2008–2015.

    CAS  PubMed  Google Scholar 

  • Schuchardt A, D'Agati V, Larsson‐Blomberg L, Costantini F, Pachnis V. 1994. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367: 380–383.

    Article  CAS  PubMed  Google Scholar 

  • Scott RP, Ibanez CF. 2001. Determinants of ligand binding specificity in the glial cell line‐derived neurotrophic factor family receptor alpha S. J Biol Chem 276: 1450–1458.

    Article  CAS  PubMed  Google Scholar 

  • Segouffin‐Cariou C, Billaud M. 2000. Transforming ability of MEN2A‐RET requires activation of the phosphatidylinositol 3‐kinase/AKT signaling pathway. J Biol Chem 275: 3568–3576.

    Article  PubMed  Google Scholar 

  • Seo JY, Kim JS, Ghang JH, Kang TC, Suh JG, et al 2003. Nerve growth factor induces proliferation of PC12 cells through Cdc42. Neuroreport 14: 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  • Serra MP, Quartu M, Lai ML, Follesa P, del Fiacco M. 2002. Expression of glial cell line‐derived neurotrophic factor mRNA in the human newborn and adult hippocampal formation. Brain Res 928: 160–164.

    Article  CAS  PubMed  Google Scholar 

  • Shalizi A, Lehtinen M, Gaudilliere B, Donovan N, Han J, et al 2003. Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. J Neurosci 23: 7326–7336.

    CAS  PubMed  Google Scholar 

  • Soler RM, Dolcet X, Encinas M, Egea J, Bayascas JR, et al 1999. Receptors of the glial cell line‐derived neurotrophic factor family of neurotrophic factors signal cell survival through the phosphatidylinositol 3‐kinase pathway in spinal cord motoneurons. J Neurosci 19: 9160–9169.

    CAS  PubMed  Google Scholar 

  • Strelau J, Unsicker K. 1999. GDNF family members and their receptors: expression and functions in two oligodendroglial cell lines representing distinct stages of oligodendroglial development. Glia 26: 291–301.

    Article  CAS  PubMed  Google Scholar 

  • Suvanto P, Hiltunen JO, Arumae U, Moshnyakov M, Sariola H, et al 1996. Localization of glial cell line‐derived neurotrophic factor (GDNF) mRNA in embryonic rat by in situ hybridization. Eur J Neurosci 8: 816–822.

    Article  CAS  PubMed  Google Scholar 

  • Suvanto P, Wariovaara K, Lindahl M, Arumae U, Moshnyakov M, et al 1997. Cloning, mRNA distribution and chromosomal localisation of the gene for glial cell line‐derived neurotrophic factor receptor β, a homologue to GDNFR‐α. Hum Mol Genet 6: 1267–1273.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, et al 1988. Cloning and expression of the ret proto‐oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3: 571–578.

    CAS  PubMed  Google Scholar 

  • Takahashi M, Cooper GM. 1987. Ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 7: 1378–1385.

    CAS  PubMed  Google Scholar 

  • Tanaka M, Xiao H, Kiuchi K. 2002. Heparin facilitates glial cell line‐derived neurotrophic factor signal transduction. Neuroreport 13: 1913–1916.

    Article  CAS  PubMed  Google Scholar 

  • Tansey MG, Baloh RH, Milbrandt J, Johnson EM Jr. 2000. GFRalpha‐mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25: 611–623.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Doxakis E, Pinon LG, Strachan P, Buj‐Bello A, et al 1998. GFRalpha‐4, a new GDNF family receptor. Mol Cell Neurosci 11: 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Tomac AC, Agulnick AD, Haughey N, Chang CF, Zhang Y, et al 2002. Effects of cerebral ischemia in mice deficient in persephin. Proc Natl Acad Sci USA 99: 9521–9526.

    Article  CAS  PubMed  Google Scholar 

  • Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, et al 1996. Characterization of a multicomponent receptor for GDNF. Nature 382: 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, et al 1996. Functional receptor for GDNF encoded by the c‐ret proto‐oncogene. Nature 381: 785–789.

    Article  CAS  PubMed  Google Scholar 

  • Trupp M, Belluardo N, Funakoshi H, Ibanez CF. 1997. Complementary and overlapping expression of glial cell line‐derived neurotrophic factor (GDNF), c‐ret proto‐oncogene, and GDNF receptor‐alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17: 3554–3567.

    CAS  PubMed  Google Scholar 

  • Trupp M, Raynoschek C, Belluuardo N, Ibanez CF. 1998. Multiple GPI‐anchored receptors control GDNF‐dependent and independent activation of the c‐Ret receptor tyrosine kinase. Mol Cell Neurosci 11: 47–63.

    Article  CAS  PubMed  Google Scholar 

  • Trupp M, Ryden M, Jornvall H, Funakoshi H, Timmusk T, et al 1995. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130: 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Trupp M, Scott R, Whittemore SR, Ibanez CF. 1999. Ret‐dependent and ‐independent mechanisms of glial cell line‐derived neurotrophic factor signaling in neuronal cells. J Biol Chem 274: 20885–20894.

    Article  CAS  PubMed  Google Scholar 

  • Tsui‐Pierchalla BA, Ahrens RC, Crowder RJ, Milbrandt J, Johnson EM Jr. 2002. The long and short isoforms of RET function as independent signalling complexes. J Biol Chem 277: 34618–34625.

    Article  Google Scholar 

  • Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, et al 1995. Spatial and temporal expression of the ret proto‐oncogene product in embryonic, infant and adult rat tissues. Oncogene 10: 191–198.

    CAS  PubMed  Google Scholar 

  • Unsicker K, Suter‐Crazzolara Krieglstein K, 1999. Neurotrophic roles of GDNF and related factors. Handbook of experimental pharmacology. Hefti F, editor. Berlin, Heidelberg, New York: Springer; Vol. 134, pp. 189–224.

    Google Scholar 

  • Wang CY, Yang F, He X, Chow A, Du J, et al 2001. Ca(2+) binding protein frequenin mediates GDNF‐induced potentiation of Ca(2+) channels and transmitter release. Neuron 32: 99–112.

    Article  PubMed  Google Scholar 

  • Wang LJ, Lu YY, Muramatsu S, Ikeguchi K, Fujimoto K, et al 2002. Neuroprotective effects of glial cell line‐derived neurotrophic factor mediated by an adeno‐associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 22: 6920–6928.

    CAS  PubMed  Google Scholar 

  • Wanigasekara Y, Airaksinen MS, Heuckeroth RO, Milbrandt J, Keast JR. 2004. Neurturin signalling via GFRalpha2 is essential for innervation of glandular but not muscle targets of sacral parasympathetic ganglion neurons. Mol Cell Neurosci 25: 288–300.

    Article  CAS  PubMed  Google Scholar 

  • Watson FL, Heerssen HM, Bhattacharyya A, Klesse L, Lin MZ, et al 2001. Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4: 981–988.

    Article  CAS  PubMed  Google Scholar 

  • Widenfalk J, Nosrat C, Tomac A, Westphal H, Hoffer B, et al 1997. Neurturin and glial cell line‐derived neurotrophic factor receptor‐beta (GDNFR‐beta), novel proteins related to GDNF and GDNFR‐alpha with specific cellular patterns of expression suggesting roles in the developing and adult nervous system and in peripheral organs. J Neurosci 17: 8506–8519.

    CAS  PubMed  Google Scholar 

  • Widenfalk J, Tomac A, Lindqvist E, Hoffer B, Olson L. 1998. GFRalpha‐3, a protein related to GFRalpha‐1, is expressed in developing peripheral neurons and ensheathing cells. Eur J Neurosci 10: 1508–1517.

    Article  CAS  PubMed  Google Scholar 

  • Worby CA, Vega QC, Chao HH, Seasholtz AF, Thompson RC, et al 1998. Identification and characterization of GFRalpha‐3, a novel co‐receptor belonging to the glial cell line‐derived neurotrophic receptor family. J Biol Chem 273: 3502–3508.

    Article  CAS  PubMed  Google Scholar 

  • Worby CA, Vega QC, Zhao Y, Chao HH, Seasholtz AF, et al 1996. Glial cell line‐derived neurotrophic factor signals through the RET receptor and activates mitogen‐activated protein kinase. J Biol Chem 271: 23619–23622.

    Article  CAS  PubMed  Google Scholar 

  • Wright DE, Snider WD. 1996. Focal expression of glial cell line‐derived neurotrophic factor in developing mouse limb bud. Cell Tissue Res 286: 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Xing S, Furminger TL, Tong Q, Jhiang SM. 1998. Signal transduction pathways activated by RET oncoproteins in PC12 pheochromocytoma cells. J Biol Chem 273: 4909–4914.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lindahl M, Lindholm P, Virtanen H, Coffey E, et al 2004. PSPN/GFRalpha4 has a significantly weaker capacity than GDNF/GFRalpha1 to recruit RET to rafts, but promotes neuronal survival and neurite outgrowth. FEBS Lett 569: 267–271.

    Article  CAS  PubMed  Google Scholar 

  • Young HM, Anderson RB, Anderson CR. 2004. Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 112: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Scully S, Yu Y, Fox GM, Jing S, et al 1998. Expression of GDNF family receptor components during development: implications in the mechanisms of interaction. J Neurosci 18: 4684–4696.

    CAS  PubMed  Google Scholar 

  • Zhou B, Bae SK, Malone AC, Levinson BB, Kuo YM, et al 2001. hGFRalpha‐4: a new member of the GDNF receptor family and a candidate for NBIA. Pediatr Neurol 25: 156–161.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ work was supported by grants from the Deutsche Forschungsgemeinschaft (Str 616/3‐4) and from the MWK. We thank Dr. Katrin Huber for providing the in situ hybridization photographs and Prof. Dr. Dr. Klaus Unsicker for his suggestions regarding the manuscript.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Peterziel, H., Strelau, J. (2006). GDNF and Related Proteins. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_4

Download citation

Publish with us

Policies and ethics