Skip to main content

Secretin Superfamily: PACAP, VIP, and Related Neuropeptides

  • Reference work entry
  • First Online:

Abstract:

Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are important members of the secretin superfamily, specialized to function in the central and peripheral nervous systems. While the initial discovery of VIP as a vasoactive peptide revealed much if not all about its physiological role as a slow transmitter neuropeptide, PACAP's discovery as a putative hypophysiotropic hormone was initially misleading in terms of its far more ubiquitous and more physiologically important role as a neuropeptide cotransmitter similar to VIP. VIP and PACAP also function at “neuroimmunological synapses” upon release from nerve terminals, and perhaps also upon production in immunocytes. Thus, these two peptides have been implicated genetically, physiologically, and pharmacologically, in endocrine regulation, pain modulation, spatial memory, glucohomeostasis, arthritic inflammation, sepsis defense responses, respiratory control, circadian regulation, intermediary metabolism, and coordination of hormonal and cardiovascular control. Finally, along with their cognate receptors PAC1, VPAC1, and VPAC2, VIP and PACAP form an autoregulatory network that may function in cell differentiation, proliferation, and transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

adenylate cyclase

ACh:

acetylcholine

ACTH:

adrenocorticotropic hormone

BALT:

bronchus‐associated lymphoid tissue

CPE/H:

carboxypeptidase E/H

FSH:

follicle‐stimulating hormone

GALT:

gut‐associated lymphoid tissue

GH:

growth hormone

GIP:

glucose‐dependent insulinotropic polypeptide

GLUC:

glucagon

GLP‐1,‐2:

glucagon‐like peptide‐1,‐2

GPCR:

G‐protein‐coupled receptor

GRF:

growth hormone‐releasing factor

LDCVs:

large dense core vesicles

LH:

luteinizing hormone

LH‐RH:

luteinizing hormone‐releasing hormone

MALT:

mucosa‐associated lymphoid tissue

PACAP:

pituitary adenylate cyclase activating polypeptide

PAM:

peptide glycine alpha‐amidating monooxygenase

PC:

prohormone convertase

PHM/PHI:

peptide histidine methionine/peptide histidine isoleucine

PRL:

prolactin

PRP:

PACAP‐related peptide

SCN:

suprachiasmatic nucleus

SEC:

secretin

SOM:

somatostatin

SSVs:

small synaptic vesicles

TSH:

thyroid‐stimulating hormone

TRH:

thyrotropin‐releasing hormone

VIP:

vasoactive intestinal polypeptide

VSCC:

voltage‐sensitive calcium channel

References

  • Adamou JE, Aiyar N, Van Horn S, Elshourbagy NA. 1995. Cloning and functional characterization of the human vasoactive intestinal peptide (VIP)‐2 receptor. Biochem Biophys Res Commun 209: 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Agoston DV, Conlon JM, Whittaker VP. 1988. Selective depletion of the acetylcholine and vasoactive intestinal polypeptide of the guinea‐pig myenteric plexus by differential mobilization of distinct transmitter pools. Exp Brain Res 72: 535–542.

    Article  CAS  PubMed  Google Scholar 

  • Ajpru S, McArthur AJ, Piggins HD, Sugden D. 2002. Identification of PAC1 receptor isoform mRNAs by real‐time PCR in rat suprachiasmatic nucleus. Brain Res Mol Brain Res 105: 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Akesson L, Ahren B, Edgren G, Degerman E. 2005. VPAC2‐R mediates the lipolytic effects of pituitary adenylate cyclase‐activating polypeptide/vasoactive intestinal polypeptide in primary rat adipocytes. Endocrinology 146: 744–750.

    Article  CAS  PubMed  Google Scholar 

  • Anlauf M, Schäfer MK‐H, Eiden LE, Weihe E. 2003. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic and catecholaminergic phenotypes. J Comp Neurol 459: 90–111.

    Article  CAS  PubMed  Google Scholar 

  • Arimura A. 1992. Pituitary adenylate cyclase‐activating polypeptide (PACAP): Discovery and current status of research. Regul Pept 37: 287–303.

    CAS  PubMed  Google Scholar 

  • Arimura A. 1998. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 48: 301–331.

    Article  CAS  PubMed  Google Scholar 

  • Arimura A. 2002. Editorial: impaired adaptive thermogenesis in pituitary adenylate cyclase‐activating polypeptide‐deficient mice. Endocrinology 143: 3715–3716.

    Article  CAS  PubMed  Google Scholar 

  • Arimura A, Somogyvari‐Vigh A, Miyata A, Mizuno K, Coy DH, et al 1991. Tissue distribution of PACAP as determined by RIA: Highly abundant in the rat brain and testes. Endocrinology 129: 2787–2789.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong BD, Hu Z, Abad C, Yamamoto M, Rodriguez WI, et al 2003. Lymphocyte regulation of neuropeptide gene expression after neuronal injury. J Neurosci Res 74: 240–247.

    Article  CAS  PubMed  Google Scholar 

  • Asmus SE, Parsons S, Landis SC. 2000. Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J Neurosci 20: 1495–1504.

    CAS  PubMed  Google Scholar 

  • Asnicar MA, Koster A, Heiman ML, Tinsley F, Smith DP, et al 2002. Vasoactive intestinal polypeptide/pituitary adenylate cyclase‐activating peptide receptor 2 deficiency in mice results in growth retardation and increased basal metabolic rate. Endocrinology 143: 3994–4006.

    Article  CAS  PubMed  Google Scholar 

  • Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. 2005. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8(4): 476–483.

    CAS  PubMed  Google Scholar 

  • Babinski K, Bodart V, Roy M, De Léan A, Ong H. 1996. Pituitary adenylate‐cyclase activating polypeptide (PACAP) evokes long‐lasting secretion and de novo biosynthesis of bovine adrenal medullary neuropeptides. Neuropeptides 30: 572–582.

    Article  CAS  PubMed  Google Scholar 

  • Barrie AP, Clohessy AM, Buensuceso CS, Rogers MV, Allen JM. 1997. Pituitary adenylyl cyclase‐activating peptide stimulates extracellular signal‐regulated kinase 1 or 2 (ERK1/2) activity in a ras‐independent, mitogen‐activated protein kinase/ERK kinase 1 or 2‐dependent manner in PC12 cells. J Biol Chem 272: 19666–19671.

    Article  CAS  PubMed  Google Scholar 

  • Basille M, Gonzalez BJ, Leroux P, Jeandel L, Fournier A, et al 1993. Localization and characterization of PACAP receptors in the rat cerebellum during development: evidence for a stimulatory effect of PACAP on immature cerebellar granule cells. Neuroscience 57: 329–338.

    Article  CAS  PubMed  Google Scholar 

  • Beaudet MM, Braas KM, May V. 1998. Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. J Neurobiol 36: 325–336.

    Article  CAS  PubMed  Google Scholar 

  • Beaudet MM, Parsons RL, Braas KM, May V. 2000. Mechanisms mediating pituitary adenylate cyclase‐activating polypeptide depolarization of rat sympathetic neurons. J Neurosci 20: 7353–7361.

    CAS  PubMed  Google Scholar 

  • Bennett MR. 1997. Non‐adrenergic non‐cholinergic (NANC) transmission to smooth muscle: 35 years on. Prog Neurobiol 52: 159–195.

    Article  CAS  PubMed  Google Scholar 

  • Berisha HI, Bratut M, Bangale Y, Colasurdo G, Paul S, Said SI. 2002. New evidence for transmitter role of VIP in the airways: Impaired relaxation by a catalytic antibody. Pulm Pharmacol Therap 15: 121–127.

    Article  CAS  Google Scholar 

  • Bloom SR, Christofides ND, Delamarter J, Buell G, Kawashima E, Polak JM. 1983. Diarrhoea in vipoma patients associated with cosecretion of a second active peptide (peptide histidine isoleucine) explained by single coding gene. Lancet 2: 1163–1165.

    Article  CAS  PubMed  Google Scholar 

  • Bloom SR, Yiangou Y, Polak JM. 1988. Vasoactive intestinal peptide secreting tumors. Pathophysiological and clinical correlations. Ann N Y Acad Sci 527: 518–527.

    Article  CAS  Google Scholar 

  • Bodnar M, Sarrieau A, Deschepper CF, Walker CD. 1997. Adrenal vasoactive intestinal peptide participates in neonatal corticosteroid production in the rat. Am J Physiol 273: R1163–1172.

    CAS  PubMed  Google Scholar 

  • Bornstein SR, Haidan A, Ehrhart‐Bornstein M. 1996. Cellular communication in the neuroadrenocortical axis: role of vasoactive intestinal polypeptide (VIP). Endocrine Res 22: 819–829.

    CAS  Google Scholar 

  • Bos JL. 2003. Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4: 733–738.

    Article  CAS  PubMed  Google Scholar 

  • Brabet P, Jamen F, Rodriguez‐Henche N, Bertrand G, Bockaert J. 2003. Vaudry H, Arimura A, editors. PACAP receptor knockout and transgenics: what have we learnt? Pituitary adenylate cyclase‐activating polypeptide. Norwell, Massachusetts: Kluwer Academic Publishers; pp. 323–346.

    Google Scholar 

  • Brenneman DE, Eiden LE. 1986. Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc Natl Acad Sci USA 83: 1159–1162.

    Article  CAS  PubMed  Google Scholar 

  • Brenneman DE, Neale EA, Foster GA, d'Autremont SW, Westbrook GL. 1987. Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J Cell Biol 104: 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  • Bryant MG, Polak MM, Modlin I, Bloom SR, Albuquerque RH, et al 1976. Possible dual role for vasoactive intestinal peptide as gastrointestinal hormone and neurotransmitter substance. Lancet 1: 991–993.

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Hökfelt T, Gershon MD, Iversen LL, Kosterlitz HW, et al 1979. Non‐adrenergic, non‐cholinergic autonomic neurotransmission mechanisms. Neurosci Res Prog Bull 17: 377–519.

    CAS  Google Scholar 

  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU. 1999. Pituitary adenylyl cyclase‐activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA 96: 13468–13473.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Hamelink C, Chen Y, Hallenbeck JM, Eiden LE. 2002. Mechanism for neuroprotective effects of PACAP in cerebral ischemic insult in PACAP‐deficient mice, Washington, DC: Society for Neuroscience, 2002. Online Abstract Viewer/Itinerary Planner 2002.

    Google Scholar 

  • Chen Y, Hamelink C, Vaudry D, Xiang C, Brownstein M, et al 2004. Expression profiling of cerebrocortical transcripts during middel cerebral artery occlusion and treatment with pituitary adenylate cyclase‐activating polypeptide (PACAP) in the mouse. Pharmacology of cerebral ischemia. Krieglstein J, Klumpp S, editors. Stuttgart, Germany: Medpharm Scientific Publishers; pp. 267–277.

    Google Scholar 

  • Chen Y, Hamelink C, Vaudry D, Xiang C, Brownstein MJ, et al 2005. Expression profiling of cerebrocortical transcripts during middle cerebral artery occlusion and treatmenttwith pituitary adenylate cyclase activating polypeptide (PACAP) in the mouse. Pharmacology of Cerebral Ischemia. Klumpp S, editor. Stuttgart, Germany: MedPharm Scientific Publishers.

    Google Scholar 

  • Cherruau M, Morvan FO, Schirar A, Saffar JL. 2003. Chemical sympathectomy‐induced changes in TH‐, VIP‐, and CGRP‐immunoreactive fibers in the rat mandible periosteum: influence on bone resorption. J Cell Physiol 194: 341–348.

    Article  CAS  PubMed  Google Scholar 

  • Chik CL, Li B, Ogiwara T, Ho AK, Karpinski E. 1996. PACAP modulates L‐type Ca2+ channel currents in vascular smooth muscle cells: involvement of PKC and PKA. FASEB J 10: 1310–1317.

    CAS  PubMed  Google Scholar 

  • Chow BK‐C, Pang RTK, Ng SS‐M. 2003. Molecular evolution of PACAP precursor and PACAP receptors. Pituitary adenylate cyclase‐activating polypeptide. Vaudry H, Arimura A, editors. Norwell, Massachusetts: Kluwer Academic Publishers; pp. 25–47.

    Google Scholar 

  • Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, et al 2003. Novel receptor partners and function of receptor activity‐modifying proteins. J Biol Chem 278: 3293–3297.

    Article  CAS  PubMed  Google Scholar 

  • Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, et al 2003. Disrupted circadian rhythms in VIP and PHI deficient mice. Am J Physiol Regul Integr Comp Physiol 285: R939–R949.

    CAS  PubMed  Google Scholar 

  • Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, et al 2004. Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol 287: R1194–R1201.

    CAS  PubMed  Google Scholar 

  • Colwell CS, Waschek JA. 2001. Role of PACAP in circadian function of the SCN. Regul Pept 102: 49–68.

    Article  Google Scholar 

  • Couvineau A, Rouyer‐Fessard C, Darmoul D, Maoret JJ, Carrero I, et al 1994. Human intestinal VIP receptor: cloning and functional expression of two cDNA encoding proteins with different N‐terminal domains. Biochem Biophys Res Commun 200: 769–776.

    Article  CAS  PubMed  Google Scholar 

  • Couvineau A, Rouyer‐Fessard C, Voisin T, Laburthe M. 1990. Functional and immunological evidence for stable association of solubilized vasoactive‐intestinal‐peptide receptor and stimulatory guanine‐nucleotide‐binding protein from rat liver. Eur J Biochem 187: 605–609.

    Article  CAS  PubMed  Google Scholar 

  • Cucavelli E, Svoboda M, DeNeef P, DiPaola E, Bollen A, Dubeaux C, Vilardaga JP, Wadbroeck M, Robberecht P. 1995. Pharmacological properties of two recombinant splice variants of PACAP type receptor, translected and stably expressed in CHO cells. Eur J Pharm 288: 259–267.

    Article  Google Scholar 

  • Cummings KJ, Pendlebury JD, Jirik FR, Sherwood NM, Wilson RJ. 2004a. A SIDS‐like phenotype is associated with reduced respiratory chemoresponses in PACAP deficient neonatal mice. Adv Exp Med Biol 551: 77–83.

    Article  CAS  Google Scholar 

  • Cummings KJ, Pendlebury JD, Sherwood NM, Wilson RJ. 2004b. Sudden neonatal death in PACAP‐deficient mice is associated with reduced respiratory chemoresponse and susceptibility to apnoea. J Physiol 555: 15–26.

    Article  CAS  Google Scholar 

  • Cutler DJ, Haraura M, Reed HE, Shen S, Sheward WJ, et al 2003. The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur J Neurosci 17: 197–204.

    Article  PubMed  Google Scholar 

  • Daniel PB, Kieffer TJ, Leech CA, Habener JF. 2001. Novel alternatively spliced exon in the extracellular ligand‐binding domain of the pituitary adenylate cyclase‐activating polypeptide (PACAP) type 1 receptor (PAC1R) selectively increases ligand affinity and alters signal transduction coupling during spermatogenesis. J Biol Chem 276: 12938–12944.

    Article  CAS  PubMed  Google Scholar 

  • Darvish N, Russell JT. 1998. Neurotransmitter‐induced novel modulation of a nonselective cation channel by a cAMP‐dependent mechanisms in rat pineal cells. J Neurophysiol 79: 2546–2556.

    CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Mevenkamp G, Wille S, Hauger RL. 1999. N‐terminal splice variants of the type I PACAP receptor: isolation, characterization and ligand binding/selectivity determinants. J Neuroendocrinol 11: 941–949.

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Abad C, Martinez C, Juarranz MG, Leceta J, et al 2003. PACAP in immunity and inflammation. Ann N Y Acad Sci 992: 141–157.

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Abad C, Marinez C, Leceta J, Gomariz RP. 2001. Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 7: 563–568.

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, et al 1999a. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase‐activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNFalpha and IL6. J Immunol 162: 1200–1205.

    CAS  Google Scholar 

  • Delgado M, Pozo D, Ganea D. 2004. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56: 249–290.

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, et al 1999b. Vasoactive intestinal peptide and pituitary adenylate cyclase‐activating polypeptide inhibit endotoxin‐induced TNF‐alpha production by macrophages: in vitro and in vivo studies. J Immunol 162: 2358–2367.

    CAS  Google Scholar 

  • Deschodt‐Lanckman M, Robberecht P, Christophe J. 1977. Characterization of VIP‐sensitive adenylate cyclase in guinea pig brain. FEBS Lett 83: 76–80.

    Article  PubMed  Google Scholar 

  • DiCicco‐Bloom E, Lu NR, Pintar JE, Wang JW. 1998. The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann N Y Acad Sci 865: 74–289.

    Article  Google Scholar 

  • DiCicco‐Bloom E, Deutsch PJ, Maltzman J. Zhang J, Pintar JE, et al 2000. Autocrine expression and ontogenetic functions of the PACAP ligand/receptor system during sympathetic development. Dev Biol 219: 197–213.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson T, Fleetwood‐Walker SM. 1999. VIP and PACAP: very important in pain? TIPS 20: 324–329.

    CAS  PubMed  Google Scholar 

  • Diehl NL, Kermode JC, Shreeve SM. 1996. Direct evidence for functional coupling of the vasoactive intestinal peptide receptor to Gi3 in native lung membranes. Mol Pharmacol 50: 624–630.

    CAS  PubMed  Google Scholar 

  • Donaldson JG. 2003. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem 278: 41573–41576.

    Article  CAS  PubMed  Google Scholar 

  • Duckles SP, Said SI. 1982. Vasoactive intestinal peptide as a neurotransmitter in the cerebral circulation. Eur J Pharmacol 78: 371–374.

    Article  CAS  PubMed  Google Scholar 

  • Dun NJ, Tang H, Dun SL, Huang R, Dun EC, et al 1996. Pituitary adenylate cyclase activating polypeptide‐immunoreactive sensory neurons innervate rat adrenal medulla. Brain Res 716: 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Dziema H, Obrietan K. 2002. PACAP potentiates L‐type calcium channel conductance in suprachiasmatic nucleus neurons by activating the MAPK pathway. J Neurophysiol 88: 1374–1386.

    CAS  PubMed  Google Scholar 

  • Eckenstein F, Baughman RW. 1984. Two types of cholinergic innervation in cortex, one co‐localized with vasoactive intestinal polypeptide. Nature 309: 153–155.

    Article  CAS  PubMed  Google Scholar 

  • Edwards AV, Jones CT. 1993. Adrenal cortical and medullary responses to acetylcholine and vasoactive intestinal peptide in conscious calves. J Physiol 468: 515–527.

    CAS  PubMed  Google Scholar 

  • Edwards AV, Jones CT. 1994. Adrenal responses to the peptide PACAP in conscious functionally hypophysectomized calves. Am J Physiol 266: E870–E876.

    CAS  PubMed  Google Scholar 

  • Eiden LE. 1987. The enkephalin‐containing cell: strategies for polypeptide synthesis and secretion throughout the neuroendocrine system. Cell Mol Neurobiol 7: 339–352.

    Article  CAS  PubMed  Google Scholar 

  • Eiden LE. 2003. Signaling during exocytosis. Handbook of cell signaling. Bradshaw R, Dennis E, editors. New York: Academic Press; Vol. 3, pp. 375–392.

    Chapter  Google Scholar 

  • Eiden LE, Anouar Y, Hsu C‐M, Mac Arthur L, Hahm SH. 1998. Transcription regulation coupled to calcium and protein kinase signaling systems through TRE‐ and CRE‐like sequences in neuropeptide genes. Adv Pharmacol 42: 264–269.

    Article  CAS  PubMed  Google Scholar 

  • Eiden LE, Eskay RL, Scott J, Pollard H, Hotchkiss AJ. 1983. Primary cultures of bovine chromaffin cells synthesize and secrete vasoactive intestinal polypeptide (VIP). Life Sci 33: 687–693.

    Article  CAS  PubMed  Google Scholar 

  • Eiden LE, Giraud P, Dave J, Hotchkiss JA, Affolter H‐U. 1984. Nicotinic receptor stimulation activates both enkephalin release and biosynthesis in adrenal chromaffin cells. Nature 312: 661–663.

    Article  CAS  PubMed  Google Scholar 

  • Eiden LE, Hokfelt T, Brownstein MJ, Palkovits M. 1985. Vasoactive intestinal polypeptide afferents to the bed nucleus of the stria terminalis in the rat: an immunohistochemical and biochemical study. Neuroscience 15: 999–1013.

    Article  CAS  PubMed  Google Scholar 

  • Eipper BA, Mains RE, Glembotski C. 1983. Identification in pituitary tissue of a peptide alpha‐amidation activity that acts on glycine‐extended peptides and requires molecular oxygen, copper and ascorbic acid. Proc Natl Acad Sci USA 80: 5144–5148.

    Article  CAS  PubMed  Google Scholar 

  • Elde R, Haber S, Ho R, Holets V, de Lanerolle N, et al 1980. Interspecies conservation and variation in peptidergic neurons. Peptides 1: 21–26.

    Article  CAS  Google Scholar 

  • Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. 2000. The sympathetic nerve — an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52: 595–638.

    CAS  PubMed  Google Scholar 

  • Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, et al 2002. A novel Epac‐specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4: 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Fahrenkrug J. 1979. Vasoactive intestinal polypeptide: measurement, distribution and putative neurotransmitter function. Digestion 19: 149–169.

    Article  CAS  PubMed  Google Scholar 

  • Feany MB, Quinn WG. 1995. A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268: 869–873.

    Article  CAS  PubMed  Google Scholar 

  • Feldman SA, Eiden LE. 2003. The chromogranins: Their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 14: 3–23.

    Article  CAS  PubMed  Google Scholar 

  • Filipsson K, Sundler F, Ahren B. 1999. PACAP is an islet neuropeptide which contributes to glucose‐stimulated insulin secretion. Biochem Biophys Res Commun 256: 664–667.

    Article  CAS  PubMed  Google Scholar 

  • Frechilla D, Garcia‐Osta A, Palacios S, Cenarruzabeitia E, Del Rio J. 2001. BDNF mediates the neuroprotective effect of PACAP‐38 on rat cortical neurons. Neuroreport 12: 919–923.

    Article  CAS  PubMed  Google Scholar 

  • Frödin M, Peraldi P, Van Obberghen E. 1994. Cyclic AMP activates the mitogen‐activated protein kinase cascade in PC12 cells. J Biol Chem 269: 6207–6214.

    PubMed  Google Scholar 

  • Fukushima Y, Nagayama T, kawashima H, Hikichi H, Yoshida M, et al 2001. Role of calcium channels and adenylate cyclase in the PACAP‐induced adrenal catecholamine secretion. Am J Physiol Regul Integr Comp Physiol 281: R495–R501.

    CAS  PubMed  Google Scholar 

  • Geng G, Gaspo R, Trabelsi F, Yamaguchi N. 1997. Role of L‐type Ca2+ channel in PACAP‐induced adrenal catecholamine release in vivo. Regul Integr Comp Physiol 42: R1339–R1345.

    Google Scholar 

  • Ghatei M.A, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR. 1993. Distribution, molecular characterization of pituitary adenylate cyclase‐activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 136: 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Giachetti A, Said SI, Reynolds RC, Koniges FC. 1977. Vasoactive intestinal polypeptide in brain: localization in and release from isolated nerve terminals. Proc Natl Acad Sci USA 74: 3424–3428.

    Article  CAS  PubMed  Google Scholar 

  • Girard BM, May V, Bora SH, Fina F, Braas KM. 2002. Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real‐time quantitative polymerase chain reaction. Regul Pept 109: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Goetzl EJ, Voice JK, Shen S, Dorsam G, Kong Y, et al 2001. Enhanced delayed‐type hypersensitivity and diminished immediate‐type hypersensitivity in mice lacking the inducible VPAC(2) receptor for vasoactive intestinal peptide. Proc Natl Acad Sci USA 98: 13854–13859.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez BJ, Basille M, Mei YA, Vaudry D, Fournier A, et al 1996. Ontogeny of PACAP and PACAP receptors in the rat brain: role of PACAP in the cerebellum during development. Ann N Y Acad Sci 805: 302–313.

    Article  CAS  PubMed  Google Scholar 

  • Gourlet P, Vandermeers A, Vertongen P, Rathe J, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. 1997a. Development of high affinity selective VIP1 receptor agonists. Peptides 18: 1539–1545.

    Article  CAS  Google Scholar 

  • Gourlet P, Vertongen P, Vandermeers A, Vandermeers‐Piret MC, Rathe J, et al 1997b. The long‐acting vaso active intestinal polypeptide agonist RO 25‐1553 is highly selective of the VIP2 receptor subclass. Pept 18: 403–408.

    Article  CAS  Google Scholar 

  • Goyal RK, Rattan S, Said SI. 1980. VIP as a possible neurotransmitter of non‐cholinergic non‐adrenergic inhibitory neurones. Nature 288: 378–380.

    Article  CAS  PubMed  Google Scholar 

  • Gray SL, Cummings KJ, Jirik FR, Sherwood NM. 2001. Targeted disruption of the pituitary adenylate cyclase‐activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Mol Endocri 15: 1739–1747.

    Article  CAS  Google Scholar 

  • Gray SL, Yamaguchi N, Vencova P, Sherwood NM. 2002. Temperature‐sensitive phenotype in mice lacking pituitary adenylate cyclase‐activating polypeptide. Endocrinology 143: 3946–3954.

    Article  CAS  PubMed  Google Scholar 

  • Greengard P. 2001. The neurobiology of slow synaptic transmission. Science 294: 1024–1030.

    Article  CAS  PubMed  Google Scholar 

  • Gressens P, Hill JM, Gozes I, Fridkin M, Brenneman DE. 1993. Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature 362: 155–158.

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi M, Cavallaro S. 1999. Functional and molecular diversity of PACAP/VIP receptors in cortical neurons and type I astrocytes. Eur J Neurosci 11: 2767–2772.

    Article  CAS  PubMed  Google Scholar 

  • Grinninger C, Wang W, Oskoui KB, Voice JK, Goetzl EJ. 2004. A natural variant type II G protein‐coupled receptor for vasoactive intestinal peptide with altered function. J Biol Chem 279: 40259–40262.

    Article  CAS  PubMed  Google Scholar 

  • Gudermann T, Schöneberg T, Schultz G. 1997. Functional and structural complexity of signal transduction via G‐protein‐coupled receptors. Annu Rev Neurosci 20: 399–427.

    Article  CAS  PubMed  Google Scholar 

  • Habecker BA, Asmus SE, Francis N, Landis SC. 1997. Target regulation of VIP expression in sympathetic neurons. Ann N Y Acad Sci 814: 198–208.

    Article  CAS  PubMed  Google Scholar 

  • Hahm SH, Hsu C‐M, Eiden LE. 1998. PACAP activates calcium influx‐dependent and ‐independent pathways to couple met‐enkephalin secretion and biosynthesis in chromaffin cells. J Mol Neurosci 11: 1–15.

    Article  Google Scholar 

  • Hamelink C, Lee H‐W, Grimaldi M, Eiden LE. 2002a. Coincident elevation of cyclic AMP and calcium influx by PACAP‐27 synergistically regulates VIP gene transcription through a novel PKA‐independent signaling pathway. J Neurosci 22: 5310–5320.

    CAS  Google Scholar 

  • Hamelink C, Tjurmina O, Damadzic R, Young WS, Weihe E, Lee HW, Eiden LE. 2002b. Pituitary adenylate cyclase activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci USA 99: 461–466.

    Article  CAS  Google Scholar 

  • Hamelink C, Weihe E, Eiden LE. 2003. PACAP: an ‘emergency response’ co‐transmitter in the adrenal medulla. Pituitary adenylate cyclase‐activiting polypeptide. Vaudry H, Arimura A, editors. New York: Kluwer Academic Press; pp. 227–250.

    Google Scholar 

  • Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug JSM, et al 2002. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase‐activating polypeptide‐containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22: RC191.

    PubMed  Google Scholar 

  • Hannibal J, Jamen F, Nielsen HS, Journot L, Brabet P, et al 2001. Dissociation between light‐induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J Neurosci 21: 4883–4890.

    CAS  PubMed  Google Scholar 

  • Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, et al 1995. Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept 55: 133–148.

    Article  CAS  PubMed  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, et al 1998. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase‐activating polypeptide. Pharmacol Rev 50: 265–270.

    CAS  PubMed  Google Scholar 

  • Harmar AJ, Marston HM, Shen S, Spratt C, West KM, et al 2002. The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109: 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S. 1993. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase‐activating polypeptide. Neuron 11: 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, et al 2001. Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase‐activating polypeptide (PACAP). Proc Natl Acad Sci USA 98: 13355–13360.

    Article  CAS  PubMed  Google Scholar 

  • Haycock JW. 1996. Short‐ and long‐term regulation of tyrosine hydroxylase in chromaffin cells by VIP and PACAP. Ann N Y Acad Sci 805: 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen JH, de Muckadell OB. 2000. Secretin, its discovery, and the introduction of the hormone concept. Scand J Clin Lab Invest 60: 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt T, Lundberg JM, Schultzberg M, Fahrenkrug J. 1981. Immunohistochemical evidence for a local VIP‐ergic neuron system in the adrenal gland of the rat. Acta Physiol Scand 113: 575–576.

    Article  PubMed  Google Scholar 

  • Hokfelt T, Zhang X, Wiesenfeld‐Hallin Z. 1994. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17: 22–30.

    Article  CAS  PubMed  Google Scholar 

  • Holgert H, Holmberg K, Hannibal J, Fahrenkrug J, Brimijoin S, et al 1996. PACAP in the adrenal gland—relationship with choline acetyltransferase, enkephalin and chromaffin cells and effects of immunological sympathectomy. Neuroreport 20: 297–301.

    Article  Google Scholar 

  • Holzwarth MA. 1984. The distribution of vasoactive intestinal peptide in the rat adrenal cortex and medulla. J Auton Nerv Sys 11: 269–283.

    Article  CAS  Google Scholar 

  • Hosoya M, Onda H, Ogi K, Masuda Y, Miyamoto Y, et al 1993. Molecular cloning and functional expression of rat cDNAs encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem Biophys Res Commun 194: 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Fijishiro N, Ogawa K, Muroi M, Sakamoto Y, et al 2000. Pituitary adenylate cyclase‐activating polypeptide may function as a neuromodulator in guinea‐pig adrenal medulla. J Physiol 528(3): 473–487.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. 1992. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8: 811–819.

    Article  CAS  PubMed  Google Scholar 

  • Isobe K, Hakai T, Takuwa Y. 1993. Ca2+‐dependent stimulatory effect of pituitary adenylate cyclase‐activating polypeptide on catecholamine secretion from cultured porcine adrenal chromaffin cells. Endocrinology 132: 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  • Itri J, Michel S, Waschek JA, Colwell CS. 2004. Circadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus. J Neurophysiol 92: 311–319.

    Article  PubMed  Google Scholar 

  • Jamen F, Persson K, Bertrand G, Rodriguez‐Henche N, Puech R, et al 2000a. PAC1 receptor‐deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J Clin Invest 105: 1307–1315.

    Article  CAS  Google Scholar 

  • Jamen F, Puech R, Bockaert J, Brabet P, Bertrand G. 2002. Pituitary adenylate cyclase‐activating polypeptide receptors mediating insulin secretion in rodent pancreatic islets are coupled to adenylate cyclase but not to PLC. Endocrinology 143: 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  • Jamen F, Rodriguez‐Henche N, Pralong F, Jegou B, Gaillard R, et al 2000b. PAC1 null females display decreased fertility. Ann N Y Acad Sci 921: 400–404.

    Article  CAS  Google Scholar 

  • Jessop DS. 2002. Neuropeptides in the immune system: functional roles in health and disease. Front Horm Res 29: 50–68.

    Article  CAS  PubMed  Google Scholar 

  • Jongsma H, Pettersson LM, Zhang Y, Reimer MK, Kanje M, et al 2001. Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. Neuroreport 12: 2215–2219.

    Article  CAS  PubMed  Google Scholar 

  • Journot L, Waeber C, Pantaloni C, Holsboer F, Seeburg PH, et al 1995. Differential signal transduction by six splice variants of the pituitary adenylate cyclase‐activating peptide (PACAP) receptor. Biochem Soc Trans 23: 133–137.

    CAS  PubMed  Google Scholar 

  • Kermode JC, De Luca AW, Zilberman A, Valliere J, Shreeve SM. 1992. Evidence for the formation of a functional complex between vasoactive intestinal peptide, its receptor, and Gs in lung membranes. J Biol Chem 267: 3382‐–3388.

    PubMed  Google Scholar 

  • Kim W‐K, Kan Y, Ganea D, Hart RP, Gozes I, et al 2000. Vasoactive intestinal peptide and pituitary adenylyl cyclase‐activating polypeptide inhibit tumor necrosis factor‐alpha production in injured spinal cord and in activated microglia via a cAMP‐dependent pathway. J Neurosci 20: 3622–3630.

    CAS  PubMed  Google Scholar 

  • Klimaschewski L. 1997. VIP ‐ a ‘very important peptide’ in the sympathetic nervous system? Anat Embryol (Berl) 196: 269–277.

    Article  CAS  Google Scholar 

  • Koves K, Kantor O, Vereczki V, Kausz M, Nemeskeri A, et al 2000. PACAP and VIP in the photoneuroendocrine system. From the retina to the pituitary gland. Ann N Y Acad Sci 921: 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Lamouche S, Martineau D, Yamaguchi N. 1999. Modulation of adrenal catecholamine release by PACAP in vivo. Regul Integr Comp Physiol 45: R162–R170.

    Google Scholar 

  • Langer I, Gregoire F, Nachtergael I, De Neef P, Vertongen P, et al 2004. Hexanoylation of a VPAC2 receptor‐preferring ligand markedly increased its selectivity and potency. Peptides 25: 275–278.

    Article  CAS  PubMed  Google Scholar 

  • Lazarovici P, Jiang H, Fink Jr. D 1998. The 38‐amino‐acid form of pituitary adenylate cyclase‐activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal‐regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21ras G protein, and pp60c‐src cytoplasmic tyrosine kinase. Mol Pharmacol 54: 547–558.

    CAS  PubMed  Google Scholar 

  • Le Pechon‐Vallee C, Magalon K, Rasolonjanahary R, Enjalbert A, Gerard C. 2000. Vasoactive intestinal polypeptide and pituitary adenylate cyclase‐activating polypeptides stimulate mitogen‐activated protein kinase in the pituitary cell line GH4C1 by a 3′,5′‐cyclic adenosine monophosphate pathway. Neuroendocrinology 72: 46–56.

    Article  PubMed  Google Scholar 

  • Lelièvre V, Becq‐Giraudon L, Meunier A‐C, Muller J‐M. 1996. Switches in the expression and function of PACAP and VIP receptors during phenotypic interconversion in human neuroblastoma cells. Neuropeptides 30: 313–322.

    Article  PubMed  Google Scholar 

  • Lelievre V, Hu Z, Byun JY, Ioffe Y. Waschek JA. 2002. Fibroblast growth factor‐2 converts PACAP growth action on embryonic hindbrain precursors from stimulation to inhibition. J Neurosci Res 67: 566–573.

    Article  CAS  PubMed  Google Scholar 

  • Lemke G, Lu Q. 2003. Macrophage regulation by Tyro 3 family receptors. Curr Opin Immunol 15: 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Lerner EA, Shoemaker CB. 1992. Maxadilan. Cloning and functional expression of the gene encoding this potent vasodilator peptide. J Biol Chem 267: 1062–1066.

    CAS  Google Scholar 

  • Lindberg PT, Hamelink C, Damadzic R, Eiden LE, Gillette MU. 2004. Pituitary adenylate cyclase‐activating peptide plays a time‐dependent role in light‐induced phase shifts of circadian rhythms. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2004. Online. Program No. 195.14. (2004)

    Google Scholar 

  • Lindstrom E, Eliasson L, Bjorkqvist M, Hakanson R. 2001. Gastrin and the neuropeptide PACAP evoke secretion from rat stomach histamine‐containing (ECL) cells by stimulating influx of Ca2+ through different Ca2+ channels. J Physiol 535: 663–677.

    Article  CAS  PubMed  Google Scholar 

  • Loren I, Emson PC, Fahrenkrug J, Bjorklund A, Alumets J, et al 1979. Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience 4: 1953–1976.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JM, Anggard A, Fahrenkrug J, Hökfelt T, Mutt V. 1980. Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion. Proc Natl Acad Sci USA 77: 1651–1655.

    Article  CAS  PubMed  Google Scholar 

  • Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, et al 1993. The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett 334: 3–8.

    Article  CAS  PubMed  Google Scholar 

  • Lyu RM, Germano PM, Choi JK, Le SV, Pisegna JR. 2000. Identification of an essential amino acid motif within the C terminus of the pituitary adenylate cyclase‐activating polypeptide type I receptor that is critical for signal transduction but not for receptor internalization. J Biol Chem 275: 36134–36142.

    Article  CAS  PubMed  Google Scholar 

  • Mabuchi T, Shintani N, Matsumura S, Okuda‐Ashitaka E, Hashimoto H, et al 2004. Pituitary adenylate cyclase‐activating polypeptide is required for the development of spinal sensitization and induction of neuropathic pain. J Neurosci 24: 7283–7291.

    Article  CAS  PubMed  Google Scholar 

  • Mac Kenzie CJ, Lutz EM, Johnson MS, Robertson DN, Holland PJ, et al 2001. Mechanisms of phospholipase C activation by the vasoactive intestinal polypeptide/pituitary adenylate cyclase‐activating polypeptide type 2 receptor. Endocrinology 142: 1209–1217.

    Article  CAS  Google Scholar 

  • Magistretti PJ, Manthorpe M, Bloom FE, Varon S. 1983. Functional receptors for vasoactive intestinal polypeptide in cultured astroglia from neonatal rat brain. Regul Pept 6: 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra NR, Mahata M, O'Connor DT, Mahata SK. 2003. Secretin activation of chromogranin A gene transcription. Identification of the signaling pathways in cis and in trans. J Biol Chem 278: 19986–19994.

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Otto C, Santamarta MT, Torrecilla M, Pineda J, et al 2003. Morphine withdrawal is modified in pituitary adenylate cyclase‐activating polypeptide type I‐receptor‐deficient mice. Brain Res Mol Brain Res 110: 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Martinez. 2005. Analysis of the role of the PAC1 receptor in neutrophil recruitment, acute-phase response, and nitric oxide production in septic shock. J Leukoc Biol (in press): 1–10.

    Google Scholar 

  • Martinez C, Abad C, Delgado M, Arranz A, Juarranz MG, et al 2002. Anti‐inflammatory role in septic shock of pituitary adenylate cyclase‐activating polypeptide receptor. Proc Natl Acad Sci USA 99: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  • Masuo Y, Tokito F, Matsumoto Y, Shimamoto N, Fujino M. 1994. Ontogeny of pituitary adenylate cyclase‐activating polypeptide (PACAP) and its binding sites in the rat brain. Neurosci Lett 170: 43–46.

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama S, Matsumoto A, Hashimoto H, Shintani N, Baba A. 2003. Impaired long‐term potentiation in vivo in the dentate gyrus of pituitary adenylate cyclase‐activating polypeptide (PACAP) or PACAP type 1 receptor‐mutant mice. Neuroreport 14: 2095–2098.

    Article  CAS  PubMed  Google Scholar 

  • May V, Beaudet MM, Parsons RL, Hardwick JC, Gauthier EA, et al 1998. Mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP)‐induced depolarization of sympathetic superior cervical ganglion (SCG) neurons. Ann N Y Acad Sci 865: 164–175.

    Article  CAS  PubMed  Google Scholar 

  • McCulloch DA, Lutz EM, Johnson MS, Mac Kenzie CJ, Mitchell R. 2000. Differential activation of phospholipase D by VPAC and PAC1 receptors. Ann N Y Acad Sci 921: 175–185.

    Article  CAS  PubMed  Google Scholar 

  • McCulloch DA, Lutz EM, Johnson MS, Robertson DN, Mac Kenzie CJ, et al 2001. ADP‐ribosylation factor‐dependent phospholipase D activation by VPAC receptors and a PAC(1) receptor splice variant. Mol Pharmacol 59: 1523–1532.

    CAS  PubMed  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, et al 1989. Isolation of a novel 38 residue‐hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164: 567–574.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima H, Banks WA, Dohi K, Shioda S, Matsumoto H, Matsumoto K. 1999. The effect of cardiac arrest on the permeability of the mouse blood‐brain and blood‐spinal cord barrier to pituitary adenylate cyclase activating polypeptide (PACAP). Peptides 20: 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  • Mohney RP, Zigmond RE. 1998. Vasoactive intestinal peptide enhances its own expression in sympathetic neurons after injury. J Neurosci 18: 5285–5293.

    CAS  PubMed  Google Scholar 

  • Moller K, Reimer M, Ekblad E, Hannibal J, Fahrenkrug J, et al 1997. The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res 775: 166–182.

    Article  CAS  PubMed  Google Scholar 

  • Moller K, Zhang Y‐Z, Hakanson R, Luts A, Sjölund B, et al 1993. Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 57: 725–732.

    Article  CAS  PubMed  Google Scholar 

  • Moller M, Baeres FM. 2003. PACAP‐containing intrapineal nerve fibers originate predominantly in the trigeminal ganglion: a combined retrograde tracing‐ and immunohistochemical study of the rat. Brain Res 984: 160–169.

    Article  CAS  PubMed  Google Scholar 

  • Morales MA, Holmberg K, Xu ZQ, Cozzari C, Hartman BK, et al 1995. Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proc Natl Acad Sci USA 92: 11819–11823.

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Sakakibara A, Kitayama S, Kumagai K, Tanne K, Dohi T. 2002. Pituitary adenylate cyclase‐activating polypeptide induces a sustained increase in intracellular free Ca(2+) concentration and catechol amine release by activating Ca(2+) influx via receptor‐stimulated Ca(2+) entry, independent of store‐operated Ca(2+) channels, and voltage‐dependent Ca(2+) channels in bovine adrenal medullary chromaffin cells. J Pharmacol Exp Ther 302: 972–982.

    Article  CAS  PubMed  Google Scholar 

  • Moro O, Lerner EA. 1997. Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. J Biol Chem 272: 966–970.

    Article  CAS  PubMed  Google Scholar 

  • Mulder H, Jongsma H, Zhang Y, Gebre‐Medhin S. Sundler F, et al 1999. Pituitary adenylate cyclase‐activating polypeptide and islet amyloid polypeptide in primary sensory neurons. Functional implications from plasticity in expression on nerve injury and inflammation. Mol. Neurobiol 19: 229–253.

    Article  CAS  PubMed  Google Scholar 

  • Mulder H, Uddman R, Moller K, Zhang Y‐Q, Ekblad E, et al 1994. Pituitary adenylate cyclase activating polypeptide expression in sensory neurons. Neuroscience 63: 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Nahin RL, Ren K, De Leon M, Ruda M. 1994. Primary sensory neurons exhibit altered gene expression in a rat model of neuropathic pain. Pain 58: 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Nakata M, Kohno D, Shintani N, Nemoto Y, Hashimoto H, et al 2004. PACAP deficient mice display reduced carbohydrate intake and PACAP activates NPY‐containing neurons in the rat hypothalamic arcuate nucleus. Neurosci Lett 370: 252–256.

    Article  CAS  PubMed  Google Scholar 

  • Neves SR, Ram PT, Iyengar R. 2002. G protein pathways. Science 296: 1636–1639.

    Article  CAS  PubMed  Google Scholar 

  • Nicole P, Lins L, Rouyer‐Fessard C, Drouot C, Fulcrand P, et al 2000a. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 275: 24003–24012.

    CAS  Google Scholar 

  • Nicole P, Rouyer‐Fessard C, Couvineau A, Drouot C, Fulcrand P, et al 2000b. Alanine scanning of VIP. Structure‐function relationship for binding to human recombinant VPAC1 receptor. Ann N Y Acad Sci 921: 352–356.

    CAS  Google Scholar 

  • Nicot A, Otto T, Brabet P, Dicicco‐Bloom EM. 2004. Altered social behavior in pituitary adenylate cyclase‐activating polypeptide type I receptor‐deficient mice. J Neurosci 24: 8786–8795.

    Article  CAS  PubMed  Google Scholar 

  • Nielsch U, Keen P. 1989. Reciprocal regulation of tachykinin‐ and vasoactive intestinal peptide‐gene expression in rat sensory neurones following cut and crush injury. Brain Res 481: 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HS, Hannibal H, Fahrenkrug J. 1997. Developmental expression of the pituitary adenylate cyclase activating polypeptide (PACAP) in rat autonomic ganglia and spinal cord. Regul Pept 71: 125.

    Google Scholar 

  • Nielsen HS, Hannibal J, Fahrenkrug J. 1998. Embryonic expression of pituitary adenylate cyclase‐activating polypeptide in sensory and autonomic ganglia and in spinal cord of the rat. J Comp Neurol 394: 403–415.

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell M, Garippa RJ, Rinaldi N, Selig WM, Simko B, et al 1994a. Ro 25‐1553: a novel, long‐acting vasoactive intestinal peptide agonist. Part I: In vitro and in vivo bronchodilator studies. J Pharmacol Exp Ther 270: 1282–1288.

    Google Scholar 

  • O'Donnell M, Garippa RJ, Rinaldi N, Selig WM, Tocker JE, et al 1994b. Ro 25‐1553: a novel, long‐acting vasoactive intestinal peptide agonist. Part II: Effect on in vitro and in vivo models of pulmonary anaphylaxis. J Pharmacol Exp Ther 270: 1289–1294.

    Google Scholar 

  • O'Farrell M, Marley PD. 1997. Multiple calcium channels are required for pituitary adenylate cyclase‐activating polypeptide‐induced catecholamine secretion from bovine cultured adrenal chromaffin cells. Naunyn Schmiedebergs Arch Pharmacol 356: 536–542.

    Article  PubMed  Google Scholar 

  • Osipenko ON, Barrie AP, Allen JM, Gurney AM. 2000. Pituitary adenylyl cyclase‐activating peptide activates multiple intracellular signaling pathways to regulate ion channels in PC12 cells. J Biol Chem 275: 16626–16631.

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Hein L, Brede M, Jahns R, Engelhardt S, et al 2004. Pulmonary hypertension and right heart failure in pituitary adenylate cyclase‐activating polypeptide type I receptor‐deficient mice. Circulation 110: 3245–3251.

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, et al 2001a. Impairment of mossy fiber long‐term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor‐deficient mice. J Neurosci 21: 5520–5527.

    CAS  Google Scholar 

  • Otto C, Martin M, Wolfer DP, Lipp HP, Maldonado R, et al 2001b. Altered emotional behavior in PACAP‐type‐I‐receptor‐deficient mice. Brain Res Mol Brain Res 92: 78–84.

    Article  CAS  Google Scholar 

  • Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, et al 1996. Alternative splicing in the N‐terminal extracellular domain of the pituitary adenylate cyclase‐activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP‐27 and PACAP‐38 in phospholipase C activation. J Biol Chem 271: 22146–22151.

    Article  CAS  PubMed  Google Scholar 

  • Perrin D, Germeshausen A, Soling HD, Wuttke W, Jarry H. 1995. Enhanced cAMP production mediates the stimulatory action of pituitary adenylate cyclase activating polypeptide (PACAP) on in vitro catecholamine secretion from bovine adrenal chromaffin cells. Exp Clin Endocrinol Diabetes 103: 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Pisegna JR, Wank SA. 1993. Molecular cloning and functional expression of the pituitary adenylate cyclase‐activating polypeptide type I receptor. Proc Natl Acad Sci USA 90: 6345–6349.

    Article  CAS  PubMed  Google Scholar 

  • Pisegna JR, Wank SA. 1996. Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. J Biol Chem 271: 17267–17274.

    Article  CAS  PubMed  Google Scholar 

  • Przywara DA, Xi G, Angelilli L, Wakade TD, Wakade AR. 1996. A noncholinergic transmitter, pituitary adenylate cyclase activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J Biol Chem 271: 10545–10550.

    Article  CAS  PubMed  Google Scholar 

  • Rabl K, Reglodi D, Banvolgyi T, Somogyvari‐Vigh A, Lengvari I, et al 2002. PACAP inhibits anoxia‐induced changes in physiological responses in horizontal cells in the turtle retina. Regul Pept 109: 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings SR, Hezareh M. 1996. Pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: action on the anterior pituitary gland. Endocr Rev 17: 4–29.

    CAS  PubMed  Google Scholar 

  • Reglodi D, Somogyvari‐Vigh A, Vigh J, Li M, Lengvari I, et al 2001. Pituitary adenylate cyclase activating polypeptide is highly abundant in the nervous system of anoxia‐tolerant turtle, Pseudemys scripta elegans. Peptides 22: 873–878.

    Article  CAS  PubMed  Google Scholar 

  • Reglodi D, Somogyvari‐Vigh A, Vigh S, Kozicz T, Arimura A. 2000. Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 31: 1411–1417.

    CAS  PubMed  Google Scholar 

  • Reglodi D, Tamas A, Somogyvari‐Vigh A, Szanto Z, Kertes E, et al 2002. Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides 23: 2227–2234.

    Article  CAS  PubMed  Google Scholar 

  • Robberecht P, Gourlet P, De Neef P, Woussen‐Colle MC, Vandermeers‐Piret MC, et al 1992. Structural requirements for the occupancy of pituitary adenylate‐cyclase‐activating‐peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB‐OK‐1 cell membranes. Discovery of PACAP(6–38) as a potent antagonist. Eur J Biochem 207: 239–246.

    Article  CAS  PubMed  Google Scholar 

  • Ronaldson E, Robertson DN, Johnson MS, Holland PJ, Mitchell R, et al 2002. Specific interaction between the hop1 intracellular loop 3 domain of the human PAC(1) receptor and ARF. Regul Pept 109: 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Rostene WH. 1984. Neurobiological and neuroendocrine functions of the vasoactive intestinal peptide (VIP). Prog Neurobiol 22: 103–129.

    Article  CAS  PubMed  Google Scholar 

  • Said SI, Mutt V. 1970. Polypeptide with broad biological activity: isolation from small intestine. Science 169: 1217–1218.

    Article  CAS  PubMed  Google Scholar 

  • Said SI, Rosenberg RN. 1976. Vasoactive intestinal polypeptide: abundant immunoreactivity in neural cell lines and normal nervous tissue. Science 192: 907–908.

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Hashimoto H, Shintani N, Ichibori A, Tomimoto S, et al 2002. Involvement of intracellular Ca2+ elevation but not cyclic AMP in PACAP‐induced p38 MAP kinase activation in PC12 cells. Regul Pept 109: 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Samson WK, Said SI, Graham JW, McCann SM. 1978. Vasoactive‐intestinal‐polypeptide concentrations in median eminence of hypothalamus. Lancet 2: 901–902.

    Article  CAS  PubMed  Google Scholar 

  • Samson WK, Said SI, McCann SM. 1979. Radioimmunologic localization of vasoactive intestinal polypeptide in hypothalamic and extrahypothalamic sites in the rat brain. Neurosci Lett 12: 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Schemann M, Schaaf C, Mäder M. 1995. Neurochemical coding of enteric neurons in the guinea pig stomach. J Comp Neurol 353: 161–178.

    Article  CAS  PubMed  Google Scholar 

  • Sherwood NM, Gray SL, Cummings KJ. 2003. Consequences of PACAP gene knockout. Pituitary adenylate cyclase‐activating polypeptide. Vaudry H, Arimura A, editors. Norwell, Massachusetts: Kluwer Acadmic Publishers; pp. 347–360.

    Google Scholar 

  • Sherwood NM, Krueckl SL, McRory JE. 2000. The origin and function of the pituitary adenylate cyclase‐activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21: 619–670.

    Article  CAS  PubMed  Google Scholar 

  • Sheward WJ, Lutz EM, Copp AJ, Harmar AJ. 1998. Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Dev Brain Res 109: 245–253.

    Article  CAS  Google Scholar 

  • Shintani N, Mori W, Hashimoto H, Imai M, Tanaka K, et al 2002. Defects in reproductive functions in PACAP‐deficient female mice. Regul Pept 109: 45–48.

    Article  CAS  PubMed  Google Scholar 

  • Shioda S, Ozawa H, Dohi K, Mizushima H, Matsumoto K, et al 1998. PACAP protects hippocampal neurons against apoptosis: involvement of JNK/SAPK signaling pathway. Ann N Y Acad Sci 865: 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Shivers BD, Görcs TJ, Gottschall PE, Arimura A. 1991. Two high affinity binding sites for pituitary adenylate cyclase‐activating polypeptide have different tissue distributions. Endocrinology 128: 3055–3065.

    Article  CAS  PubMed  Google Scholar 

  • Shreeve SM, Sreedharan SP, Hacker MP, Gannon DE, Morgan MJ. 2000. VIP activates G(s) and G(i3) in rat alveolar macrophages and G(s) in HEK293 cells transfected with the human VPAC(1) receptor. Biochem Biophys Res Commun 272: 922–928.

    Article  CAS  PubMed  Google Scholar 

  • Sims KB, Hoffman DL, Said SI, Zimmerman EA. 1980. Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186: 165–183.

    Article  CAS  PubMed  Google Scholar 

  • Somogyvari‐Vigh A, Reglodi D, Li M, Lengvari I, Vigh S, et al 2000. Tissue distribution of PACAP27 and ‐38 in oligochaeta: PACAP27 is the predominant form in the nervous system of Lumbricus polyphemus. Peptides 21: 1185–1191.

    Article  PubMed  Google Scholar 

  • Spengler D, Bweber C, Pantaloni C, Hlsboer F, Bockaert J, et al 1993. Differential signal transduction by five splice variants of the PACAP receptor. Nature 365: 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan SP, Patel DR, Huang JX, Goetzl EJ. 1993. Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun 193: 546–553.

    Article  CAS  PubMed  Google Scholar 

  • Summers MA, O'Dorisio MS, Cox MO, Lara‐Marquez M, Goetzl EJ. 2003. A lymphocyte‐generated fragment of vasoactive intestinal peptide with VPAC1 agonist activity and VPAC2 antagonist effects. J Pharmacol Exp Ther 306: 638–645.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Rao MS, Zigmond RE, Landis SC. 1994. Regulation of vasoactive intestinal peptide expression in sympathetic neurons in culture and after axotomy: the role of cholinergic differentiation factor/leukemia inhibitory factor. J Neurobiol 25: 415–430.

    Article  CAS  PubMed  Google Scholar 

  • Sundler F, Ekblad E, Hannibal J, Moller K, Zhang Y‐Z, et al 1996. Pituitary adenylate cyclase‐activating peptide in sensory and autonomic ganglia: localization and regulation. Ann N Y Acad Sci 805: 410–428.

    Article  CAS  PubMed  Google Scholar 

  • Svoboda M, Tastenoy M, Ciccarelli E, Stievenart M, Christophe J. 1993. Cloning of a splice variant of the pituitary adenylate cyclase‐activating polypeptide (PACAP) type I receptor. Biochem Biophys Res Commun 195: 881–888.

    Article  CAS  PubMed  Google Scholar 

  • Svoboda M, Tastenoy M, Van Rampelbergh J, Goossens JF, De Neef P, et al 1994. Molecular cloning and functional characterization of a human VIP receptor from SUP‐T1 lymphoblasts. Biochem Biophys Res Commun 205: 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Koshimura K, Murakami Y, Kato Y. 1996a. Stimulatory effect of PACAP on neuronal cell survival. Ann N Y Acad Sci: 473–475.

    Google Scholar 

  • Tanaka J, Koshimura K, Murakami Y, Sohmiya M, Yanaihara N, et al 1997a. Neuronal protection from apoptosis by pituitary adenylate cyclase‐activating polypeptide. Regul Pept 72: 1–8.

    Article  CAS  Google Scholar 

  • Tanaka K, Shibuya I, Harayama N, Nomura M, Kabashima N, et al 1997b. Pituitary adenylate cyclase‐activating polypeptide potentiation of Ca2+ entry via protein kinase C and A pathways in melanotrophs of the pituitary pars intermedia of rats. Endocrinology 138: 4086–4095.

    Article  CAS  Google Scholar 

  • Tanaka K, Shibuya I, Nagamoto T, Yamasha H, Kanno T. 1996b. Pituitary adenylate cyclase‐activating polypeptide causes rapid Ca2+ release from intracellular stores and long lasting Ca2+ influx mediated by Na+ influx‐dependent membrane depolarization in bovine adrenal chromaffin cells. Endocrinology 137: 956–966.

    Article  CAS  Google Scholar 

  • Tanaka K, Shibuya I, Uezono Y, Ueta Y, Toyohira Y, et al 1998. Pituitary adenylate cyclase‐activating polypeptide causes Ca2+ release from ryanodine/caffeine stores through a novel pathway independent of both inositol trisphosphates and cyclic AMP in bovine adrenal medullary cells. J Neurochem 70: 1652–1661.

    Article  CAS  PubMed  Google Scholar 

  • Tatsuno I, Somogyvari‐Vigh A, Mizuno K, Gottschall PE, Hidaka H, et al 1991. Neuropeptide regulation of interleukin‐6 production from the pituitary: stimulation by pituitary adenylate cyclase activating polypeptide and calcitonin gene‐related peptide. Endocrinology 129: 1797–1804.

    Article  CAS  PubMed  Google Scholar 

  • Tatsuno I, Uchida D, Tanaka T, Saeki N, Hirai A, et al 2001. Maxadilan specifically interacts with PAC1 receptor, which is a dominant form of PACAP/VIP family receptors in cultured rat cortical neurons. Brain Res 889: 138–148.

    Article  CAS  PubMed  Google Scholar 

  • Taupenot L, Mahata M, Mahata SK, O'Connor DT. 1999. Time‐dependent effects of the neuropeptide PACAP on catecholamine secretion. Stimulation and desensitization. Hypertension 34: 1152–1162.

    CAS  PubMed  Google Scholar 

  • Tse DL, Pang RT, Wong AO, Chan SM, Vaudry H, et al 2002. Identification of a potential receptor for both peptide histidine isoleucine and peptide histidine valine. Endocrinology 143: 1327–1336.

    Article  CAS  PubMed  Google Scholar 

  • Tyrrell S, Landis SC. 1994. The appearance of NPY and VIP in sympathetic neuroblasts and subsequent alterations in their expression. J Neurosci 14: 4529–4547.

    CAS  PubMed  Google Scholar 

  • Uchida D, Arimura A, Somogyvari‐Vigh A, Shioda S, Banks WA. 1996. Prevention of ischemia‐induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Res 736: 280–286.

    Article  CAS  PubMed  Google Scholar 

  • Uchida D, Tatsuno I, Tanaka T, Hirai A, Saito Y, et al 1998. Maxadilan is a specific agonist and its deleted peptide (M65) is a specific antagonist for PACAP type 1 receptor. Ann N Y Acad Sci 865: 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Uddman R, Fahrenkrug J, Malm L, Alumets J, Hakanson R, et al 1980. Neuronal VIP in salivary glands: distribution and release. Acta Physiol Scand 110: 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Uhl GR, Snyder SH. 1979. Neurotensin: a neuronal pathway projecting from amygdala through stria terminalis. Brain Res 161: 522–526.

    Article  CAS  PubMed  Google Scholar 

  • Van Rampelbergh J, Poloczek P, Francoys I, Delporte C, Winand J, et al 1997. The pituitary adenylate cyclase activating polypeptide (PACAP I) and VIP (PACAP II VIP1) receptors stimulate inositol phosphate synthesis in transfected CHO cells through interaction with different G proteins. Biochim Biophys Acta 1357: 249–255.

    Article  PubMed  Google Scholar 

  • Vaudry D, Falluel‐Morel A, Basille M, Pamantung TF, Fontaine M, et al 2003. Pituitary adenylate cyclase‐activating polypeptide prevents C2‐ceramide‐induced apoptosis of cerebellar granule cells. J Neurosci Res 72: 303–316.

    Article  CAS  PubMed  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H. 1999. Neurotrophic activity of pituitary adenylate cyclase‐activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci USA 96: 9415–9420.

    Article  CAS  PubMed  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, et al 2000. Pituitary adenylate cyclase‐activating polypeptide and its receptors: From structure to functions. Pharmacol Rev 52: 269–324.

    CAS  PubMed  Google Scholar 

  • Vaudry D, Hamelink C, Damadzic R, Eskay EL, Gonzalez B, et al. 2005. Endogenous PACAP acts as a stress response peptide to protect cerebeller neurons from ethanol or oxidative insult. Peptides (In press).

    Google Scholar 

  • Vaudry D, Rousselle C, Basille M, Falluel‐Morel A, Pamantung TF, et al 2002a. Pituitary adenylate cyclase‐activating polypeptide protects rat cerebellar granule neurons against ethanol‐induced apoptotic cell death. Proc Natl Acad Sci USA 99: 6398–6403.

    Article  CAS  Google Scholar 

  • Vaudry D, Stork PJS, Lazarovici P, Eiden LE. 2002b. Signaling Pathways for PC12 cell Differentaition: making the right connections. Science 296: 1648–1649.

    Article  CAS  Google Scholar 

  • Villalaba M, Bockaert J, Journot L. 1997. Pituitary adenylate cyclase‐activating polypeptide (PACAP‐38) protects cerebellar granule neurons from apoptosis by activating the mitogen‐activated protein kinase (MAP kinase) pathway. J Neurosci 17: 83–90.

    Google Scholar 

  • Voice J, Donnelly S, Dorsam G, Dolganov G, Paul S, et al 2004. c‐Maf and JunB mediation of Th2 differentiation induced by the type 2 G protein‐coupled receptor (VPAC2) for vasoactive intestinal peptide. J Immunol 172: 7289–7296.

    CAS  PubMed  Google Scholar 

  • Voice JK, Dorsam G, Chan RC, Grinninger C, Kong Y, et al 2002. Immunoeffector and immunoregulatory activities of vasoactive intestinal peptide. Regul Pept 109: 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Wakade AR. 1988. Non‐cholinergic transmitter(s) maintains secretion of catecholamines from rat adrenal medulla for several hours of continuous stimulation of splanchnic neurons. J Neurochem 50: 1302–1308.

    Article  CAS  PubMed  Google Scholar 

  • Waschek JA. 1995. Vasoactive intestinal peptide: an important trophic factor and developmental regulator? Dev Neurosci 17: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Waschek JA. 1996. VIP and PACAP receptor‐mediated actions on cell proliferation and survival. Ann N Y Acad Sci 805: 290–300.

    Article  CAS  PubMed  Google Scholar 

  • Waschek JA, Cassillas RA, Nguyen TB, DiCicco‐Bloom EM, Carpenter EM, et al 1998. Neural tube expression of pituitary adenylate cyclase‐activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proc Natl Acad Sci USA 95: 9602–9607.

    Article  CAS  PubMed  Google Scholar 

  • Waschek JA, Lelievre V, Bravo DT, Nguyen T, Muller J‐M. 1997. Retinoic acid regulation of the VIP and PACAP autocrine ligand and receptor system in human neuroblastoma cell lines. Peptides 18: 835–841.

    Article  CAS  PubMed  Google Scholar 

  • Waschek JA, Pruss RM, Siegel RE, Eiden LE, Bader M‐F, et al 1987. Regulation of enkephalin, VIP and chromogranin A biosynthesis in actively secreting chromaffin cells: multiple strategies for multiple peptides. Ann N Y Acad Sci 493: 308–323.

    Article  CAS  PubMed  Google Scholar 

  • Waschek JA, Richards ML, Bravo DT. 1995. Differential expression of VIP/PACAP receptor genes in breast, intestinal, and pancreatic cell lines. Cancer Lett 92(2): 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Masuo Y, Matsumoto H, Suzuki N, Ohtaki T, et al 1992. Pituitary adenylate cyclase activating polypeptide provokes cultured rat chromaffin cells to secrete adrenaline. Biochem Biophys Res Commun 182: 403–411.

    Article  CAS  PubMed  Google Scholar 

  • Weihe E, Nohr D, Michel S, Muller S, Zentel HJ, et al 1991. Molecular anatomy of the neuro‐immune connection. Int J Neurosci 59: 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Willis EA, Ottesen B, Wagner G, Sundler F, Fahrenkrug J. 1983. Vasoactive intestinal polypeptide (VIP) as a putative neurotransmitter in penile erection. Life Sci 33: 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Xia M, Sreedharan SP, Bolin DR, Gaufo GO, Goetzl EJ. 1997. Novel cyclic peptide agonist of high potency and selectivity for the type II vasoactive intestinal peptide receptor. J Pharmacol Exp Ther 281: 629–633.

    CAS  PubMed  Google Scholar 

  • Yiangou Y, Di Marzo V, Spokes RA, Panico M, Morris HR, et al 1987a. Isolation, characterization, and pharmacological actions of peptide histidine valine 42, a novel prepro‐vasoactive intestinal peptide‐derived peptide. J Biol Chem 262: 14010–14013.

    CAS  Google Scholar 

  • Yiangou Y, Williams SJ, Bishop AE, Polak JM, Bloom SR. 1987b. Peptide histidine‐methionine immunoreactivity in plasma and tissue from patients with vasoactive intestinal peptide‐secreting tumors and watery diarrhea syndrome. J Clin Endocrinol Metab 64: 131–139.

    Article  CAS  Google Scholar 

  • Yung SL, Dela Cruz F, Hamren S, Zhu J, Tsutsumi M, et al 2003. Generation of highly selective VPAC2 receptor agonists by high throughput mutagenesis of vasoactive intestinal peptide and pituitary adenylate cyclase‐activating peptide. J Biol Chem 278: 10273–10281.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Danielsen N, Sundler F, Mulder H. 1998. Pituitary adenylate cyclase‐activating peptide is upregulated in sensory neurons by inflammation. Neuroreport 9: 2833–2836.

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y. 1995. Mediation of PACAP‐like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways in Drosophila. Nature 375: 588–592.

    Article  CAS  PubMed  Google Scholar 

  • Zhou CJ, Shioda S, Shibanuma M, Nakajo S, Funahashi H, et al 1999a. Pituitary adenylate cyclase‐activating polypeptide receptors during development: expression in the rat embryo at primitive streak stage. Neuroscience 93: 375–391.

    Article  CAS  Google Scholar 

  • Zhou X, Rodriguez WI, Casillas RA, Ma V, Tam J, et al 1999b. Axotomy‐induced changes in pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP receptor gene expression in the adult rat facial motor nucleus. J Neurosci Res 57: 953–961.

    Article  CAS  Google Scholar 

  • Zigmond RE. 2000. Neuropeptide action in sympathetic ganglia. Evidence for distinct functions in intact and axotomized ganglia. Ann N Y Acad Sci 921: 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Zigmond RE, Sun Y. 1997. Regulation of neuropeptide expression in sympathetic neurons. Paracrine and retrograde influences. Ann N Y Acad Sci 814: 181–197.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Matthew Gerdin and Carol Hamelink for comments on the manuscript and ask colleagues to overlook citation of review articles rather than specific citations in some cases due to space limitations.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Mustafa, T., Eiden, L.E. (2006). Secretin Superfamily: PACAP, VIP, and Related Neuropeptides. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_21

Download citation

Publish with us

Policies and ethics