Skip to main content

Opioid Receptor Signaling and Regulation

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Opioid receptors are transmembrane proteins that have been shown to be the targets of alkaloids isolated from the opium poppy, Papaver somniferum. The identification of the opioid receptor by ligand–receptor‐binding assays has led to the discovery of the first class of endogenous drug molecules: enkephalin and endorphins. From the discovery of these endogenous gene products and the varied pharmacological responses, multiple opioid receptors were defined and characterized. Since the identification of the receptor by binding assay, opioid receptor has been considered to belong to the membrane receptor superfamily, the G‐protein‐coupled receptor (GPCR). Until the successful cloning of one of the receptor types, δ‐opioid receptor (DOR), by Evans and Kieffer in 1992 (Evans et al., 1992; Kieffer et al., 1992), the eventual properties of the receptor remained elusive. Since then, much is now known about the receptor structure involved in ligand binding, signaling, and cellular control of the receptor. Several recent reviews have summarized the receptor structures/activities relationship and the ligands’ selectivity studies (Law et al., 1999; Quock et al., 1999; Chaturvedi et al., 2000; Janecka et al., 2004), and others have described in detail the regulation of receptor signaling (Law et al., 2000e; Waldhoer et al., 2004). Thus, in this review, we will first briefly examine the historical perspectives in the evolution of the concepts of multiple opioid receptor types, and follow with a review on the studies of receptor signaling, with an emphasis on how chronic opioid treatment could alter the potency and efficacy of agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARF:

ADP‐ribosylation factor

DAMGO:

[D‐Ala2, N‐Me‐Phe4, Gly5‐ol]‐enkephalin

DOR:

δ‐opioid receptor

ERK:

extracellular signal‐regulated kinase

GFP:

green fluorescence protein

GPCR:

G‐protein‐coupled receptor

GRK:

G‐protein‐coupled receptor kinase

Kir:

G‐protein‐dependent inward rectifying potassium channels

KOR:

κ‐opioid receptor

MOR:

μ‐opioid receptor

PDZ:

PSD‐95, discs‐large, ZO‐1

PKC:

Protein kinase C

PLC:

phospholipase C

PTX:

pertussis toxin

RGS:

regulator of G protein signaling

References

  • Abbadie C, Pasternak GW. 2001. Differential in vivo internalization of MOR‐1 and MOR‐1C by morphine. Neuroreport 12: 3069–3072.

    Article  CAS  PubMed  Google Scholar 

  • Abdelhamid EE, Sultana M, Portoghese PS, Takemori AE. 1991. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 258: 299–303.

    CAS  PubMed  Google Scholar 

  • Afify EA, Law PY, Riedl M, Elde R, Loh HH. 1998. Role of carboxyl‐terminus of μ‐ and δ‐opioid receptor in agonist‐induced desensitization and down‐regulation. Mol Brain Res 54: 24–34.

    Article  CAS  PubMed  Google Scholar 

  • Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, et al 1984. Endogenous opioids: biology and function. Annu Rev Neurosci 7: 223–255.

    Article  CAS  PubMed  Google Scholar 

  • Allouche S, Polastron J, Jauzac P. 1996. The delta‐opioid receptor regulates activity of ryanodine receptors in the human neuroblastoma cell line SK‐N‐BE. J Neurochem 67: 2461–2470.

    Article  CAS  PubMed  Google Scholar 

  • Ammer H, Christ TE. 2002. Identity of adenylyl cyclase isoform determines the G protein mediating chronic opioid‐induced adenylyl cyclase supersensitivity. J Neurochem 83: 818–827.

    Article  CAS  PubMed  Google Scholar 

  • Ammer H, Shultz R. 1997. Enhanced stimulatory adenylyl cyclase signaling during opioid dependence is associated with a reduction in palmitoylated Gs alpha. Mol Pharmacol 52: 993–999.

    CAS  PubMed  Google Scholar 

  • Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, et al 2000. Detection of β2‐adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97: 3684–3689.

    Article  CAS  PubMed  Google Scholar 

  • Appleyard SM, Patterson TA, Jin W, Chavkin C. 1997. Agonist‐induced phosphorylation of the κ‐opioid receptor. J Neurochem 69: 2405–2412.

    Article  CAS  PubMed  Google Scholar 

  • Arden JR, Segredo V, Wang A, Lameh J, Sadee W. 1995. Phosphorylation and agonist‐specific intracellular trafficking of an epitope‐tagged μ‐opioid receptor expressed in HEK293 cells. J Neurochem 65: 1636–1645.

    Article  CAS  PubMed  Google Scholar 

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, et al 1992. β‐Arrestin2, a novel member of the arrestin/β‐arrestin gene family. J Biol Chem 267: 17882–17890.

    CAS  PubMed  Google Scholar 

  • Avidor‐Reiss T, Nevo I, Levy R, Pfeuffer T, Vogel Z. 1996. Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of Gbetagamma. J Biol Chem 271: 21309–21315.

    Google Scholar 

  • Avidor‐Reiss T, Nevo I, Saya D, Bayerwitch M, Vogel Z. 1997. Opiate‐induced adenylyl cyclase superactivation is isozyme‐specific. J Biol Chem 272: 5040–5047.

    Article  PubMed  Google Scholar 

  • Bai M, Trivedi S, Brown EM. 1998. Dimerization of the extracellular calcium‐sensing receptor (CαR) on the cell surface of CαR‐transfected HEK 293 cells. J Biol Chem 272: 23605–23610.

    Article  Google Scholar 

  • Bailey CP, Couch D, Johnson E, Griffiths K, Kelly E, et al 2003. μ‐Opioid receptor desensitization in mature rat neurons: lack of interaction between DAMGO and morphine. J Neurosci 23: 10515–10520.

    CAS  PubMed  Google Scholar 

  • Belcheva MM, Haas PD, Tan Y, Heaton VM, Coscia CJ. 2002. The fibroblast growth factor receptor is at the site of convergence between mu‐opioid receptor and growth factor signaling pathways in rat C6 glioma cells. J Pharmacol Exp Ther 303: 909–918.

    Article  CAS  PubMed  Google Scholar 

  • Belcheva MM, Ignatova EG, Young EC, Coscia CJ. 1996. Agonist‐induced desensitization and down‐regulation of delta opioid receptors alter the levels of their 125I‐beta‐endorphin cross‐linked products in subcellular fractions from NG108‐15 cells. Biochem 35: 14818–14824.

    Article  CAS  Google Scholar 

  • Belcheva MM, Szucs M, Wang D, Sadee W, Coscia CJ. 2001. mu‐Opioid receptor‐mediated ERK activation involves calmodulin‐dependent epidermal growth factor receptor transactivation. J Biol Chem 276: 33847–33853.

    Article  CAS  PubMed  Google Scholar 

  • Belcheva MM, Tan Y, Heaton VM, Clark AL, Coscia CJ. 2003. mu‐Opioid transactivation and down‐regulation of the epidermal growth factor receptor in astrocytes: implications for mitogen‐activated protein kinase signaling. Mol Pharmacol 64: 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  • Belcheva MM, Vogel Z, Ignatova E, Avidor‐Reiss T, Zippel R, et al 1998. Opioid modulation of extracellular signal‐regulated protein kinase activity is ras‐dependent and involves Gbetagamma subunits. J Neurochem 70: 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Belcheva MM, Wong YH, Coscia CJ. 2000. Evidence for transduction of mu but not kappa opioid modulation of extracellular signal‐regulated kinase activity by G(z) and G(12) proteins. Cell Signal 12: 481–489.

    Article  CAS  PubMed  Google Scholar 

  • Bian JS, Zhang WM, Xia Q, Wong TM. 1998. Phospholipase C inhibitors attenuate arrhythmias induced by kappa‐receptor stimulation in the isolated rat heart. J Mol Cell Cardiol 30: 2103–2110.

    Article  CAS  PubMed  Google Scholar 

  • Blume A, Lichtshtein D, Boone G. 1979. Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. Proc Natl Acad Sci USA 76: 5626–5630.

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Belcheva MM, Coscia CJ. 2000a. Mitogenic signaling via endogenous kappa‐opioid receptors in C6 glioma cells: evidence for the involvement of protein kinase C and the mitogen‐activated protein kinase signaling cascade. J Neurochem 74: 564–573.

    Article  CAS  Google Scholar 

  • Bohn LM, Belcheva MM, Coscia CJ. 2000b. mu‐Opioid agonist inhibition of kappa‐opioid receptor‐stimulated extracellular signal‐regulated kinase phosphorylation is dynamin‐dependent in C6 glioma cells. J Neurochem 74: 574–581.

    Article  CAS  Google Scholar 

  • Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS. 2004. Relative opioid efficacy is determined by the complements of the G protein‐coupled receptor desensitization machinery. Mol Pharmacol 66: 106–112.

    Article  CAS  PubMed  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. 2000c. mu‐Opioid receptor desensitization by beta‐arrestin‐2 determines morphine tolerance but not dependence. Nature 408: 720–723.

    Article  CAS  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Caron MG. 2002. Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin‐2 knock‐out mice. J Neurosci 22: 10494–10500.

    CAS  PubMed  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, et al 1999. Enhanced morphine analgesia in mice lacking beta‐arrestin 2. Science 286: 2495–2498.

    Article  CAS  PubMed  Google Scholar 

  • Bonner GG, Davis P, Stropova D, Ferguson R, Yamamura HI, et al 1997. Opioid peptides: simultaneous delta agonism and mu antagonism in somatostatin analogues. Peptides 18: 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Bourinet E, Soong TW, Stea A, Snutch TP. 1996. Determinants of the G protein‐dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci USA 93: 1486–1491.

    Article  CAS  PubMed  Google Scholar 

  • Brady AE, Limbird LE. 2002. G protein‐coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14: 297–309.

    Article  CAS  PubMed  Google Scholar 

  • Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, et al 1994. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett 347: 284–288.

    Article  CAS  PubMed  Google Scholar 

  • Burt AR, Carr IC, Mullaney I, Anderson NG, Milligan G. 1996. Agonist activation of p42 and p44 mitogen‐activated protein kinases following expression of the mouse delta opioid receptor in Rat‐1 fibroblasts: effects of receptor expression levels and comparisons with G‐protein activation. Biochem J 320: 227–235.

    CAS  PubMed  Google Scholar 

  • Bushell T, Endoh T, Simen AA, Ren D, Bindokas VP, et al 2002. Molecular components of tolerance to opiates in single hippocampal neurons. Mol Pharmacol 61: 55–64.

    Article  CAS  PubMed  Google Scholar 

  • Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M. 1999. A kinase‐regulated PDZ‐domain interaction controls endocytic sorting of the beta2‐adrenergic receptor. Nature 401: 286–290.

    Article  CAS  PubMed  Google Scholar 

  • Capeyrou R, Riond J, Corbani M, Lepage JF, Bertin B, et al 1997. Agonist‐induced signaling and trafficking of the mu‐opioid receptor: role of serine and threonine residues in the third cytoplasmic loop and C‐terminal domain. FEBS Lett 415: 200–205.

    Article  CAS  PubMed  Google Scholar 

  • Carter BD, Medzihradsky F. 1993. Go mediates the coupling of the μ opioid receptor to adenylyl cyclase in cloned neural cells and brains. Proc Natl Acad Sci USA 90: 4062–4066.

    Article  CAS  PubMed  Google Scholar 

  • Cen B, Xiong Y, Ma L, Pei G. 2001a. Direct and differential interaction of beta‐arrestins with the intracellular domains of different opioid receptors. Mol Pharmacol 59: 758–764.

    CAS  Google Scholar 

  • Cen B, Yu Q, Guo J, Wu Y, Ling K, et al 2001b. Direct binding of beta‐arrestins to two distinct intracellular domains of the delta opioid receptor. J Neurochem 76: 1887–1894.

    Article  CAS  Google Scholar 

  • Chakrabarti S, Law PY, Loh HH. 1995a. Neuroblastoma Neuro2A cells stably expressing a cloned μ‐opioid receptor: a specific cellular model to study acute and chronic effects of morphine. Mol Brain Res 30: 269–278.

    Article  CAS  Google Scholar 

  • Chakrabarti S, Law PY, Loh HH. 1998a. Distinct differences between morphine– and [δ‐Ala2,N‐MePhe4,Gly‐ol5]enkephalin–mu‐opioid receptor complexes demonstrated by cyclic AMP‐dependent protein kinase phosphorylation. J Neurochem 71: 231–239.

    Article  CAS  Google Scholar 

  • Chakrabarti S, Oppermann M, Gintzler AR. 2001. Chronic morphine induces the concomitant phosphorylation and altered association of multiple signaling proteins: a novel mechanism for modulating cell signaling. Proc Natl Acad Sci USA 98: 4209–4214.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti S, Prather PL, Yu L, Law PY, Loh HH. 1995b. Expression of the μ‐opioid receptor in CHO cells: ability of μ‐opioid ligands to promote 32P‐α‐azidoanilido GTP labeling of multiple G protein α‐subunits. J Neurochem 64: 2534–2543.

    Article  CAS  Google Scholar 

  • Chakrabarti SR, Rivera M, Yan S‐Z, Tang W‐J, Gintzler AR. 1998c. Chronic morphine augments G/Gs stimulation of adenylyl cyclase: relevance to opioid tolerance. Mol Pharmacol 54: 655–662.

    CAS  Google Scholar 

  • Chakrabarti S, Wang L, Tang W‐J, Gintzler AR. 1998b. Chronic morphine augments adenylyl cyclase phosphorylation: relevance to altered signaling during tolerance/dependence. Mol Pharmacol 54: 949–953.

    CAS  Google Scholar 

  • Chalecka‐Franaszek E, Weems HB, Crowder AT, Cox BM, Cote TE. 2000. Immunoprecipitation of high‐affinity, guanine nucleotide‐sensitive, solubilized mu‐opioid receptors from rat brain: coimmunoprecipitation of the G proteins G(alpha o), G(alpha i1), and G(alpha i3). J Neurochem 74: 1068–1078.

    Article  PubMed  Google Scholar 

  • Chan JSC, Chiu TT, Wong YH. 1995. Activation of type II adenylyl cyclase by the cloned μ‐opioid receptor: coupling to multiple G proteins. J Neurochem 65: 2682–2689.

    Article  CAS  PubMed  Google Scholar 

  • Chan KW, Duttory A, Yoburn BC. 1997. Magnitude of tolerance to fentanyl is independent of mu‐opioid receptor density. Eur J Pharmacol 319: 225–228.

    Article  CAS  PubMed  Google Scholar 

  • Chan JSC, Lee JW, Ho MK, Wong YH. 2000. Preactivation permits subsequent stimulation of phospholipase C by G(i)‐coupled receptors. Mol Pharmacol 57: 700–708.

    CAS  PubMed  Google Scholar 

  • Chang KJ, Cooper BR, Hazum E, Cuatrecasas P. 1979. Multiple opiate receptors: different regional distribution in the brain and differential binding of opiates and opioid peptides. Mol Pharmacol 16: 91–104.

    CAS  PubMed  Google Scholar 

  • Chang KJ, Eckel RW, Blanchard SG. 1982. Opioid peptides induce reduction of enkephalin receptors in cultured neuroblastoma cells. Nature 296: 446–448.

    Article  CAS  PubMed  Google Scholar 

  • Chang KJ, Hazum E, Killian A, Cuatrecasas P. 1981. Interactions of ligands with morphine and enkephalin receptors are differentially affected by guanine nucleotide. Mol Pharmacol 20: 1–7.

    CAS  PubMed  Google Scholar 

  • Chaturvedi K, Bandari P, Chinen N, Howells RD. 2001. Proteasome involvement in agonist‐induced down‐regulation of mu and delta opioid receptors. J Biol Chem 276: 12345–12355.

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi K, Christoffers KH, Singh K, Howells RD. 2000. Structure and regulation of opioid receptors. Biopolymers 55: 334–346.

    Article  CAS  PubMed  Google Scholar 

  • Chatzaki E, Makrigiannakis A, Margioris AN, Kouimtzoglou E, Gravanis A. 2001. The Fas/FasL apoptotic pathway is involved in kappa‐opioid‐induced apoptosis of human endometrial stromal cells. Mol Hum Reprod 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Devivo M, Dingus J, Harry A, Li J, et al 1995. A region of adenylyl cyclase 2 critical for regulation by G protein βγ subunits. Science 268: 1166–1169.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Fan Y, Liu J, Mestek A, Tian M, et al 1994. Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett 347: 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Marrero HG, Murphy R, Lin YJ, Freedman JE. 2000. Altered gating of opiate receptor‐modulated K+ channels on amygdala neurons of morphine‐dependent rats. Proc Natl Acad Sci USA 97: 14692–14696.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Mestek A, Liu J, Hurley JA, Yu L. 1993a. Molecular cloning and functional expression of a μ‐opioid receptor from rat brain. Mol Pharmacol 44: 8–12.

    CAS  Google Scholar 

  • Chen Y, Mestek A, Liu J, Yu L. 1993b. Molecular cloning of a rat κ‐opioid receptor reveals sequence similarities to the μ and δ opioid receptors. Biochem J 295: 625–628.

    CAS  Google Scholar 

  • Ciruela F, Casado V, Mallo J, Canela EE, Lluis C, et al 1995. Immunological identification of A1 adenosine receptors in brain cortex. J Neurosci Res 42: 818–828.

    Article  CAS  PubMed  Google Scholar 

  • Claing A, Chen W, Miller WE, Vitale N, Moss J, et al 2001. Beta‐arrestin‐mediated ADP‐ribosylation factor 6 activation and beta 2‐adrenergic receptor endocytosis. J Biol Chem 276: 42509–42513.

    Article  CAS  PubMed  Google Scholar 

  • Collier HO, Francis DL. 1975. Morphine abstinence is associated with increased brain cyclic AMP. Nature 255: 159–162.

    Article  CAS  PubMed  Google Scholar 

  • Collier HO, Roy AC. 1974. Morphine‐like drugs inhibit the stimulation of E prostaglandins of cyclic AMP formation by rat brain homogenate. Nature 248: 24–27.

    Article  CAS  PubMed  Google Scholar 

  • Connor M, Henderson G. 1996. Delta‐ and mu‐opioid receptor mobilization of intracellular calcium in SH‐SY5Y human neuroblastoma cells. Br J Pharmacol 117: 333–340.

    CAS  PubMed  Google Scholar 

  • Connor M, Schuller A, Pintar JE, Christie MJ. 1999. μ‐Opioid receptor modulation of calcium channel current in periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR‐1. Br J Pharmacol 126: 1553–1558.

    Article  CAS  PubMed  Google Scholar 

  • Crain SM, Shen KF. 1996. Modulatory effects of Gσ‐coupled excitatory opioid receptor functions on opioid analgesia, tolerance, and dependence. Neurochem Res 21: 1347–1351.

    Article  CAS  PubMed  Google Scholar 

  • Crain SM, Shen KF. 1998a. Modulation of opioid analgesia, tolerance and dependence by Gσ‐coupled, GM1 ganglioside‐regulated opioid receptor functions. Trends Pharmacol Sci 19: 358–365.

    Article  CAS  Google Scholar 

  • Crain SM, Shen KF. 1998b. GM1 ganglioside‐induced modulation of opioid receptor‐mediated functions. Ann NY Acad Sci 845: 106–125.

    Article  CAS  Google Scholar 

  • Creese I, Snyder SH. 1975. Receptor binding and pharmacological activity of opiates in the guinea‐pig intestine. J Pharmacol Exp Ther 194: 205–219.

    CAS  PubMed  Google Scholar 

  • Cruciani RA, Dvorkin B, Morris SA, Crain SM, Makman MH. 1993. Direct coupling of opioid receptors to both stimulatory and inhibitory guanine nucleotide‐binding proteins in F‐11 neuroblastoma‐sensory neuron hybrid cells. Proc Natl Acad Sci USA 90: 3019–3023.

    Article  CAS  PubMed  Google Scholar 

  • Cvejic S, Devi LA. 1997. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem 272: 26959–26964.

    Article  CAS  PubMed  Google Scholar 

  • Cvejic S, Trapaidze N, Cyr C, Devi LA. 1996. Thr353, located within the COOH‐terminal tail of the delta opiate receptor, is involved in receptor down‐regulation. J Biol Chem 271: 4073–4076.

    Article  CAS  PubMed  Google Scholar 

  • Daaka Y, Luttrell LM, Ahn S, Della Rocca GJ, Ferguson SS, et al 1998. Essential role for G protein‐coupled receptor endocytosis in the activation of mitogen‐activated protein kinase. J Biol Chem 273: 685–688.

    Article  CAS  PubMed  Google Scholar 

  • De Fea KA, Vaughn ZD, O'Bryan EM, Nishijima D, Dery O, et al 2000. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β‐arrestin‐dependent scaffolding complex. Proc Natl Acad Sci USA 97: 11086–11091.

    Article  CAS  Google Scholar 

  • De Graff J, Gagnon AW, Benovic JL, Orsini MJ. 1999. Role of arrestins in endocytosis and signaling of β2‐adrenergic receptor subtypes. J Biol Chem 274: 11253–11259.

    Article  CAS  Google Scholar 

  • Deng HB, Yu Y, Pak Y, O'Dowd BF, George SR, et al 2000. Role for the C‐terminus in agonist‐induced mu opioid receptor phosphorylation and desensitization. Biochem 39: 5492–5499.

    Article  CAS  Google Scholar 

  • Diao CT, Li L, Lau SY, Wong TM, Wong NS. 2000. Kappa‐opioid receptor potentiates apoptosis via a phospholipase C pathway in the CNE2 human epithelial tumor cell line. Biochim Biophys Acta 1499 (1–2): 49–62.

    Article  Google Scholar 

  • Eisinger DA, Schultz R. 2004. Extracellular signal‐regulated kinase/mitogen‐activated protein kinases block internalization of delta‐opioid receptors. J Pharmacol Exp Ther 309: 776–785.

    Article  CAS  PubMed  Google Scholar 

  • Eitan S, Bryant CD, Saliminejad N, Yang YC, Vojdani E, et al 2003. Brain region‐specific mechanisms for acute morphine‐induced mitogen‐activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization. J Neurosci 23: 8360–8369.

    CAS  PubMed  Google Scholar 

  • El Kouhen R, Burd AL, Erickson‐Herbrandson LJ, Chang C‐Y, Law PY, et al 2001. Phosphorylation of Ser363, Thr370, and Ser375 residues within the carboxyl tail differentially regulates μ‐opioid receptor internalization. J Biol Chem 276: 12774–12780.

    Article  CAS  PubMed  Google Scholar 

  • El Kouhen R, Kouhen OM, Law PY, Loh HH. 1999. The absence of a direct correlation between the loss of [d‐Ala2,MePhe4,Gly5‐ol]enkephalin inhibition of adenylyl cyclase activity and agonist‐induced mu‐opioid receptor phosphorylation. J Biol Chem 274: 9207–9215.

    Article  CAS  PubMed  Google Scholar 

  • Elenko E, Fischer T, Niesman I, Harding T, McQuistan T, et al 2003. Spatial regulation of Galphai protein signaling in clathrin‐coated membrane microdomains containing GAIP. Mol Pharmacol 64: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Evans CJ, Keith DE, Morrison H, Magendzo K, Edwards RH. 1992. Cloning of a delta opioid receptor by functional expression. Science 258: 1952–1955.

    Article  CAS  PubMed  Google Scholar 

  • Fan GH, Zhang WB, Yao CP, Pei G. 1997. Modulation by calcium/calmodulin‐dependent protein kinase II of functional response of delta opioid receptor in neuroblastoma × glioma hybrid (NG108‐15) cells. Neuropharmacol 36: 1763–1769.

    Article  CAS  Google Scholar 

  • Fan GH, Zhou TH, Zhang WB, Pei G. 1998. Suppression of phospholipase C blocks Gi‐mediated inhibition of adenylyl cyclase activity. Eur J Pharmacol 341: 317–322.

    Article  CAS  PubMed  Google Scholar 

  • Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR. 1992. Hormonal stimulation of adenylyl cyclase through Gi‐protein βγ subunits. Nature 356: 159–161.

    Article  CAS  PubMed  Google Scholar 

  • Finn AK, Whistler JL. 2001. Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 32: 829–839 [comment].

    Article  CAS  PubMed  Google Scholar 

  • Fryer RM, Hsu AK, Gross GJ. 2001a. ERK and p38 MAP kinase activation are components of opioid‐induced delayed cardioprotection. Basic Res Cardiol 96: 136–142.

    Article  CAS  Google Scholar 

  • Fryer RM, Patel HH, Hsu AK, Gross GJ. 2001b. Stress‐activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. Am J Physiol Heart Circ Physiol 281: H1184–H1192.

    CAS  Google Scholar 

  • Fryer RM, Pratt PF, Hsu AK, Gross GJ. 2001c. Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid‐induced cardioprotection. J Pharmacol Exp Ther 296: 642–649.

    CAS  Google Scholar 

  • Fukuda K, Kato S, Morikawa H, Shoda T, Mori K. 1996. Functional coupling of the delta‐, mu‐, and kappa‐opioid receptors to mitogen‐activated protein kinase and arachidonate release in Chinese hamster ovary cells. J Neurochem 67: 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  • Gage RM, Kim KA, Cao TT, von Zastrow M. 2001. A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein‐coupled receptors. J Biol Chem 276: 44712–44720.

    Article  CAS  PubMed  Google Scholar 

  • Garcia DE, Li B, Garcia‐Ferreiro RE, Hernandez‐Ochoa EO, Yan K, et al 1998. G‐protein β‐subunit specificity in the fast membrane‐delimited inhibition of Ca2+ channels. J Neurosci 18: 9163–9170.

    CAS  PubMed  Google Scholar 

  • Garrington TP, Johnson GL. 1999. Organization and regulation of mitogen‐activated protein kinase signaling pathways. Curr Opin Cell Biol 11: 211–218.

    Article  CAS  PubMed  Google Scholar 

  • George SR, Fan T, Xie Z, Tse R, Tam V, et al 2000. Oligomerization of mu‐ and delta‐opioid receptors. Generation of novel functional properties. J Biol Chem 275: 26128–26135.

    CAS  Google Scholar 

  • Ghazarossian VE, Chavkin C, Goldstein A. 1980. A specific radioimmunoassay for the novel opioid peptide dynorphin. Life Sci 27: 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Gines S, Hillion J, Torvinen M, Le Crom S, Casado V, et al 2000. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97: 8606–8611.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein A, Ghazarossian VE. 1980. Immunoreactive dynorphin in pituitary and brain. Proc Natl Acad Sci USA 77: 6207–6210.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein A, Lowney LI, Pal BK. 1971. Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 68: 1742–1747.

    Article  CAS  PubMed  Google Scholar 

  • Gomes I, Filipovska J, Jordan BA, Devi LA. 2002. Oligomerization of opioid receptors. Methods Enzymol 27: 358–365.

    Article  CAS  Google Scholar 

  • Gomes T, Gupta A, Filipovska J, Szeto HH, Pintar JE, et al 2004. A role for heterodimerization of μ and δ opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA 101: 5135–5139.

    Article  CAS  PubMed  Google Scholar 

  • Gomes I, Jordan A, Gupta A, Trapaidze N, Nagy V, et al 2000. Heterodimerization of μ and δ opioid receptors: a role in opiate synergy. J Neurosci 20: RC110 111–115.

    Google Scholar 

  • Goodman OB, Krupnick JK, Santini F, Gurevich VV, Penn RB, et al 1996. β‐Arrestin acts a clathrin adaptor in endocytosis of the β2‐adrenergic receptor. Nature 383: 447–450.

    Article  CAS  PubMed  Google Scholar 

  • Goswami R, Dawson SA, Dawson G. 2000. Multiple polyphosphoinositide pathways regulate apoptotic signalling in a dorsal root ganglion derived cell line. J Neurosci Res 59: 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Govers R, ten Broeker T, van Kerkhof P, Schwartz AL, Strous GJ. 1999. Identification of a novel ubiquitin conjugation motif, required for ligand‐induced internalization of the growth hormone receptor. EMBO J 18: 28–36.

    Article  CAS  PubMed  Google Scholar 

  • Grudt TJ, Williams JT. 1993. κ‐Opioid receptors also increase potassium conductance. Neurobiol 90: 11429–11432.

    CAS  Google Scholar 

  • Guang W, Wang H, Su T, Weinstein IB, Wang JB. 2004. Role of mPKCI, a novel μ‐opioid receptor interactive protein, in receptor desensitization, phosphorylation, and morphine‐induced analgesia. Mol Pharmacol 66: 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Wu Y, Zhang W, Zhao J, Devi LA, et al 2000. Identification of G protein‐coupled receptor kinase 2 phosphorylation sites responsible for agonist‐stimulated delta‐opioid receptor phosphorylation. Mol Pharmacol 58: 1050–1056.

    CAS  PubMed  Google Scholar 

  • Hall RA, Lefkowitz RJ. 2002. Regulation of G protein‐coupled receptor signaling by scaffold proteins. Circ Res 91: 672–680.

    Article  CAS  PubMed  Google Scholar 

  • Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, et al 1998. The β2‐adrenergic receptor interacts with the Na+/H+‐exchanger regulatory factor to control Na+/H+ exchange. Nature 392: 626–630.

    Article  CAS  PubMed  Google Scholar 

  • Han SH, Cho YW, Kim CJ, Min BI, Rhee JS, et al 1999. mu‐Opioid agonist‐induced activation of G‐protein‐coupled inwardly rectifying potassium current in rat periaqueductal gray neurons. Neurosci 90: 209–219.

    Article  CAS  Google Scholar 

  • Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, et al 1996. Purification, molecular cloning, and expression of the mammalian sigma1‐binding site. Proc Natl Acad Sci USA 93: 8072–8077.

    Article  CAS  PubMed  Google Scholar 

  • Harrison C, Rowbotham DJ, Grandy DK, Lambert DG. 2000. Endomorphin‐1 induced desensitization and down‐regulation of the recombinant mu‐opioid receptor. Br J Pharmacol 131: 1220–1226.

    Article  CAS  PubMed  Google Scholar 

  • Hasbi A, Polastron J, Allouche S, Stanasila L, Massotte D, et al 1998. Desensitization of the delta‐opioid receptor correlates with its phosphorylation in SK‐N‐BE cells: involvement of a G protein‐coupled receptor kinase. J Neurochem 70: 2129–2138.

    Article  CAS  PubMed  Google Scholar 

  • Hauser KF, Mangoura D. 1998. Diversity of the endogenous opioid system in development. Novel signal transduction translates multiple extracellular signals into neural cell growth and differentiation. Perspect Dev Neurobiol 5: 437–449.

    CAS  Google Scholar 

  • Hawes BE, Fried S, Yao X, Weig B, Graziano MP. 1998. Nociceptin (ORL‐1) and mu‐opioid receptors mediate mitogen‐activated protein kinase activation in CHO cells through a Gi‐coupled signaling pathway: evidence for distinct mechanisms of agonist‐mediated desensitization. J Neurochem 71: 1024–1033.

    Article  CAS  PubMed  Google Scholar 

  • He L, Fong J, von Zastrow M, Whistler JL. 2002. Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108: 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Hebert TE, Bouvier M. 1998. Structural and functional aspects of G protein‐coupled receptor oligomerization. Biochem Cell Biol 76: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, et al 1996. A peptide derived from a beta2‐adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271: 16384–16392.

    Article  CAS  PubMed  Google Scholar 

  • Hedin KE, Bell MP, Kalli KR, Huntoon CJ, Sharp BM, et al 1997. δ‐Opioid receptors expressed by Jurkat T cells enhance 1L‐2 secretion by increasing AP‐1 complexes and activity of the NF‐AT/AP‐1‐binding promoter element. J Immunol 159: 5431–5440.

    CAS  PubMed  Google Scholar 

  • Henry DJ, Grandy DK, Lester HA, Davidson N, Chavkin C. 1995. κ‐Opioid receptors couple to inwardly rectifying potassium channels when coexpressed by Xenopus oocytes. Mol Pharmacol 47: 551–557.

    CAS  PubMed  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, et al 1996. Modulation of Ca2+ channels by G‐proteins βγ subunits. Nature 380: 258–262.

    Article  CAS  PubMed  Google Scholar 

  • Herlitze S, Hockerman GH, Scheuer T, Catterall WA. 1997. Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α1A subunit. Proc Natl Acad Sci USA 94: 1512–1516.

    Article  CAS  PubMed  Google Scholar 

  • Hescheler J, Rosenthal W, Trautwein W, Schultz G. 1987. The GTP‐binding protein Go, regulates neuronal calcium channels. Nature 325: 445–446.

    Article  CAS  PubMed  Google Scholar 

  • Hicke L. 2001a. Protein regulation by monoubiquitin. Nat Rev/Mol Cell Biol 2: 195–201.

    Article  CAS  Google Scholar 

  • Hicke L. 2001b. A new ticket for entry into budding vesicles – ubiquitin. Cell 106: 527–530.

    Article  CAS  Google Scholar 

  • Hislop JN, Marley A, von Zastrow M. 2004. Role of mammalian vacuolar protein‐sorting proteins in endocytic trafficking of a non‐ubiquitinated G protein‐coupled receptor to lysosomes. J Biol Chem 279: 22522–22531.

    Article  CAS  PubMed  Google Scholar 

  • Ho MK, New DC, Wong YH. 2002. Co‐expressions of different opioid receptor types differentially modulate their signaling via G(16). Neurosignals 11: 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Ho MK, Yung LY, Chan JS, Chan JH, Wong CS, et al 2001. Galpha(14) links a variety of G(i)‐ and G(s)‐coupled receptors to the stimulation of phospholipase C. Br J Pharmacol 132: 1431–1440.

    Article  CAS  PubMed  Google Scholar 

  • Hu LA, Tang Y, Miller WE, Cong M, Lau AG, et al 2000. Beta 1‐adrenergic receptor association with PSD‐95. Inhibition of receptor internalization and facilitation of beta 1‐adrenergic receptor interaction with N‐methyl‐d‐aspartate receptors. J Biol Chem 275: 38659–38666.

    Article  CAS  PubMed  Google Scholar 

  • Huang C‐L, Feng S, Hilgemann DW. 1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391: 803–806.

    Article  CAS  PubMed  Google Scholar 

  • Huang C‐L, Jan YN, Jan LY. 1997. Binding of the G protein βγ subunit to multiple regions of G protein‐gated inward‐rectifying K+ channels. FEBS Lett 405: 291–298.

    Article  CAS  PubMed  Google Scholar 

  • Huang C‐L, Slesinger P, Casey P, Jan Y, Jan L. 1995. Evidence that direct binding of G‐beta/gamma to the GIRK1 G‐protein‐gated inwardly rectifying K+ channel is important for channel activation. Neuron 15: 1132–1143.

    Article  Google Scholar 

  • Huang P, Steplock D, Weinman EJ, Hall RA, Ding Z, et al 2004. Kappa opioid receptor interacts with Na(+)/H(+)‐exchanger regulatory factor‐1/ezrin‐radixin‐moesin‐binding phosphoprotein‐50 (NHERF‐1/EBP50) to stimulate Na(+)/H(+) exchange independent of G(i)/G(o) proteins. J Biol Chem 279: 25002–25009.

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, et al 1975. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258: 577–580.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias M, Segura MF, Comella JX, Olmos G. 2003. mu‐Opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH‐SY5Y cells and cortical neurons via phosphatidylinositol 3‐kinase. Neuropharmacol 44: 482–492.

    Article  CAS  Google Scholar 

  • Ignatova EG, Belcheva MM, Bohn LM, Neuman MC, Coscia CJ. 1999. Requirement of receptor internalization for opioid stimulation of mitogen‐activated protein kinase: biochemical and immunofluorescence confocal microscopic evidence. J Neurosci 19: 56–63.

    CAS  PubMed  Google Scholar 

  • Ikeda SF. 1996. Voltage‐dependent modulation of N‐type calcium channels by G protein βγ subunits. Nature 380: 225–258.

    Article  Google Scholar 

  • Ikeda K, Kobayashi T, Kumanishi T, Niki H, Yano R. 2000. Involvement of G‐protein‐activated inwardly rectifying K (GIRK) channels in opioid‐induced analgesia. Neurosci Res 38: 113–116.

    Article  CAS  PubMed  Google Scholar 

  • Janecka A, Fichna J, Janecki T. 2004. Opioid receptors and their ligands. Curr Top Med Chem 4: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Gold MS, Boulay G, Spicher K, Peyton M, et al 1998. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc Natl Acad Sci USA 95: 3269–3274.

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Lee N, Loh H, Thayer S. 1993a. Dual excitatory and inhibitory effects of opioids on intracellular calcium in neuroblastoma × glioma hybrid NG108‐15 cells. Mol Pharmacol 42: 1083–1089.

    Google Scholar 

  • Jin W, Lee N, Loh H, Thayer S. 1993b. Opioid‐induced inhibition of voltage‐gated calcium channels parallels expression of omega‐conotoxin‐sensitive channel subtype during differentiation of NG108‐15 cells. Brain Res 607: 17–22.

    Article  CAS  Google Scholar 

  • Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, et al 1998. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396: 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Jordan BA, Devi LA. 1999. G‐protein‐coupled receptor heterodimerization modulates receptor function. Nature 399: 697–700.

    Article  CAS  PubMed  Google Scholar 

  • Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. 2001. Oligomerization of opioid receptors with beta 2‐adrenergic receptors: a role in trafficking and mitogen‐activated protein kinase activation. Proc Natl Acad Sci USA 98: 343–348.

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Lee JW, Wong YH. 1999. Stimulation of phospholipase C by the cloned mu, delta and kappa opioid receptors via chimeric G alpha(q) mutants. Eur J Neurosci 11: 383–388.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman DL, Xia YR, Kieth Jr, DE Newman D, Evans CJ, et al 1994. Localization of the δ‐opioid receptor gene to mouse chromosome 4 by linkage analysis. Genomics 19: 405–406.

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, et al 1998. GABA (β)‐receptor subtypes assemble into functional heteromeric complexes. Nature 396: 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Keith DE, Murray SR, Zaki PA, Chu PC, Lissin DV, et al 1996. Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem 271: 19021–19024.

    Article  CAS  PubMed  Google Scholar 

  • Kieffer BL, Befort K, Gaveriaux‐Ruff C, Hirth CG. 1992. The δ‐opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 89: 12048–12052.

    Article  CAS  PubMed  Google Scholar 

  • Kim CJ, Rhee JS, Akaike N. 1997. Modulation of high‐voltage activated Ca2+ channels in the rat periaqueductal gray neurons by mu‐type opioid agonist. J Neurophysiol 77: 1418–1424.

    CAS  PubMed  Google Scholar 

  • Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, et al 1991. Assignment of G‐protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353: 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B. 1992. Different β subunits determine G protein interaction with transmembrane receptors. Nature 358: 424–426.

    Article  CAS  PubMed  Google Scholar 

  • Ko JL, Arvidsson U, Williams FG, Law PY, Elde R, et al 1999. Visualization of time‐dependent redistribution of δ‐opioid receptors in neuronal cells during prolonged agonist exposure. Mol Brain Res 69: 171–185.

    Article  CAS  PubMed  Google Scholar 

  • Koch T, Brandenburg LO, Schulz S, Liang Y, Klein J, et al 2003. ADP‐ribosylation factor‐dependent phospholipase D2 activation is required for agonist‐induced mu‐opioid receptor endocytosis. J Biol Chem 278: 9979–9985.

    Article  CAS  PubMed  Google Scholar 

  • Koch T, Kroslak T, Averbeck M, Mayer P, Schroder H, et al 2000. Allelic variation S268P of the human mu‐opioid receptor affects both desensitization and G protein coupling. Mol Pharmacol 58: 328–334.

    CAS  PubMed  Google Scholar 

  • Koch T, Kroslak T, Mayer P, Raulf E, Hollt V. 1997. Site mutation in the rat mu‐opioid receptor demonstrates the involvement of calcium/calmodulin‐dependent protein kinase II in agonist‐mediated desensitization. J Neurochem 69: 1767–1770.

    Article  CAS  PubMed  Google Scholar 

  • Koch T, Schulz S, Pfeiffer M, Klutzny M, Schroder H, et al 2001a. C‐terminal splice variants of the mouse mu‐opioid receptor differ in morphine‐induced internalization and receptor resensitization. J Biol Chem 276: 31408–31414.

    Article  CAS  Google Scholar 

  • Koch T, Schulz S, Pfeiffer M, Klutzny M, Schroder H, et al 2001b. C‐terminal splice variants of the mouse μ‐opioid receptor differ in morphine‐induced internalization and receptor resensitization. J Biol Chem 276: 31408–31414.

    Article  CAS  Google Scholar 

  • Koch T, Schulz S, Schroder H, Wolf R, Raulf E, et al 1998a. Carboxyl‐terminal splicing of the rat mu opioid receptor modulates agonist‐mediated internalization and receptor resensitization. J Biol Chem 273: 13652–13657.

    Article  CAS  Google Scholar 

  • Koch T, Schulz S, Schroder H, Wolf R, Raulf E, et al 1998b. Carboxyl‐terminal splicing of the rat mu opioid receptor modulates agonist‐mediated internalization and receptor resensitization. J Biol Chem 273: 13652–13657.

    Article  CAS  Google Scholar 

  • Kovoor A, Nappey V, Kieffer BL, Chavkin C. 1997. Mu and delta opioid receptors are differentially desensitized by the coexpression of beta‐adrenergic receptor kinase 2 and beta‐arrestin 2 in Xenopus oocytes. J Biol Chem 272: 27605–27611.

    Article  CAS  PubMed  Google Scholar 

  • Kozak CA, Filie J, Adamson MC, Chen Y, Yu L. 1994. Murine chromosomal location of mu and kappa opioid receptor genes. Genomics 21: 659–661.

    Article  CAS  PubMed  Google Scholar 

  • Kramer HK, Andria ML, Esposito DH, Simon EJ. 2000. Tyrosine phosphorylation of the delta‐opioid receptor. Evidence for its role in mitogen‐activated protein kinase activation and receptor internalization. Biochem Pharmacol 60: 781–792.

    CAS  Google Scholar 

  • Kramer HK, Onoprishvili I, Andria ML, Hanna K, Sheinkman K, et al 2002. Delta opioid activation of the mitogen‐activated protein kinase cascade does not require transphosphorylation of receptor tyrosine kinases. BMC Pharmacol 2: 5–15.

    Article  PubMed  Google Scholar 

  • Kramer HK, Simon EJ. 1999a. Role of protein kinase C (PKC) in agonist‐induced mu‐opioid receptor down‐regulation: I. PKC translocation to the membrane of SH‐SY5Y neuroblastoma cells is induced by mu‐opioid agonists. J Neurochem 72: 585–593.

    CAS  Google Scholar 

  • Kramer HK, Simon EJ. 1999b. Role of protein kinase C (PKC) in agonist‐induced mu‐opioid receptor down‐regulation: II. Activation and involvement of the alpha, epsilon, and zeta isoforms of PKC. J Neurochem 72: 594–604.

    CAS  Google Scholar 

  • Kramer HK, Simon EJ. 2000. mu and delta‐opioid receptor agonists induce mitogen‐activated protein kinase (MAPK) activation in the absence of receptor internalization. Neuropharmacol 39: 1707–1719.

    Article  CAS  Google Scholar 

  • Kroslak T, Koch T, Kahl E, Hollt V. 2001. Human phosphatidylethanolamine‐binding protein facilitates heterotrimeric G protein‐dependent signaling. J Biol Chem 276: 39772–39778.

    Article  CAS  PubMed  Google Scholar 

  • Krupnick JG, Benovic JL. 1998. The role of receptor kinases and arrestins in G protein‐coupled receptor regulation. Annu Rev Pharmacol Toxicol 38: 289–319.

    Article  CAS  PubMed  Google Scholar 

  • Kunishima N, Shimada Y, Tsuhi Y, Sato T, Yamamoto M, et al 2000. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407: 971–977.

    Article  CAS  PubMed  Google Scholar 

  • Lai HWL, Minami M, Satoh M, Wong YH. 1995. Gz coupling to the rat κ‐opioid receptor. FEBS Lett 360: 97–99.

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. 2000. The interaction of beta‐arrestin with the AP‐2 adaptor is required for the clustering of beta 2‐adrenergic receptor into clathrin‐coated pits. J Biol Chem 275: 23120–23126.

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Miller WE, Kim KM, Caron MG. 2002. beta‐Arrestin/AP‐2 interaction in G protein‐coupled receptor internalization: identification of a beta‐arrestin binging site in beta 2‐adaptin. J Biol Chem 277: 9247–9254.

    Article  CAS  PubMed  Google Scholar 

  • Law PY, Erickson LJ, El‐Kouhen R, Dicker L, Solberg J, et al 2000a. Receptor density and recycling affect the rate of agonist‐induced desensitization of mu‐opioid receptor. Mol Pharmacol 58: 388–398.

    CAS  Google Scholar 

  • Law PY, Hom DS, Loh HH. 1982a. Loss of opiate receptor activity in neuroblastoma × glioma NG108‐15 hybrid cells after chronic opiate treatment: a multiple step process. Mol Pharmacol 22: 1–4.

    CAS  Google Scholar 

  • Law PY, Hom DS, Loh HH. 1982b. Loss of opiate receptor activity in neuroblastoma × glioma NG108‐15 hybrid cells after chronic opiate treatment: a multiple step process. Mol Pharmacol 22: 1–4.

    CAS  Google Scholar 

  • Law P‐Y, Hom D, Loh H. 1983. Opioid receptor down‐regulation and desensitization in neuroblastoma × glioma NG108‐15 hybrid cells are two separate cellular adaption processes. Mol Pharmacol 24: 413–424.

    CAS  PubMed  Google Scholar 

  • Law PY, Hom DS, Loh HH. 1984. Down‐regulation of opiate receptor in neuroblastoma × glioma NG108‐15 hybrid cells: chloroquine promotes accumulation of triated enkephalin in the lysosomes. J Biol Chem 259: 4096–4104.

    CAS  PubMed  Google Scholar 

  • Law PY, Kouhen OM, Solberg J, Wang W, Erickson LJ, et al 2000b. Deltorphin II‐induced rapid desensitization of delta‐opioid receptor requires both phosphorylation and internalization of the receptor. J Biol Chem 275: 32057–32065.

    Article  CAS  Google Scholar 

  • Law PY, Loh HH. 1978. 3H‐Leu5‐enkephalin specific binding to synaptic membrane‐comparison with 3H‐dihydromorphine and 3H‐naloxone. Res Commun Chem Pathol Pharmacol 21: 409–434.

    CAS  PubMed  Google Scholar 

  • Law PY, McGinn TM, Campbell KM, Erickson LE, Loh HH. 1997. Agonist activation of δ‐opioid receptor but not μ‐opioid receptor potentiates fetal calf serum or tyrosine kinase receptor‐mediated cell proliferation in a cell‐line specific manner. Mol Pharmacol 51: 152–160.

    CAS  PubMed  Google Scholar 

  • Law P‐Y, McGinn T, Wick M, Erickson L, Evans C, et al 1994. Analysis of delta‐opioid receptor activities stably expressed in CHO cell lines: function of receptor density. J Pharmacol Exp Ther 271: 1686–1694.

    CAS  PubMed  Google Scholar 

  • Law SF, Reisine T. 1997. Changes in the association of G protein subunits with the cloned mouse δ opioid receptor on agonist stimulation. J Pharmacol Exp Ther 281: 1476–1486.

    CAS  PubMed  Google Scholar 

  • Law PY, Tine SJ, McLeod LA, Loh HH. 2000c. Association of a lower molecular weight protein to the μ‐opioid receptor demonstrated by 125β‐endorphin cross‐linking studies. J Neurochem 75: 164–173.

    Article  CAS  Google Scholar 

  • Law PY, Wong YH, Loh HH. 1999. Mutational analysis of the structure and function of opioid receptors. Biopolymers 51: 440–455.

    Article  CAS  PubMed  Google Scholar 

  • Law PY, Wong YH, Loh HH. 2000d. Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40: 389–430.

    Article  CAS  Google Scholar 

  • Law PY, Wong YH, Loh HH. 2000e. Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40: 389–430.

    Article  CAS  Google Scholar 

  • Lee JW, Joshi S, Chan JS, Wong YH. 1998. Differential coupling of mu‐, delta‐, and kappa‐opioid receptors to G alpha16‐mediated stimulation of phospholipase C. J Neurochem 70: 2203–2211.

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ. 1998. G protein‐coupled receptors. III. New roles for receptor kinases and beta‐arrestins in receptor signaling and desensitization. J Biol Chem 273: 18677–18680.

    Article  CAS  PubMed  Google Scholar 

  • Lesscher HM, Burbach JP, van Ree JM, Gerrits MA. 2003. ERK1/2 activation in rat ventral tegmental area by the mu‐opioid agonist fentanyl: an in vitro study. Neurosci 116: 139–144.

    Article  CAS  Google Scholar 

  • Li LY, Chang KJ. 1996. The stimulatory effect of opioids on mitogen‐activated protein kinase in Chinese hamster ovary cells transfected to express μ‐opioid receptors. Mol Pharmacol 50: 599–602.

    CAS  PubMed  Google Scholar 

  • Li JG, Chen C, Liu‐Chen LY. 2002. Ezrin‐radixin‐moesin‐binding phosphoprotein‐50/Na+/H+ exchanger regulatory factor (EBP50/NHERF) blocks U50, 488H‐induced down‐regulation of the human kappa opioid receptor by enhancing its recycling rate. J Biol Chem 277: 27545–27552.

    Article  CAS  PubMed  Google Scholar 

  • Li JG, Luo LY, Krupnick JG, Benovic JL, Liu‐Chen LY. 1999. U50,488H‐induced internalization of the human kappa opioid receptor involves a beta‐arrestin‐ and dynamin‐dependent mechanism. Kappa receptor internalization is not required for mitogen‐activated protein kinase activation. J Biol Chem 274: 12087–12094.

    Article  CAS  PubMed  Google Scholar 

  • Li CH, Yamashiro D, Chung D, Doneen BA. 1977. Isolation, structure, synthesis and morphine‐like activity of beta‐endorphin from human pituitary glands. Ann NY Acad Sci 297: 158–166.

    Article  CAS  PubMed  Google Scholar 

  • Lim NF, Dascal N, Labarca C, Davidson N, Lester HA. 1995. A G protein‐gated K+ channel is activated via b2‐adrenergic receptors and Gβγ subunits in Xenopus oocytes. J Gen Physiol 105: 421–439.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang Q, Pristupa ZB, Yu XM, Wang YT, et al 2000. Direct protein–protein coupling enables cross‐talk between dopamine D5 and γ‐aminobutyric acid A receptors. Nature 403: 274–280.

    Article  CAS  PubMed  Google Scholar 

  • Loh HH, Tseng LF, Wei E, Li CH. 1976. Beta‐endorphin is a potent analgesic agent. Proc Natl Acad Sci USA 73: 2895–2898.

    Article  CAS  PubMed  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. 1990. β‐Arrestin: a protein that regulates β‐adrenergic receptor function. Science 248: 1547–1550.

    Article  CAS  PubMed  Google Scholar 

  • Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW. 1977. Endogenous opioid peptides: multiple agonists and receptors. Nature 276: 495–499.

    Article  Google Scholar 

  • Lou L, Zhou T, Wang P, Pei G. 1999. Modulation of Ca2+/calmodulin‐dependent protein kinase II activity by acute and chronic morphine administration in rat hippocampus: differential regulation of α and β isoforms. Mol Pharmacol 55: 557–563

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al 1999. Beta‐arrestin‐dependent formation of beta2 adrenergic receptor‐Src protein kinase complexes. Science 283: 655–661 [comment].

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, et al 2001. Activation and targeting of extracellular signal‐regulated kinases by beta‐arrestin scaffolds. Proc Natl Acad Sci USA 98: 2449–2454.

    Article  CAS  PubMed  Google Scholar 

  • Ma GH, Miller RF, Kuznetsov A, Philipson LH. 1995. κ‐Opioid receptor activates an inwardly rectifying K+ channel by a G protein‐linked mechanism: coexpression in Xenopus oocytes. Mol Pharmacol 47: 1035–1040.

    CAS  PubMed  Google Scholar 

  • Maestri‐El Kouhen O, Wang G, Solberg J, Erickson LJ, Law PY, et al 2000. Hierarchical phosphorylation of δ‐opioid receptor regulates agonist‐induced receptor desensitization and internalization. J Biol Chem 275: 36659–36664.

    Article  Google Scholar 

  • Makman MH, Dvorkin B, Crain SM. 1988. Modulation of adenylate cyclase activity of mouse spinal cord‐ganglion explants by opioids, serotonin and pertussis toxin. Brain Res 445: 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Mangoura D, Dawson G. 1993. Opioid peptides activate phospholipase D and protein kinase C‐epsilon in chicken embryo neuron cultures. Proc Natl Acad Sci USA 90: 2915–2919.

    Article  CAS  PubMed  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. 1988. Anatomy of CNS opioid receptors. Trends Neurosci 11: 308–314.

    Article  CAS  PubMed  Google Scholar 

  • Marchese AB, Benovic JL. 2001. Agonist‐promoted ubiquitination of G protein‐coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276: 45509–45512.

    Article  CAS  PubMed  Google Scholar 

  • Marker CL, Cintora SC, Roman MI, Stoffel M, Wickman K. 2002. Hyperalgesia and blunted morphine analgesia in G protein‐gated potassium channel subunit knockout mice. Neuroreport 13: 2509–2513.

    Article  CAS  PubMed  Google Scholar 

  • Marker CL, Stoffel M, Wickman K. 2004. Spinal G‐protein‐gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J Neurosci 24: 2806–2812.

    Article  CAS  PubMed  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. 1976. The effects of morphine‐ and nalorphine‐like drugs in the nondependent and morphine‐dependent chronic spinal dog. J Pharmacol Exp Ther 197: 517–532.

    CAS  PubMed  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, et al 2000. Beta‐arrestin 2: a receptor‐regulated MAPK scaffold for the activation of JNK3. Science 290: 1574–1577 [comment].

    Article  CAS  PubMed  Google Scholar 

  • McDonald PH, Cote NL, Lin FT, Premont RT, Pitcher JA, et al 1999. Identification of NSF as a beta‐arrestin1‐binding protein. Implications for beta2‐adrenergic receptor regulation. J Biol Chem 274: 10677–10680.

    CAS  Google Scholar 

  • McKenzie FR, Milligan G. 1990. δ‐Opioid receptor mediated inhibition of adenylate cyclase is transduced specifically by the guanine‐nucleotide‐binding protein Gi2. Biochem J 267: 391–398.

    CAS  PubMed  Google Scholar 

  • McLaughlin JP, Chavkin C. 2001. Tyrosine phosphorylation of the mu‐opioid receptor regulates agonist intrinsic efficacy. Mol Pharmacol 59: 1360–1368.

    CAS  PubMed  Google Scholar 

  • McLaughlin JP, Myers LC, Zarek PE, Caron MG, Lefkowitz RJ, et al 2004. Prolonged kappa opioid receptor phosphorylation mediated by G‐protein receptor kinase underlies sustained analgesic tolerance. J Biol Chem 279: 1810–1818.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JP, Xu M, Mackie K, Chavkin C. 2003. Phosphorylation of a carboxyl‐terminal serine within the kappa‐opioid receptor produces desensitization and internalization. J Biol Chem 278: 34631–34640.

    Article  CAS  PubMed  Google Scholar 

  • McVey M, Ramsay D, Kellett E, Rees S, Wilson S, et al 2001a. Monitoring receptor oligomerization using time‐resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta‐opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276: 14092–14099.

    CAS  Google Scholar 

  • McVey M, Ramsay D, Kellett E, Rees S, Wilson S, et al 2001b. Monitoring receptor oligomerization using time‐resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human δ‐opioid receptors constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276: 14092–14099.

    CAS  Google Scholar 

  • Meng F, Ueda Y, Hoversten MT, Taylor LP, Reinscheid RK, et al 1998. Creating a functional opioid alkaloid binding site in the orphanin FQ receptor through site‐directed mutagenesis. Mol Pharmacol 53: 772–777.

    CAS  PubMed  Google Scholar 

  • Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, et al 1993. Cloning and pharmacological characterization of a rat kappa‐opioid receptor. Proc Natl Acad Sci USA 90: 9954–9958.

    Article  CAS  PubMed  Google Scholar 

  • Michell R, McCullock D, Lutz E, Johnson M, Mac Kenzie C, et al 1998. Rhodopsin‐family receptors associate with small G proteins to activate phospholipase D. Nature 392: 411–414.

    Article  Google Scholar 

  • Miller WE, Maudsley S, Ahn S, Khan KD, Luttrell LM, et al 2000. Beta‐arrestin1 interacts with the catalytic domain of the tyrosine kinase c‐SRC. Role of beta‐arrestin1‐dependent targeting of c‐SRC in receptor endocytosis. J Biol Chem 275: 11312–11319.

    CAS  Google Scholar 

  • Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, et al 2001. Identification of a motif in the carboxyl terminus of beta‐arrestin2 responsible for activation of JNK3. J Biol Chem 276: 27770–27777.

    Article  CAS  PubMed  Google Scholar 

  • Minami M, Satoh M. 1995. Molecular biology of the opioid receptors: structure, functions and distributions. Neurosci Res 23: 121–145.

    Article  CAS  PubMed  Google Scholar 

  • Misawa H, Udea H, Katada T, Ui M, Satoh M. 1995. A subtype of opioid κ‐receptor is coupled to inhibition of Gi1‐mediated phospholipase C activity in the guinea pig cerebellum. FEBS Lett 36: 106–110.

    Article  Google Scholar 

  • Moises HC, Rusin KI, Macdonald RL. 1994. μ‐Opioid receptor‐mediated reduction of neuronal calcium current occurs via a Go‐type GTP‐binding protein. J Neurosci 14: 3842–3851.

    CAS  PubMed  Google Scholar 

  • Monnot C, Bihoreau C, Conchon S, Curnow KM, Corvol P, et al 1996. Polar residues in the transmembrane domains of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co‐expression of two deficient mutants. J Biol Chem 271: 1507–1513.

    CAS  Google Scholar 

  • Moon HE, Cavalli A, Bahia DS, Hoffmann M, Massotte D, et al 2001. The human delta opioid receptor activates G(i1)alpha more efficiently than G(o1)alpha. J Neurochem 76: 1805–1813.

    Article  CAS  PubMed  Google Scholar 

  • Moore RH, Tuffaha A, Millman EE, Dai W, Hall HS, et al 1999. Agonist‐induced sorting of human β2‐adrenergic receptors to lysosomes during downregulation. J Cell Sci 112: 329–338.

    CAS  PubMed  Google Scholar 

  • Morikawa H, Fukuda K, Kato S, Mori K, Higashida H. 1995. Coupling of cloned μ‐opioid receptor with the ω‐conotoxin‐sensitive Ca2+ current in NG108‐15 cells. J Neurochem 65: 1403–1406.

    Article  CAS  PubMed  Google Scholar 

  • Morikawa H, Mima H, Uga H, Shoda T, Fukuda K. 1999. Opioid potentiation of N‐type Ca2+ channel currents via pertussis‐toxin‐sensitive G proteins in NG108‐15 cells. Pflugers Arch – Eur J Physiol 438: 423–426.

    CAS  Google Scholar 

  • Mullaney I, Carr IC, Burt AR, Wilson M, Anderson NG, et al 1997. Agonist‐mediated tyrosine phosphorylation of isoforms of the shc adapter protein by the delta opioid receptor. Cell Signal 9: 423–429.

    Article  CAS  PubMed  Google Scholar 

  • Mundell SJ, Kelly E. 1998. The effect of inhibitors of receptor internalization on the desensitization and resensitization of three Gσ‐coupled receptor responses. Br J Pharmacol 125: 1594–1600.

    Article  CAS  PubMed  Google Scholar 

  • Murray SR, Evans CJ, von Zastrow M. 1998. Phosphorylation is not required for dynamin‐dependent endocytosis of a truncated mutant opioid receptor. J Biol Chem 273: 24987–24991.

    Article  CAS  PubMed  Google Scholar 

  • Murthy KS, Makhlouf GM. 1996. Opioid mu, delta, and kappa receptor‐induced activation of phospholipase C‐beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle. Mol Pharmacol 50: 870–877.

    CAS  PubMed  Google Scholar 

  • Narita M, Ioka M, Suzuki M, Suzuki T. 2002a. Effect of repeated administration of morphine on the activity of extracellular signal regulated kinase in the mouse brain. Neurosci Lett 324: 97–100.

    Article  CAS  Google Scholar 

  • Narita M, Ohnishi O, Nemoto M, Yajima Y, Suzuki T. 2002b. Implications of phosphoinositide 3‐kinase in the mu‐ and delta‐opioid receptor‐mediated supraspinal antinociception in the mouse. Neurosci 113: 647–652.

    Article  CAS  Google Scholar 

  • Narita M, Ohsawa M, Mizoguchi H, Aoki T, Suzuki T, et al 2000. Role of the phosphatidylinositol‐specific phospholipase C pathway in delta‐opioid receptor‐mediated antinociception in the mouse spinal cord. Neurosci 99: 327–331.

    Article  CAS  Google Scholar 

  • Ng GY, O'Dowd BF, Lee SP, Chung HT, Brann MR, et al 1996. Dopamine D2 receptor dimmers and receptor‐blocking peptides. Biochem Biophys Res Commun 227: 200–204.

    Article  CAS  PubMed  Google Scholar 

  • Nitsche JF, Schuller AGP, King MA, Zengh M, Pasternak GW, et al 2002. Genetic dissociation of opiate tolerance and physical dependence in δ‐opioid receptor‐1 and preproenkephalin knock‐out mice. J Neurosci 22: 10906–10913.

    CAS  PubMed  Google Scholar 

  • North R, Williams T, Surprenant A, Christie M. 1987. Mu and delta receptors belong to the family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 84: 5487–5491.

    Article  CAS  PubMed  Google Scholar 

  • Offermann S, Schultz G, Rosenthal W. 1991. Evidence for opioid receptor‐mediated activation of G‐proteins, Go and Gi2 in membranes of neuroblastoma × glioma (NG108‐15) hybrid cells. J Biol Chem 266: 3365–3368.

    Google Scholar 

  • Offermann S, Simon M. 1995. Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270: 15175–15180.

    Article  Google Scholar 

  • Olianas MC, Onali P. 1995. Participation of δ‐opioid receptor subtypes in stimulation of adenylyl cyclase activity in rat olfactory bulb. J Pharmacol Exp Ther 275: 1560–1567.

    CAS  PubMed  Google Scholar 

  • Onoprishvili I, Andria ML, Kramer HK, Ancevska‐Taneva N, Hiller JM, et al 2003. Interaction between μ opioid receptor and filamin A is involved in receptor regulation and trafficking. Mol Pharmacol 64: 1092–1100.

    Article  CAS  PubMed  Google Scholar 

  • Ostrom RS. 2002. New determinants of receptor–effector coupling: trafficking and compartmentalization in membrane microdomains. Mol Pharmacol 61: 473–476.

    Article  CAS  PubMed  Google Scholar 

  • Ott S, Costa T, Herz A. 1988. Sodium modulates opioid receptors through a membrane component different from G‐proteins. Demonstration by target size analysis. J Biol Chem 263: 10524–10533.

    CAS  Google Scholar 

  • Ottolia M, Platano D, Qin N, Noceti F, Birnbaumer M, et al 1998. Functional coupling between human E‐type Ca2+ channels and mu opioid receptors expressed in Xenopus oocytes. FEBS Lett 427: 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Narita M, Narita M, Ozaki M, Khotib J, et al 2004. Role of extracellular signal‐regulated kinase in the ventral tegmental area in the suppression of the morphine‐induced rewarding effect in mice with sciatic nerve ligation. J Neurochem 88: 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  • Pak Y, O'Dowd BF, George SR. 1997. Agonist‐induced desensitization of the mu opioid receptor is determined by threonine 394 preceded by acidic amino acids in the COOH‐terminal tail. J Biol Chem 272: 24961–24965.

    Article  CAS  PubMed  Google Scholar 

  • Pak Y, O'Dowd BF, Wang JB, George SR. 1999. Agonist‐induced, G protein‐dependent and ‐independent down‐regulation of the mu opioid receptor. The receptor is a direct substrate for protein‐tyrosine kinase. J Biol Chem 274: 27610–27616.

    CAS  Google Scholar 

  • Pan YX, Xu J, Bolan E, Abbadie C, Chang A, et al 1999. Identification and characterization of three new alternatively spliced mu‐opioid receptor isoforms. Mol Pharmacol 56: 396–403.

    CAS  PubMed  Google Scholar 

  • Pan YX, Xu J, Mahurter L, Bolan E, Xu M, et al 2001. Generation of the mu opioid receptor (MOR‐1) protein by three new splice variants of the Oprm gene. Proc Natl Acad Sci USA 98: 14084–14089.

    Article  CAS  PubMed  Google Scholar 

  • Patterson RL, Boehning D, Snyder SH. 2004. Inositol 1,4,5‐triphosphate receptors as signal integrators. Annu Rev Biochem 73: 437–465.

    Article  CAS  PubMed  Google Scholar 

  • Pei G, Kieffer BL, Lefkowitz RJ, Freedman NJ. 1995. Agonist‐dependent phosphorylation of the mouse δ‐opioid receptor: involvement of γ protein‐coupled receptor kinases but not protein kinase C. Mol Pharmacol 48: 173–177.

    CAS  PubMed  Google Scholar 

  • Persson AI, Thorlin T, Bull C, Eriksson PS. 2003a. Opioid‐induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Mol Cell Neurosci 23: 360–372.

    Article  CAS  Google Scholar 

  • Persson AI, Thorlin T, Bull C, Zarnegar P, Ekman R, et al 2003b. Mu‐ and delta‐opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur J Neurosci 17: 1159–1172.

    Article  Google Scholar 

  • Pert CB, Kuhar MJ, Snyder SH. 1975. Autoradiographic localization of the opiate receptor in rat brain. Life Sci 16: 1849–1853.

    Article  CAS  PubMed  Google Scholar 

  • Pert CB, Snyder SH. 1973. Properties of opiate‐receptor binding in rat brain. Proc Natl Acad Sci USA 70: 2243–2247.

    Article  CAS  PubMed  Google Scholar 

  • Petaja‐Repo UE, Hogue M, Bhalla S, Laperriere A, Morello JP, et al 2002. Ligands act as pharmacological chaperones and increase the efficiency of delta opioid receptor maturation. EMBO J 21: 1628–1637.

    Article  PubMed  Google Scholar 

  • Petaja‐Repo UE, Hogue M, Laperriere A, Bhalla S, Walker P, et al 2001. Newly synthesized human delta opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 276: 4416–4423.

    Article  PubMed  Google Scholar 

  • Petaja‐Repo U, Hogue M, Laperriere A, Walker P, Bouvier M. 2000. Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem 275: 13727–13736.

    Article  PubMed  Google Scholar 

  • Pierce KL, Maudsley S, Daaka Y, Luttrell LM, Lefkowitz RJ. 2000. Role of endocytosis in the activation of the extracellular signal‐regulated kinase cascade by sequestering and nonsequestering G protein‐coupled receptors. Proc Natl Acad Sci USA 97: 1489–1494.

    Article  CAS  PubMed  Google Scholar 

  • Piros ET, Prather PL, Law PY, Evans CJ, Hales TG. 1996. Voltage‐dependent inhibition of Ca2+ channels in GH3 cells by cloned mu‐ and delta‐opioid receptors. Mol Pharmacol 50: 947–956.

    CAS  PubMed  Google Scholar 

  • Piros ET, Prather PL, Loh HH, Law PY, Evans CJ, et al 1995. Ca+2 channel and adenylyl cyclase modulation by cloned μ‐opioid receptors in GH3 cells. Mol Pharmacol 47: 1041–1049.

    CAS  PubMed  Google Scholar 

  • Polakiewicz RD, Schieferl SM, Dorner LF, Kansra V, Comb MJ. 1998b. A mitogen‐activated protein kinase pathway is required for μ‐opioid receptor desensitization. J Biol Chem 273: 12402–12406.

    Article  CAS  Google Scholar 

  • Polakiewicz RD, Schieferl SM, Gingras AC, Sonenberg N, Comb MJ. 1998a. mu‐Opioid receptor activates signaling pathways implicated in cell survival and translational control. J Biol Chem 273: 23534–23541.

    Article  CAS  Google Scholar 

  • Portoghese PS, Sultana M, Takemori AE. 1988. Naltrindole, a highly selective and potent non‐peptide delta opioid receptor antagonist. Eur J Pharmacol 146: 185–186.

    Article  CAS  PubMed  Google Scholar 

  • Prather PL, Loh HH, Law PY. 1994a. Interaction of δ‐opioid receptors with multiple G‐proteins: a non‐relationship between agonist potency to inhibit adenylyl cyclase and activation of G‐proteins. Mol Pharmacol 45: 997–1003.

    CAS  Google Scholar 

  • Prather PL, McGinn TM, Claude PA, Liu‐Chen LY, Loh HH, et al 1995. Properties of κ‐opioid receptor expressed in CHO cells: activation of multiple G‐proteins similar to other opioid receptors. Mol Brain Res 29: 336–346.

    Article  CAS  PubMed  Google Scholar 

  • Prather PL, McGinn TM, Erickson LJ, Evans CJ, Loh HH, et al 1994b. Ability of δ‐opioid receptors to interact with multiple G‐proteins is independent of receptor density. J Biol Chem 269: 21293–21302.

    CAS  Google Scholar 

  • Pronin AN, Satpaev DK, Slepak VZ, Benovic JL. 1997. Regulation of G protein‐coupled receptor kinases by calmodulin and localization of the calmodulin binding domain. J Biol Chem 272: 18273–18280.

    Article  CAS  PubMed  Google Scholar 

  • Puri SK, Cochin J, Volicer L. 1975. Effect of morphine sulfate on adenylate cyclase and phosphodiesterase activities in rat corpus striatum. Life Sci 16: 759–768.

    Article  CAS  PubMed  Google Scholar 

  • Qui Y, Law PY, Loh HH. 2003. μ‐Opioid receptor desensitization. Role of receptor phosphorylation, internalization and resensitization. J Biol Chem 278: 36733–36739.

    Google Scholar 

  • Quillan JM, Carlson KW, Song C, Wang D, Sadee W. 2002. Differential effects of mu‐opioid receptor ligands on Ca(2+) signaling. J Pharmacol Exp Ther 302: 1002–1012.

    Article  CAS  PubMed  Google Scholar 

  • Quock RM, Burkey TH, Varga E, Hosohata Y, Hosohata K, et al 1999. The delta‐opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy. Pharmacol Rev 51: 503–532.

    CAS  PubMed  Google Scholar 

  • Ramsay D, Kellett E, McVey M, Rees S, Milligan G. 2002. Homo‐ and hetero‐oligomeric interactions between G protein‐coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero‐oligomers between receptor subtypes form more efficiently than between less closely related sequence. Biochem J 365: 429–440.

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG. 2001. Regulation of phosphoinositide‐specific phospholipase C. Annu Rev Biochem 70: 281–312.

    Article  CAS  PubMed  Google Scholar 

  • Rhim H, Miller RJ. 1994. Opioid receptors modulate diverse types of calcium channels in the nucleus tractus solitarius. J Neurosci 14: 7608–7615.

    CAS  PubMed  Google Scholar 

  • Rhim H, Toth PT, Miller RJ. 1996. Mechanism of inhibition of calcium channels in rat nucleus tractus solitarius by neurotransmitters. Br J Pharmacol 118: 1341–1350.

    CAS  PubMed  Google Scholar 

  • Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, et al 2000a. Receptors for dopamine and somatostatin: formation of hetero‐oligomers with enhanced functional activity. Science 288: 154–157.

    Article  CAS  Google Scholar 

  • Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, et al 2000b. Subtypes of the somatostatin receptor assemble as functional homo‐ and heterodimers. J Biol Chem 275: 7862–7869.

    Article  CAS  Google Scholar 

  • Roerig SC, Loh HH, Law PY. 1992. Identification of three separate G‐proteins which interact with the delta opioid receptor in NG108‐15 neuroblastoma × glioma hybrid cells. Mol Pharmacol 45: 997–1003.

    Google Scholar 

  • Roth BL, Willins DL, Kroeze WK. 1998. G protein‐coupled receptor (GPCR) trafficking in the central nervous system: relevance for drug of abuse. Drug Alcohol Depend 51: 73–85.

    Article  CAS  PubMed  Google Scholar 

  • Rubovitch V, Gafni M, Sarne Y. 2003. The mu opioid agonist DAMGO stimulates cAMP production in SK‐N‐SH cells through a PLC‐PKC‐Ca++ pathway. Brain Res Mol Brain Res 110: 261–266.

    Article  CAS  PubMed  Google Scholar 

  • Safa P, Boulter J, Hales TG. 2001. Functional properties of Cav1.3 (alpha1D) L‐type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells. J Biol Chem 276: 38727–38737.

    Article  CAS  PubMed  Google Scholar 

  • Salim K, Fenton T, Bacha J, Urien‐Rodriguez H, Bonnert T, et al 2002. Oligomerization of G protein‐coupled receptors shown by selective co‐immunoprecipitation. J Biol Chem 277: 15482–15485.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez‐Blazquez P, Garzon J. 1998. delta‐Opioid receptor subtypes activate inositol‐signaling pathways in the production of antinociception. J Pharmacol Exp Ther 285: 820–827.

    PubMed  Google Scholar 

  • Sanchez‐Blazquez P, Rodriguez‐Diaz M, Frejo MT, Garzon J. 1999. Stimulation of mu‐ and delta‐opioid receptors enhances phosphoinositide metabolism in mouse spinal cord: evidence for subtypes of delta‐receptors. Eur J Neurosci 11: 2059–2064.

    Article  PubMed  Google Scholar 

  • Sarne Y, Rubovitch V, Fields A, Gafni M. 1998. Dissociation between the inhibitory and stimulatory effects of opioid peptides on cAMP formation in SK‐N‐SH neuroblastoma cells. Biochem Biophys Res Commun 246: 128–131.

    Article  CAS  PubMed  Google Scholar 

  • Sawyer GW, Ehlert FJ. 1999. Muscarinic M3 receptor inactivation reveals a pertussis toxin‐sensitive contractile response in the guinea pig colon: evidence for M2/M3 receptor interactions. J Pharmacol Exp Ther 289: 464–476.

    CAS  PubMed  Google Scholar 

  • Schiller PW, Weltrowska G, Berezowska I, Nguyen TM, Wilkes BC, et al 1999. The TIPP opioid peptide family: development of delta antagonists, delta agonists, and mixed mu agonist/delta antagonists. Biopolymers 51: 411–425.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Schulz S, Klutzny M, Koch T, Handel M, et al 2000. Involvement of mitogen‐activated protein kinase in agonist‐induced phosphorylation of the mu‐opioid receptor in HEK 293 cells. J Neurochem 74: 414–422.

    Article  CAS  PubMed  Google Scholar 

  • Schneider SP, Eckert WA, Light AR. 1998. Opioid‐activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J Neurophysiol 80: 2954–2962.

    CAS  PubMed  Google Scholar 

  • Schramm NL, Limbird LE. 1999. Stimulation of mitogen‐activated protein kinase by G protein‐coupled alpha(2)‐adrenergic receptors does not require agonist‐elicited endocytosis. J Biol Chem 274: 24935–24940.

    Article  CAS  PubMed  Google Scholar 

  • Schultz S, Hollt V. 1998. Opioid withdrawal activates MAP kinase in locus coeruleus neurons in morphine‐dependent rats in vivo. Eur J Neurosci 10: 1196–1201.

    Article  Google Scholar 

  • Schultz JE‐J, Hsu AK, Nagase H, Gross GJ. 1998. TAN‐67, a delta 1‐opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am J Physiol 274: H909–H914.

    CAS  Google Scholar 

  • Schulz R, Wüster M, Kreuss H, Herz A. 1980. Selective development of tolerance without dependence in multiple opiate receptors of mouse vas deferens. Nature 285: 242–243.

    Article  CAS  PubMed  Google Scholar 

  • Shahabi NA, Daaka Y, McAllen K, Sharp BM. 1999. Delta opioid receptors expressed by stably transfected Jurkat cells signal through the MAP kinase pathway in a ras‐independent manner. J Neuroimmunol 94: 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Klee WA, Nirenberg M. 1977. Opiate dependent modulation of adenylate cyclase activity. Proc Natl Acad Sci USA 74: 3365–3369.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Nirenberg M, Klee W. 1975. Morphine receptors as regulators of adenylate cyclase activity. Proc Natl Acad Sci USA 72: 590–594.

    Article  CAS  PubMed  Google Scholar 

  • Sharp BM, McKean DJ, McAllen K, Shahabi NA. 1998. Signaling through delta opioid receptors on murine splenic T cells and stably transfected Jurkat cells. Ann NY Acad Sci 840: 420–424.

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ. 2003. Trafficking patterns of beta‐arrestin and G protein‐coupled receptors determined by the kinetics of beta‐arrestin deubiquitination. J Biol Chem 278: 14498–144506.

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. 2001. Regulation of receptor fate by ubiquitination of activated beta 2‐adrenergic receptor and beta‐arrestin. Science 294: 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  • Shoda T, Fukuda K, Uga H, Mima H, Morikawa H. 2001. Activation of mu‐opioid receptor induces expression of c‐fos and junB via mitogen‐activated protein kinase cascade. Anesthesiology 95: 983–989.

    Article  CAS  PubMed  Google Scholar 

  • Simon E, Hiller JM, Edelman I. 1973. Stereospecific binding of the potent narcotic analgesic (3H) etorphine to rat‐brain homogenate. Proc Natl Acad Sci USA 70: 1947–1949.

    Article  CAS  PubMed  Google Scholar 

  • Singhal PC, Bhaskaran M, Patel J, Patel K, Kasinath BS, et al 2002. Role of p38 mitogen‐activated protein kinase phosphorylation and Fas–Fas ligand interaction in morphine‐induced macrophage apoptosis. J Immunol 168: 4025–4033.

    CAS  PubMed  Google Scholar 

  • Smart D, Hirst RA, Hirota K, Grandy DK, Lambert DG. 1997. The effects of recombinant rat mu‐opioid receptor activation in CHO cells on phospholipase C, [Ca2+]i and adenylyl cyclase. Br J Pharmacol 120: 1165–1171.

    Article  CAS  PubMed  Google Scholar 

  • Smart D, Lambert DG. 1996. Tyr‐d‐Arg2‐Phe‐sarcosine4 activates phospholipase C‐coupled mu2‐opioid receptors in SH‐SY5Y cells. Eur J Pharmacol 305: 235–238.

    Article  CAS  PubMed  Google Scholar 

  • Smart D, Smith G, Lambert DG. 1994. μ‐Opioid receptor stimulation of inositol (1,4,5)trisphosphate formation via a pertussis toxin‐sensitive G protein. J Neurochem 62: 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  • Smart D, Smith G, Lambert DG. 1995. μ‐Opioids activate phospholipase C in SH‐SY5Y human neuroblastoma cells via calcium‐channel opening. Biochem J 305: 577–581.

    CAS  PubMed  Google Scholar 

  • Spencer RJ, Jin W, Thayer SA, Chakrabarti S, Law PY, et al 1997. Mobilization of Ca+2 from intracellular stores in transfected Neuro2a cells by activation of multiple opioid receptor subtypes. Biochem Pharmacol 54: 809–818.

    Article  CAS  PubMed  Google Scholar 

  • Sternini C, Brecha NC, Minnis J, D'Agostino G, Balestra B, et al 2000. Role of agonist‐dependent receptor internalization in the regulation of mu opioid receptors. Neurosci 98: 233–241.

    Article  CAS  Google Scholar 

  • Sternini C, Spann M, Anton B, Keith Jr, DE Bunnett NW, et al 1996. Agonist‐selective endocytosis of mu opioid receptor by neurons in vivo. Proc Natl Acad Sci USA 93: 9241–9246.

    Article  CAS  PubMed  Google Scholar 

  • Strassheim D, Law PY, Loh HH. 1998. Contribution of phospholipase C‐β3 phosphorylation to the rapid attenuation of opioid‐activated phosphoinositide response. Mol Pharmacol 53: 1047–1053.

    CAS  PubMed  Google Scholar 

  • Takemori AE, Ho BY, Naeseth JS, Portoghese PS. 1988. Nor‐binaltorphimine, a highly selective kappa‐opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther 246: 255–258.

    CAS  PubMed  Google Scholar 

  • Takemori AE, Larson DL, Portoghese PS. 1981. The irreversible narcotic antagonistic and reversible agonistic properties of the fumaramate methyl ester derivative of naltrexone. Eur J Pharmacol 70: 445–451.

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Groszer M, Tan AM, Pandya A, Liu X, et al 2003. Phosphoinositide 3‐kinase cascade facilitates mu‐opioid desensitization in sensory neurons by altering G‐protein–effector interactions. J Neurosci 23: 10292–10301.

    CAS  PubMed  Google Scholar 

  • Tang WJ, Hurley JH. 1998. Catalytic mechanism and regulation of mammalian adenylyl cyclases. Mol Pharmacol 54: 231–240.

    CAS  PubMed  Google Scholar 

  • Tang T, Kiang JG, Cote TE, Cox BM. 1995. Antisense oligonucleotide to the Gi2 protein alpha subunit sequence inhibits an opioid‐induced increase in the intracellular free calcium concentration in ND8‐47 neuroblastoma × dorsal root ganglion hybrid cells. Mol Pharmacol 48: 189–193.

    CAS  PubMed  Google Scholar 

  • Tanowitz M, von Zastrow M. 2002. Ubiquitination‐independent trafficking of G protein‐coupled receptors to lysosomes. J Biol Chem 277: 50219–50222.

    Article  CAS  PubMed  Google Scholar 

  • Tanowitz M, von Zastrow M. 2003. A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 278: 45978–45986.

    Article  CAS  PubMed  Google Scholar 

  • Tao PL, Chang LR, Law PY, Loh HH. 1998. Decrease in delta‐opioid receptor density in rat brain after chronic d‐Ala2, d‐Leu5 enkephalin treatment. Brain Res 462: 313–320.

    Article  Google Scholar 

  • Tao PL, Law PY, Loh HH. 1987. Decrease in delta‐ and mu‐opioid receptor binding capacity in rat brain after chronic etorphine treatment. J Pharmacol Exp Ther 240: 809–816.

    CAS  PubMed  Google Scholar 

  • Tao PL, Lee HY, Chang LR, Loh HH. 1990. Decrease in μ‐opioid receptor binding capacity in rat brain after chronic PL017 treatment. Brain Res 526: 270–275.

    Article  CAS  PubMed  Google Scholar 

  • Taussig R, Tang WJ, Hepler JR, Gilman AG. 1994. Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 269: 6093–6100.

    CAS  PubMed  Google Scholar 

  • Terenius L. 1973. Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane fraction from rat brain. Acta Pharmacol Toxicol 33: 377–384.

    Article  CAS  Google Scholar 

  • Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT, et al 2002. G‐protein‐gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J Neurosci 22: 4328–4334.

    CAS  PubMed  Google Scholar 

  • Trapaidze N, Gomes I, Bansinath M, Devi LA. 2000a. Recycling and resensitization of delta opioid receptors. DNA Cell Biol 19: 195–204.

    Article  CAS  Google Scholar 

  • Trapaidze N, Gomes I, Cvejic S, Bansinath M, Devi LA. 2000b. Opioid receptor endocytosis and activation of MAP kinase pathway. Brain Res Mol Brain Res 76: 220–228.

    Article  CAS  Google Scholar 

  • Trapaidze N, Keith DE, Cvejic S, Evans CJ, Devi LA. 1996. Sequestration of the delta opioid receptor. Role of the C terminus in agonist‐mediated internalization. J Biol Chem 271: 29279–29285.

    CAS  Google Scholar 

  • Trujillo KA, Akil HA. 1991. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK‐801. Science 251: 85–87.

    Article  CAS  PubMed  Google Scholar 

  • Tsao PI, von Zastrow M. 2000. Type‐specific sorting of G protein‐coupled receptors after endocytosis. J Biol Chem 275: 11130–11140.

    Article  CAS  PubMed  Google Scholar 

  • Tso PH, Wong YH. 2001. Role of extracellular signal‐regulated kinases in opioid‐induced adenylyl cyclase superactivation in human embryonic kidney 293 cells. Neurosci Lett 316: 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Tso PH, Yung LY, Wong YH. 2000. Regulation of adenylyl cyclase, ERK1/2, and CREB by Gz following acute and chronic activation of the delta‐opioid receptor. J Neurochem 74: 1685–1693.

    Article  CAS  PubMed  Google Scholar 

  • Tsu RC, Allen RA, Wong YH. 1995a. Stimulation of type II adenylyl cyclase by formyl peptide and C5a chemoattractant receptors. Mol Pharmacol 47: 835–841.

    CAS  Google Scholar 

  • Tsu RC, Chan JSC, Wong YH. 1995b. Regulation of multiple effectors by the cloned δ‐opioid receptor: stimulation of phospholipase C and type II adenylyl cyclase. J Neurochem 64: 2700–2707.

    Article  CAS  Google Scholar 

  • Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, et al 1997. A multivalent PDZ‐domain protein assembles signaling complexes in a G protein‐coupled cascade. Nature 388: 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Miyamae T, Fukushima N, Takeshima H, Fukuda K, et al 1995. Opioid μ‐ and κ‐receptor mediate phospholipase C activation through Gi1 in Xenopus oocytes. Brain Res Mol Brain Res 32: 166–170.

    Article  CAS  PubMed  Google Scholar 

  • van Kerkhof P, Sachse M, Klumperman J, Strous GJ. 2001. Growth hormone receptor ubiquitination coincides with recruitment to clathrin‐coated membrane domains. J Biol Chem 276: 3778–3784.

    Article  CAS  PubMed  Google Scholar 

  • van Kerkhof P, Smeets M, Strous GJ. 2002. The ubiquitin–proteasome pathway regulates the availability of the GH receptor. Endocrinol 143: 1243–1252.

    Article  CAS  Google Scholar 

  • Waldhoer M, Bartlett S, Whistler JL. 2004. Opioid receptors. Annu Rev Biochem 73: 953–990.

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, Johnson PS, Imai Y, Persico AM, Ozenberger BA, et al 1994. cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett 348: 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Loh HH, Law PY. 2003. Intracellular trafficking of opioid receptors directed by carboxyl tail and a di‐leucine motif in Neuro2A cells. J Biol Chem 278: 36848–36858.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Quillan JM, Winans K, Lucas JL, Sadee W. 2001. Single nucleotide polymorphisms in the human mu opioid receptor gene alter basal G protein coupling and calmodulin binding. J Biol Chem 276: 34624–34630.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Sadee W, Quillan JM. 1999. Calmodulin binding to G protein‐coupling domain of opioid receptors. J Biol Chem 274: 22081–22088.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Surratt CK, Sadee W. 2000. Calmodulin regulation of basal and agonist‐stimulated G protein coupling by the mu‐opioid receptor (OP(3)) in morphine‐pretreated cell. J Neurochem 75: 763–771.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhou D, Cheng Z, Wei Q, Chen J, et al 1998. The C‐truncated delta‐opioid receptor underwent agonist‐dependent activation and desensitization. Biochem Biophys Res Commun 249: 321–324.

    Article  CAS  PubMed  Google Scholar 

  • Ward SJ, Portoghese PS, Takemori AE. 1982. Pharmacological characterization in vivo of the novel opiate, beta‐funaltrexamine. J Pharmacol Exp Ther 220: 494–498.

    CAS  PubMed  Google Scholar 

  • Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M. 1999. Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23: 737–746 [comment].

    Article  CAS  PubMed  Google Scholar 

  • Whistler JL, Enquist J, Marley A, Fong J, Gladher F, et al 2002. Modulation of postendocytic sorting of G protein‐coupled receptors. Science 297: 615–620 [comment].

    Article  CAS  PubMed  Google Scholar 

  • Whistler JL, von Zastrow M. 1998. Morphine‐activated opioid receptors elude desensitization by beta‐arrestin. Proc Natl Acad Sci USA 95: 9914–9919.

    Article  CAS  PubMed  Google Scholar 

  • Whistler JL, Zastrow. von M 1999. Dissociation of functional roles of dynamin in receptor‐mediated endocytosis and mitogenic signal transduction. J Biol Chem 274: 24575–24578.

    Article  CAS  PubMed  Google Scholar 

  • Wick MJ, Minnerath SR, Lin X, Elde R, Law PY, et al 1994. Isolation of a novel cDNA encoding a putative membrane receptor with high homology to the cloned mu, delta, and kappa opioid receptors. Brain Res Mol Brain Res 27: 37–44.

    Article  CAS  PubMed  Google Scholar 

  • Wickman K., Iniguez‐Lluhi J, Davenport P, Taussig R, Krapivinsky G, et al 1994. Recombinant G‐protein beta/gamma‐subunits activate the muscarinic‐gated atrial potassium channel. Nature 368: 255–267.

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Burt AR, Milligan G, Anderson NG. 1997. Mitogenic signalling by delta opioid receptors expressed in rat‐1 fibroblasts involves activation of the p70s6k/p85s6k S6 kinase. Biochem J 325: 217–222.

    CAS  PubMed  Google Scholar 

  • Wolf R, Koch T, Schulz S, Klutzny M, Schroder H, et al 1999. Replacement of threonine 394 by alanine facilitates internalization and resensitization of the rat mu opioid receptor. Mol Pharmacol 55: 263–268.

    CAS  PubMed  Google Scholar 

  • Wong YH, Conklin BR, Bourne HR. 1992. Gz‐mediated inhibition of cAMP accumulation. Science 255: 339–342.

    Article  CAS  PubMed  Google Scholar 

  • Wu YL, Pei G, Fan GH. 1998. Inhibition of phospholipase C blocks opioid receptor‐mediated activation of Gi proteins. Neuroreport 9: 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Xiang B, Yu GH, Guo J, Chen L, Hu W, et al 2001. Heterologous activation of protein kinase C stimulates phosphorylation of delta‐opioid receptor at serine 344, resulting in beta‐arrestin‐ and clathrin‐mediated receptor internalization. J Biol Chem 276: 4709–4716.

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Lee SP, O'Dowd BF, George SR. 1999b. Serotonin 5‐HT1B and 5‐HT1D receptors form homodimers when expressed alone and heterodimers when co‐expressed. FEBS Lett 456 :63–67.

    Article  CAS  Google Scholar 

  • Xie W, Samoriski GM, McLaughlin JP, Romoser VA, Smrcka A, et al 1999a. Genetic alteration of phospholipase C beta3 expression modulates behavioral and cellular responses to mu opioids. Proc Natl Acad Sci USA 96: 10385–10390.

    Article  CAS  Google Scholar 

  • Xu J, Paquet M, Lau AG, Wood JD, Ross CA, et al 2001. Beta 1‐adrenergic receptor association with the synaptic scaffolding protein membrane‐associated guanylate kinase inverted‐2 (MAGI‐2). Differential regulation of receptor internalization by MAGI‐2 and PSD‐95. J Biol Chem 276: 41310–41317.

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Inanobe A, Kurachi Y. 1998. G protein regulation of potassium ion channels. Am Soc Pharmacol Exp Ther 50: 724–757.

    Google Scholar 

  • Yan K, Gautam N. 1996. A domain on the G protein β subunit interacts with both adenylyl cyclase 2 and the muscarinic atrial potassium channel. J Biol Chem 271: 17597–17600.

    Article  CAS  PubMed  Google Scholar 

  • Yeo A, Samways DS, Fowler CE, Gunn‐Moore F, Henderson G. 2001. Coincident signalling between the Gi/Go‐coupled delta‐opioid receptor and the Gq‐coupled m3 muscarinic receptor at the level of intracellular free calcium in SH‐SY5Y cells. J Neurochem 76: 1688–1700.

    Article  CAS  PubMed  Google Scholar 

  • Yin DL, Ren XH, Zheng ZL, Pu L, Jiang LZ, et al 1997. Etorphine inhibits cell growth and induces apoptosis in SK‐N‐SH cells: involvement of pertussis toxin‐sensitive G proteins. Neurosci Res 29: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Lo TM, Loh HH, Thayer SA. 1999. Delta‐opioid‐induced liberation of Gbetagamma mobilizes Ca2+ stores in NG108‐15 cells. Mol Pharmacol 56: 902–908.

    CAS  PubMed  Google Scholar 

  • Yu Y, Zhang L, Yin X, Sun H, Uhl GR, et al 1997. Mu opioid receptor phosphorylation, desensitization, and ligand efficacy. J Biol Chem 272: 28869–28874.

    Article  CAS  PubMed  Google Scholar 

  • Zadina JE, Chang SL, Ge LJ, Kastin AJ. 1993. Mu opiate receptor down‐regulation by morphine and up‐regulation by naloxone in SHSY5Y human neuroblastoma cells. J Pharmacol Exp Ther 265: 254–262.

    CAS  PubMed  Google Scholar 

  • Zagon IS, Verderame MF, McLaughlin PJ. 2002. The biology of the opioid growth factor receptor (OGFr). Brain Res Rev 38: 351–376.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SS. 1997. A central role for beta‐arrestins and clathrin‐coated vesicle‐mediated endocytosis in beta2‐adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. J Biol Chem 272: 27005–27014.

    CAS  Google Scholar 

  • Zhang J, Ferguson SS, Barak LS, Bodduluri SR, Laporte SA, et al 1998. Role for G protein‐coupled receptor kinase in agonist‐specific regulation of mu‐opioid receptor responsiveness. Proc Natl Acad Sci USA 95: 7157–7162.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ferguson SS, Law PY, Barak LS, Caron MG. 1999. Agonist‐specific regulation of delta‐opioid receptor trafficking by G protein‐coupled receptor kinase and beta‐arrestin. J Recep Signal Transduct Res 19: 301–313.

    Article  CAS  Google Scholar 

  • Zhang L, Yu Y, Mackin S, Weight FF, Uhl GR, et al 1996. Differential mu opiate receptor phosphorylation and desensitization induced by agonists and phorbol esters. J Biol Chem 271: 11449–11454.

    Article  CAS  PubMed  Google Scholar 

  • Zhang WB, Zhang Z, Ni YX, Wu YL, Pei G. 2003. A novel function of Go: mediation of extracellular signal‐regulated kinase activation by opioid receptors in neural cells. J Neurochem 86: 1213–1222.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Pei G, Huang YL, Zhong FM, Ma L. 1997. Carboxyl terminus of delta opioid receptor is required for agonist‐dependent receptor phosphorylation. Biochem Biophys Res Commun 238: 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Zheng FY, Wess J. 1999. Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem 274: 19487–19497.

    Article  Google Scholar 

  • Zhu Y, King MA, Schuller AG, Nitsche JF, Reidl M, et al 1999. Retention of supraspinal delta‐like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24: 243–252.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NIH grants: DA007339, DA016674, DA015091, DA000564, DA001583, and DA011806. HHL and PYL are recipients of K05 DA070554 and K05 DA000513, respectively.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Law, P., Loh, H.H. (2006). Opioid Receptor Signaling and Regulation. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_18

Download citation

Publish with us

Policies and ethics