Skip to main content

Heat Shock Proteins in Brain Function

  • Reference work entry
  • First Online:
Book cover Handbook of Neurochemistry and Molecular Neurobiology
  • 796 Accesses

Abstract:

Heat shock proteins are ubiquitous, highly conserved proteins helping the formation and repair of the correct conformation of other protein molecules. Cellular stress leads to heat shock protein (stress protein, molecular chaperone) induction, reflecting their protective role in cell survival. Heat shock proteins have a key importance in neuronal repair after brain damage, like trauma or stroke and in neurodegenerative diseases, such as in Alzheimer's, Parkinson's, and Huntington's type diseases. Because of the increasing amount of damaged proteins, heat shock proteins become overloaded during the aging process. This may lead to the release of heat shock protein‐buffered, silent mutations, leading to the phenotypic exposure of previously hidden features and contributing to the onset of polygenic diseases such as neurodegenerative diseases. Heat shock protein induction and inhibition are promising pharmacological tools to protect neurons or to fight against brain tumors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

amyotrophic lateral sclerosis

DnaJ:

a co‐chaperone of the 70‐kDa heat shock protein, Hsp70

ER:

endoplasmic reticulum

G‐protein:

small GTP‐binding protein

Grp:

glucose regulated protein

Hsc70:

the constitutively expressed form of the 70‐kDa heat shock protein, Hsp70

Hsp:

heat shock protein

PU3:

a purine‐based inhibitor of the 90‐kDa heat shock protein, Hsp90

References

  • Anthony SG, Schipper HM, Tavares R, Hovanesian V, Cortez SC, et al 2003. Stress protein expression in the Alzheimer‐diseased choroid plexus. J Alzheimers Dis 5: 171–177.

    CAS  PubMed  Google Scholar 

  • Aranda‐Anzaldo A, Dent MA. 2003. Developmental noise, ageing and cancer. Mech Ageing Dev 124: 711–720.

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP. 1998. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379: 19–26.

    CAS  PubMed  Google Scholar 

  • Benaroudj N, Triniolles F, Ladjimi MM. 1996. Effect of nucleotides, peptides, and unfolded proteins on the self‐association of the molecular chaperone HSC70. J Biol Chem 271: 18471–18476.

    Article  CAS  PubMed  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR. 2001. Impairment of the ubiquitin‐proteasome system by protein aggregation. Science 292: 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  • Bergman A, Siegal ML. 2003. Evolutionary capacitance as a general feature of complex gene networks. Nature 424: 549–551.

    Article  CAS  PubMed  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, et al 1999. The base of the proteasome regulatory particle exhibits chaperone‐like activity. Nat Cell Biol 1: 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Bruce‐Keller AJ, Umberger G, McFall R, Mattson MP. 1999. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 45: 8–15.

    Article  PubMed  Google Scholar 

  • Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366.

    Article  CAS  PubMed  Google Scholar 

  • Bulteau A‐L, Verbeke P, Petropoulos I, Chaffotte A‐F, Friguet B. 2001. Proteasome inhibition in glyoxal‐treated fibroblasts and resistence of glycated glucose‐6‐phosphate dehydrogenase to 20S proteasome degradation in vitro. J Biol Chem 276: 30057–30063.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese C, Frank A, Maclean K, Gilbertson R. 2003. Medulloblastoma sensitivity to 17‐allylamino‐17‐demethoxygeldanamycin requires MEK/ERKM. J Biol Chem 278: 24951–24959.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael J, Chatellier J, Woolfson A, Milstein C, Fersht AR, et al 2000. Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's disease. Proc Natl Acad Sci USA 97: 9701–9705.

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain LH, Burgoyne RD. 2000. Cysteine‐string protein: the chaperone at the synapse. J Neurochem 74: 1781–1789.

    Article  CAS  PubMed  Google Scholar 

  • Chapple JP, van der Spuy J, Poopalasundaram S, Cheetham ME. 2004. Neuronal DnaJ proteins HSJ1a and HSJ1b: a role in linking the Hsp70 chaperone machine to the ubiquitin‐proteasome system? Biochem Soc Trans 32: 640–642.

    Article  CAS  PubMed  Google Scholar 

  • Chiang H‐L, Terlecky SR, Plant CP, Dice JF. 1989. A role for a 70‐kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382–385.

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G, Lucas B, Shtil A, Huezo H, Rosen N. 2002. Development of a purine‐scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 10: 3555–3564.

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G, Huezo H, Rosen N, Mimnaugh E, Whitesell L, et al 2003. 17AAG low target binding affinity and potent cell activity – finding an explanation. Mol Cancer Therap 2: 123–129.

    CAS  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332: 805–810.

    Article  CAS  PubMed  Google Scholar 

  • Chung KK, Zhang Y, Lim KL, Huang H, Gao J, et al 2001. Parkin ubiquitinates the alpha‐synuclein‐interacting protein, synphilin‐1: implications for Lewy‐body formation in Parkinson disease. Nat Med 7: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  • Cisse S, Perry G, Lacoste‐Royal G, Cabana T, Gauvreau D. 1993. Immunochemical identification of ubiquitin and heat‐shock proteins in corpora amylacea from normal aged and Alzheimer's disease brains. Acta Neuropathol (Berl)85: 233–240.

    Article  CAS  Google Scholar 

  • Clegg JS. 1984. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 246: R133–R151.

    CAS  PubMed  Google Scholar 

  • Conconi M, Szweda LI, Levine RL, Stadtman ER, Friguet B. 1996. Age‐related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat shock protein 90. Arch Biochem Biophys 331: 232–240.

    Article  CAS  PubMed  Google Scholar 

  • Csermely P. 1997. Proteins, RNA‐s, chaperones and enzyme evolution: a folding perspective. Trends Biochem Sci 22: 147–149.

    Article  CAS  PubMed  Google Scholar 

  • Csermely P. 1999. The “chaperone‐percolator” model: a possible molecular mechanism of Anfinsen‐cage type chaperone action. Bioessays 21: 959–965.

    Article  CAS  PubMed  Google Scholar 

  • Csermely P. 2001a. A nonconventional role of molecular chaperones: involvement in the cytoarchitecture. News Physiol Sci 15: 123–126.

    Google Scholar 

  • Csermely P. 2001b. Chaperone‐overload as a possible contributor to “civilization diseases”: atherosclerosis, cancer, diabetes. Trends Genet 17: 701–704.

    Article  CAS  Google Scholar 

  • Csermely P. 2004. Strongs links are important – but weak links stabilize them. Trends Biochem Sci 29: 331–334.

    Article  CAS  PubMed  Google Scholar 

  • Csermely P. 2006. Weak links: Stabilizers of Complex Systems from Proteins to Social Networks, Springer Verlag, Heidelberg.

    Google Scholar 

  • Csermely P, Schnaider T, Sőti Cs, Prohászka Z, Nardai G. 1998. The 90 kDa molecular chaperone family: structure, function and clinical applications. A comprehensive review Pharmacol Ther 79: 129–168.

    CAS  Google Scholar 

  • Csermely P, Sőti C, Kalmar E, Papp E, Pato B, et al 2003. Molecular chaperones, evolution and medicine. J Mol Struct Theochem 666–667: 373–380.

    Article  CAS  Google Scholar 

  • Cuervo AM, Dice JF. 2000. Age‐related decline in chaperone‐mediated autophagy. J Biol Chem 275: 31505–31513.

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Mancini MA, Antalfy B, De Franco DB, Orr HT, et al 1998. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA 1. Nat Genet 19: 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP, Orlovska NN, Sukhomudrenko AG. 1983. Age‐dependent changes of protein structure. The properties of young and old rabbit aldolase are restored after reversible denaturation. Exp Gerontol 18: 437–446.

    CAS  Google Scholar 

  • Duan W, Mattson MP. 1999. Dietary restriction and 2‐deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 57: 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Fares MA, Riuz‐Gonzalez MX, Moya A, Elena SF, Barrio E. 2002. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417: 398.

    Article  PubMed  CAS  Google Scholar 

  • Friguet B, Stadtman ER, Szweda LI. 1994. Modification of glucose‐6‐phosphate dehydrogenase by 4‐hydroxy‐2‐nonenal. Formation of cross‐linked protein that inhibits the multicatalytic protease. J Biol Chem 269: 21639–21643.

    CAS  Google Scholar 

  • Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU. 1994. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370: 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Ganea E. 2001. Chaperone‐like activity of alpha‐crystallin and other small heat shock proteins. Curr Protein Pept Sci 2: 205–225.

    Article  CAS  PubMed  Google Scholar 

  • Garnier C, Lafitte D, Tsvetkov PO, Barbier P, Leclerc‐Devin J, et al 2002. Binding of ATP to heat shock protein 90: evidence for an ATP‐binding site in the C‐terminal domain. J Biol Chem 277: 12208–12214.

    Article  CAS  PubMed  Google Scholar 

  • Gerges NZ, Tran IC, Backos DS, Harrell JM, Chinkers M, et al 2004. Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors. J Neurosci 24: 4758–4766.

    Article  CAS  PubMed  Google Scholar 

  • Getchell TV, Krishna NS, Dhooper N, Sparks DL, Getchell ML. 1995. Human olfactory receptor neurons express heat shock protein 70: age‐related trends. Ann Otol Rhinol Laryngol 104: 47–56.

    CAS  PubMed  Google Scholar 

  • Gibson GE, Park LC, Sheu KF, Blass JP, Calingasan NY. 2000. The alpha‐ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int 36: 97–112.

    Article  CAS  PubMed  Google Scholar 

  • Goodman Y, Mattson MP. 1994. Secreted forms of beta‐amyloid precursor protein protect hippocampal neurons against amyloid beta‐peptide‐induced oxidative injury. Exp Neurol 128: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Guha S, Manna TK, Das KP, Bhattacharya B. 1998. Chaperone‐like activity of tubulin. J Biol Chem 273: 30077–30080.

    Article  CAS  PubMed  Google Scholar 

  • Hall DM, Oberley TD, Moseley PM, Buettner GR, Oberley LW, et al 2000. Caloric restriction improves thermotolerance and reduces hyperthermia‐induced cellular damage in old rats. FASEB J 14: 78–86.

    CAS  PubMed  Google Scholar 

  • Hamos JE, Oblas B, Pulaski‐Salo D, Welch WJ, Bole DG, et al 1991. Expression of heat shock proteins in Alzheimer's disease. Neurology 41: 345–350.

    CAS  PubMed  Google Scholar 

  • Harding JJ, Beswick HT, Ajiboye R, Huby R, Blakytny R, et al 1989. Non‐enzymatic post‐translational modification of proteins in aging. A review. Mech Ageing Dev 50: 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Hargitai J, Lewis H, Boros I, Rácz T, Fiser A, et al 2003. Bimoclomol, a heat shock protein co‐inducer acts by the prolonged activation of heat shock factor‐1. Biochem Biophys Res Commun 307: 689–695.

    Article  CAS  PubMed  Google Scholar 

  • Hartl F‐U. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M. 2002. sHsps and their role in the chaperone network. Cell Mol Life Sci 59: 1649–1657.

    Article  CAS  PubMed  Google Scholar 

  • Hemmer K, Fransen L, Vanderstichele H, Vanmechelen E, Heuschling P. 2001. An in vitro model for the study of microglia‐induced neurodegeneration: involvement of nitric oxide and tumor necrosis factor‐alpha. Neurochem Int 38: 557–565.

    Article  CAS  PubMed  Google Scholar 

  • Heydari AR, Takahashi R, Gutsmann A, You S, Richardson A. 1994. Hsp70 and aging. Experientia 50: 1092–1098.

    Article  CAS  PubMed  Google Scholar 

  • Hitotsumatsu T, Iwaki T, Fukui M, Tateishi J. 1996. Distinctive immunohistochemical profiles of small heat shock proteins (heat shock protein 27 and alpha B‐crystallin) in human brain tumors. Cancer 77: 352–361.

    Article  CAS  PubMed  Google Scholar 

  • Hoehn B, Ringer TM, Xu L, Giffard RG, Sapolsky RM, et al 2001. Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage. J Cereb Blood Flow Metab 21: 1303–1309.

    Article  CAS  PubMed  Google Scholar 

  • Hughes RE, Olson JM. 2001. Therapeutic opportunities in polyglutamine disease. Nat Med 7: 419–423.

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, et al 2001. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105: 891–902.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson K, Wojcieszyn J. 1984. The translational mobility of substances within the cytoplasmic matrix. Proc Natl Acad Sci USA 81: 6747–6751.

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA. 2000. Cell death mechanisms in Parkinson's disease. J Neural Transm 107: 1–29.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ, Xiao G, Shanmugaratnam J, Fine RE. 2001. Calreticulin functions as a molecular chaperone for the beta‐amyloid precursor protein. Neurobiol Aging 22: 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Jurivich DA, Sistonen L, Kroes RA, Morimoto RI. 1992. Effect of sodium salicylate on the human heat shock response. Science 255: 1243–1245.

    Article  CAS  PubMed  Google Scholar 

  • Kalmar B, Burnstock G, Vrbova G, Urbanics R, Csermely P, et al 2002. Upregulation of heat shock proteins rescues motoneurones from axotomy‐induced cell death in neonatal rats. Exp Neurol 176: 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Kalmar B, Greensmith L, Malcangio M, Mac Mahon SB, Csermely P, et al 2003. The effect of treatment with BRX‐220, a co‐inducer of heat shock proteins, on sensory fibres of the rat following peripheral nerve injury. Exp Neurol 184: 636–647.

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, et al 2003. A high‐affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425: 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Kieran D, Kalmar B, Dick JRT, Riddoch‐Contreras J, Burnstock G, et al 2004. Treatment with Arimoclomol, a co‐inducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10: 402–405.

    Article  CAS  PubMed  Google Scholar 

  • Kim PS, Baldwin RL. 1990. Intermediates in the folding reactions of small proteins. Annu Rev Biochem 59: 631–660.

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, Akopian TN, Goldberg AL. 1998. Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J Biol Chem 273: 1982–1989.

    Article  CAS  PubMed  Google Scholar 

  • Kouchi Z, Sorimachi H, Suzuki K, Ishiura S. 1999. Proteasome inhibitors induced the association of Alzheimer's amyloid precursor protein with Hsc73. Biochem Biophys Res Commun 254: 804–810.

    Article  CAS  PubMed  Google Scholar 

  • Kregel KC, Moseley PL. 1996. Differential effects of exercise and heat stress on liver hsp70 accumulation with aging. J Appl Physiol 80: 547–551.

    CAS  PubMed  Google Scholar 

  • Krobitsch S, Lindquist S. 2000. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 97: 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  • Latchman DS. 1991. Heat shock proteins and human disease. JR Coll Physicians Lond 25: 295–299.

    CAS  Google Scholar 

  • Lee AS. 2001. The glucose‐regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26: 504–510.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Bruce‐Keller AJ, Kruman Y, Chan SL, Mattson MP. 1999. 2‐Deoxy‐d‐glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res 57: 48–61.

    Article  CAS  PubMed  Google Scholar 

  • Luby‐Phelps K, Lanni F, Taylor DL. 1988. The submicroscopic properties of cytoplasm as a determinant of cellular function. Annu Rev Biophys Biophys Chem 17: 369–396.

    Article  PubMed  Google Scholar 

  • Lukiw WJ. 2004. Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress‐related signaling. Neurochem Res 29: 1287–1297.

    Article  CAS  PubMed  Google Scholar 

  • Macario AJL, Conway de Macario E. 2001. Molecular chaperones and age‐related degenerative disorders. Adv Cell Aging Gerontol 7: 131–162.

    Article  CAS  Google Scholar 

  • Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM. 2000. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP‐binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275: 37181–37186.

    Article  CAS  PubMed  Google Scholar 

  • Matthews CR. 1993. Pathways of protein folding. Annu Rev Biochem 62: 653–683.

    Article  CAS  PubMed  Google Scholar 

  • Mayer RJ, Arnold J, Laszlo L, Landon M, Lowe J. 1991. Ubiquitin in health and disease. Biochim Biophys Acta 1089: 141–157.

    CAS  PubMed  Google Scholar 

  • Morimoto RI. 1998. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788–3796.

    Article  CAS  PubMed  Google Scholar 

  • Nagata K. 1998. Expression and function of heat shock protein 47: a collagen‐specific molecular chaperone in the endoplasmic reticulum. Matrix Biol 16: 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Neckers L. 2003. Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem 10: 733–739.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka K, Suzuki T. 2000. Roles of molecular chaperones in the nervous system. Brain Res Bull 53: 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Pato B, Mihaly K, Csermely P. 2001. Chaperones and cytoarchitecture: geldanamycin induces an accelerated flux of cytoplasmic proteins from detergent‐treated cells. Eur J Biochem 268: S107.

    Google Scholar 

  • Perez N, Sugar J, Charya S, Johnson G, Merril C, et al 1991. Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer's disease. Brain Res Mol Brain Res 11: 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Picard D. 2002. Heat‐shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59: 1640–1648.

    Article  CAS  PubMed  Google Scholar 

  • Porankiewicz J, Wang J, Clarke AK. 1999. New insights into the ATP‐dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32: 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Silverstein AM, Galigniana MD. 1999. A model for the cytoplasmic trafficking of signalling proteins involving the hsp90‐binding immunophilins and p50cdc37. Cell Signal 11: 839–851.

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Toft DO. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70‐based chaperone machinery. Exp Biol Med 228: 111–133.

    CAS  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S. 2002. Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624.

    Article  CAS  PubMed  Google Scholar 

  • Ramsey JJ, Colman RJ, Binkley NC, Christensen JD, Gresl TA, et al 2000. Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study. Exp Gerontol 35: 1131–1149.

    Article  CAS  PubMed  Google Scholar 

  • Reiss U, Rothstein M. 1974. Heat‐labile isozymes of isocitrate lyase from aging Turbatrix aceti. Biochem Biophys Res Commun 61: 1012–1016.

    Article  CAS  PubMed  Google Scholar 

  • Renkawek K, Bosman GJ, Gaestel M. 1993. Increased expression of heat‐shock protein 27 kDa in Alzheimer disease: a preliminary study. Neuroreport 5: 14–16.

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Buchner J. 2001. Hsp90: chaperoning signal transduction. J Cell Physiol 188: 281–290.

    Article  CAS  PubMed  Google Scholar 

  • Roberts SP, Feder M. 1999. Natural hyperthermia and expression of the heat‐shock protein Hsp70 affect development in Drosophila melanogaster. Oecologia 121: 323–329.

    Article  Google Scholar 

  • Rogue PJ, Ritz MF, Malviya AN. 1993. Impaired gene transcription and nuclear protein kinase C activation in the brain and liver of aged rats. FEBS Lett 334: 351–354.

    Article  CAS  PubMed  Google Scholar 

  • Rutherford SL, Lindquist S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342.

    Article  CAS  PubMed  Google Scholar 

  • Scharloo W. 1991. Canalization: Genetic and developmental aspects. Annu Rev Ecol Syst 22: 65–93.

    Article  Google Scholar 

  • Schliwa M, van Blerkom J, Porter KR. 1981. Stabilization of the cytoplasmic ground substance in detergent‐opened cells and a structural and biochemical analysis of its composition. Proc Natl Acad Sci USA 78: 4329–4333.

    Article  CAS  PubMed  Google Scholar 

  • Schuller E, Gulesserian T, Seidl R, Cairns N, Lube G. 2001. Brain t‐complex polypeptide 1 (TCP‐1) related to its natural substrate beta1 tubulin is decreased in Alzheimer's disease. Life Sci 69: 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Dick EJ, Hubbard GB, Braak E, Braak H. 2001. Expression of stress proteins alpha B‐crystallin, ubiquitin, and hsp27 in pallido‐nigral spheroids of aged rhesus monkeys. Neurobiol Aging 22: 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Miura‐Shimura Y, Kosik KS. 2004. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 279: 17957–17962.

    Article  CAS  PubMed  Google Scholar 

  • Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K. 1993. Alpha B crystallin and Hsp28 are enhanced in the cerebral cortex of patients with Alzheimer's disease. J Neurol Sci 119: 203–208.

    Article  CAS  PubMed  Google Scholar 

  • Soga S, Kozawa T, Narumi H, Akinaga S, Irie K, et al 1998. Radicicol leads to selective depletion of Raf kinase and disrupts K‐Ras‐activated aberrant signaling pathway. J Biol Chem 273: 822–828.

    Article  CAS  PubMed  Google Scholar 

  • Sőti C, Csermely P. 2000. Molecular chaperones and the aging process. Biogerontology 1: 225–233.

    Article  PubMed  Google Scholar 

  • Sőti C, Csermely P. 2002. Chaperones and aging: their role in neurodegeneration and other civilizational diseases. Neurochem Int 41: 383–389.

    Article  PubMed  Google Scholar 

  • Sőti C, Rácz A, Csermely P. 2002. A nucleotide‐dependent molecular switch controls ATP binding at the C‐terminal domain of Hsp90. N‐terminal nucleotide binding unmasks a C‐terminal binding pocket. J Biol Chem 277: 7066–7075.

    Google Scholar 

  • Sőti C, Sreedhar AS, Csermely P. 2003. Apoptosis, necrosis and cellular senescence: chaperone occupancy as a potential switch. Aging Cell 2: 39–45.

    Article  PubMed  Google Scholar 

  • Sreedhar AS, Mihály K, Pató B, Schnaider T, Steták A, et al 2003. Hsp90 inhibition accelerates cell lysis: anti‐Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide‐ and Hsp90‐dependent events. J Biol Chem 278: 35231–35240.

    Article  CAS  PubMed  Google Scholar 

  • Sreedhar AS, Kalmar E, Csermely P, Shen YF. 2004a. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562: 11–15.

    Article  CAS  Google Scholar 

  • Sreedhar AS, Nardai G, Csermely P. 2004b. Enhancement of complement‐induced cell lysis: a novel mechanism for the anticancer effects of Hsp90 inhibitors. Immunol Lett 92: 157–161.

    Article  CAS  Google Scholar 

  • Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. 1998. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8: 657–665.

    Article  CAS  PubMed  Google Scholar 

  • Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, et al 1999. The molecular chaperone alphaB‐crystallin enhances amyloid beta neurotoxicity. Biochem Biophys Res Commun 262: 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Gao J, Ferrington DA, Biesiada H, Williams TD, et al 1999. Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca‐ATPase. Biochemistry 38: 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Dalen H, Brunk UT. 1999. Ceroid/lipofuscin‐loaded human fibroblasts show decreased survival time and diminished autophagocytosis during amino acid starvation. Exp Gerontol 34: 943–957.

    Article  CAS  PubMed  Google Scholar 

  • Thirumalai D, Lorimer GH. 2001. Chaperonin‐mediated protein folding. Annu Rev Biophys Biomol Struct 30: 245–269.

    Article  CAS  PubMed  Google Scholar 

  • Tobaben S, Thakur P, Fernandez‐Chacon R, Sudhof TC, Rettig J, et al 2001. A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31: 987–999.

    Article  CAS  PubMed  Google Scholar 

  • Török Zs, Tsvetkova NM, Balogh G, Horváth I, Nagy E, et al 2003. Heat shock protein co‐inducers with no effect on protein denaturation specifically modulate the membrane lipid phase. Proc Natl Acad Sci USA 100: 3131–3136.

    Article  PubMed  CAS  Google Scholar 

  • Trent JD, Kagawa HK, Yaoi T, Olle E, Zaluzec NJ. 1997. Chaperonin filaments: the archaeal cytoskeleton? Proc Natl Acad Sci USA 94: 5383–5388.

    Article  CAS  PubMed  Google Scholar 

  • True HL, Lindquist S. 2000. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407: 477–483.

    Article  CAS  PubMed  Google Scholar 

  • Turner GC, Varshavsky A. 2000. Detecting and measuring cotranslational protein degradation in vivo. Science 289: 2117–2120.

    Article  CAS  PubMed  Google Scholar 

  • Unno K, Asakura H, Shibuya Y, Kaiho M, Okada S, et al 2000. Increase in basal level of Hsp70, consisting chiefly of constitutively expressed Hsp70 (Hsc70) in aged rat brain. J Gerontol A Biol Sci Med Sci 55: B329–B335.

    CAS  PubMed  Google Scholar 

  • Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, et al 2004. CHIP promotes proteasomal degradation of familial ALS‐linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J Neurochem 90: 231–244.

    Article  CAS  PubMed  Google Scholar 

  • Vigh L, Literati Nagy P, Horvath I, Torok Z, Balogh G, et al 1997. Bimoclomol: a nontoxic, hydroxilamine derivative with stress protein‐inducing activity and cytoprotective effects. Nat Med 3: 1150–1154.

    Article  CAS  PubMed  Google Scholar 

  • Walters TJ, Ryan KL, Mason PA. 2001. Regional distribution of Hsp70 in the CNS of young and old food‐restricted rats following hyperthermia. Brain Res Bull 55: 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ. 1992. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72: 1063–1081.

    CAS  PubMed  Google Scholar 

  • Welch WJ, Brown CR. 1996. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1: 109–115.

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. 1994. Inhibition of heat shock protein HSP90‐pp60v‐src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91: 8324–8328.

    Article  CAS  PubMed  Google Scholar 

  • Whittier JE, Xiong YE, Rechsteiner MC, Squier TC. 2004. Hsp90 enhances degradation of oxidized calmodulin by the 20S proteasome. J Biol Chem 279: 46135–46142.

    Article  CAS  PubMed  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, et al 1999. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145: 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Wolosewick JJ, Porter KR. 1979. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol 82: 114–139.

    Article  CAS  PubMed  Google Scholar 

  • Workman P. 2004. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Wright HT. 1991. Nonenzymatic deamination of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol 26: 1–52.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yang JM, Iannone M, Shih WJ, Lin Y, et al 2001. Disruption of the EF‐2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin. Cancer Res 61: 4010–4016.

    CAS  PubMed  Google Scholar 

  • Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, et al 1998. Gene therapy with Hsp72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 44: 584–591.

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Moarefi I, Hartl FU. 2001. Hsp90: a specialized but essential protein‐folding tool. J Cell Biol 154: 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Luo H, Fu W, Mattson MP. 1999. The endoplasmic reticulum stress‐responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155: 302–314.

    Article  CAS  PubMed  Google Scholar 

  • Yuh KCM, Gafni A. 1987. Reversal of age‐related effects in rat muscle phosphoglycerate kinase. Proc Natl Acad Sci USA 84: 7458–7462.

    Article  CAS  PubMed  Google Scholar 

  • Zagzag D, Nomura M, Friedlander DR, Blanco CY, Gagner JP, et al 2003. Geldanamycin inhibits migration of glioma cells in vitro: a potential role for hypoxia‐inducible factor (HIF‐1alpha) in glioma cell invasion. J Cell Physiol 196: 394–402.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Tremblay TL, McDermid A, Thibault P, Stanimirovic D. 2003. Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia 42: 194–208.

    Article  PubMed  Google Scholar 

  • Zimmerman SB, Minton AP. 1993. Macromolecular crowding: biochemical, biophysical and physiological consequences. Annu Rev Biophys Biomol Struct 22: 27–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author's laboratory was supported by research grants from the EU 6th Framework program (FP6506850), from the Hungarian Science Foundation (OTKA‐T37357), and from the Hungarian Ministry of Social Welfare (ETT‐32/03).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Csermely, P. (2006). Heat Shock Proteins in Brain Function. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_13

Download citation

Publish with us

Policies and ethics