Skip to main content

Neurosecretory Protein Trafficking and Dense-Core Granule Biogenesis in Neuroendocrine Cells

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology
  • 838 Accesses

Abstract:

Neuropeptides and brain-derived neurotrophic factor (BDNF) are secreted from neurons in an activity-dependent manner through the regulated secretory pathway (RSP). Neuropeptides and BDNF, initially synthesized as a proform, are sorted at the trans-Golgi network (TGN) along with their processing enzymes, prohormone convertases (PC) 1/3 and 2 and carboxypeptidase E (CPE), into the dense-core secretory granules (DCGs) for secretion. Consensus RSP sorting signals have been identified in proopiomelanocortin (POMC), insulin, and BDNF, which are sufficient and necessary for targeting these proteins to secretory granules. These signals are conformation-dependent and consist of a pair of acidic amino acids ∼10–15 Å apart and an aliphatic hydrophobic amino acid ∼5–6 Å away from each of the acidic residues. The acidic residues in the motif interact with a sorting receptor, membrane CPE, at the TGN to effect sorting into granules. CPE-deficient mouse models verify the functioning of the CPE-mediated sorting mechanism in vivo. Other less well studied putative proneuropeptide sorting motifs and mechanisms are also discussed. The processing enzymes, however, are sorted to the DCGs by insertion of their C-terminal domain into cholesterol–sphingolipid-rich membrane microdomains (lipid rafts), which are the proposed sites of budding to form the DCGs at the TGN. In addition to sorting of cargo to the DCGs, molecules driving the budding of the DCGs from the TGN and regulating granule quantity are important components for regulated secretion of neuropeptides. The granins, major proteins in DCGs, as well as proneuropeptides form aggregates that appear to be able to provide the necessary driving force to form DCGs. In addition, cholesterol plays a critical role in the pinching off of the granules at the TGN, as evidenced from cholesterol depletion studies in an endocrine cell line and in cholesterol-deficient mouse models. Finally, studies have identified chromogranin A (CgA) as a regulator of quantitative DCG biogenesis in neuroendocrine cells. CgA acts by regulating the stability of secretory granule proteins in the Golgi apparatus, thereby controlling the number of DCGs that can be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNF:

brain-derived neurotrophic factor

RSP:

regulated secretary pathway

TGN:

trans-Golgi network

PC:

prohormone convertases

CPE:

carboxypeptidase E

DCGs:

dense-core secretory granules

POMC:

proopiomelanocortin

CgA:

chromogranin A

ISGs:

immature secretory granules

NMR:

nuclear magnetic resonance

NGF:

nerve growth factor

SLOS:

Smith–Lemli–Opitz syndrome

Sc5d:

lathosterol desaturase

GUVs:

giant unilamellar vesicles

CgB:

chromogranin B

SecII:

secretogranin II

PTB:

Polypyrimidine-tract binding protein

ICA512/IA2:

receptor-tyrosine-phosphatase-like protein

References

  • Arnaoutova I, Smith AM, Coates LC, Sharpe JC, Dhanvantari S, et al. 2003a. The prohormone processing enzyme PC3 is a lipid-raft-associated transmembrane protein. Biochemistry 42: 10445–10455.

    Article  CAS  Google Scholar 

  • Arnaoutova I, Jackson CL, Al-Awar OS, Donaldson JG, Loh YP. 2003b. Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol Biol Cell 14: 4448-57.

    Google Scholar 

  • Arvan P, Castle D. 1992. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol 2: 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Assadi M, Sharpe JC, Snell C, Loh YP. 2004. The C terminus of prohormone convertase 2 is sufficient and necessary for raft association and sorting to the regulated secretory pathway. Biochemistry 43: 7798–7807.

    Article  CAS  PubMed  Google Scholar 

  • Bacia K, Schwille P, Kurzchalia T. 2005. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci USA 102: 3272–3277.

    Article  CAS  PubMed  Google Scholar 

  • Bernard N, Kitabgi P, Rovere-Jovene C. 2003. The Arg617–Arg618 cleavage site in the C-terminal domain of PC1 plays a major role in the processing and targeting of the enzyme within the regulated secretory pathway. J Neurochem 85: 1592–1603.

    Article  CAS  PubMed  Google Scholar 

  • Beuret N, Stettler H. Renold A, Rutishauser J, Spiess M. 2004. Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. J Biol Chem 279: 20242–20249.

    Article  CAS  PubMed  Google Scholar 

  • Blazquez M, Thiele C, Huttner WB, Docherty K, Shennan KI. 2000. Involvement of the membrane lipid bilayer in sorting prohormone convertase 2 into the regulated secretory pathway. Biochem J 349(Pt 3): 843–852.

    CAS  PubMed  Google Scholar 

  • Brechler V, Chu WN, Baxter JD, Thibault G, Reudelhuber TL. 1996. A protease processing site is essential for prorenin sorting to the regulated secretory pathway. J Biol Chem 271: 20636–20640.

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard JR, Birkedal H, Rehfeld JF. 2004. Progastrin is directed to the regulated secretory pathway by synergistically acting basic and acidic motifs. J Biol Chem 279: 5488–5493.

    Article  CAS  PubMed  Google Scholar 

  • Cawley NX, Normant E, Chen A, Loh YP. 2000. Oligomerization of proopiomelanocortin is independent of pH, calcium, and the sorting signal for the regulated secretory pathway. FEBS Lett 481: 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Cawley NX, Zhou J, Hill JM, Abebe D, Romboz S, et al. 2004. The carboxypeptidase E knockout mouse exhibits endocrinological and behavioral deficits. Endocrinology 145: 5807–5819.

    Article  CAS  PubMed  Google Scholar 

  • Chanat E, Huttner WB. 1991. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115: 1505–1519.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, et al. 2004. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 24: 4401–4411.

    Article  CAS  PubMed  Google Scholar 

  • Churchward MA, Rogasevskaia T, Hofgen J, Bau J, Coorssen JR. 2005. Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. J Cell Sci 118: 4833-4848.

    Google Scholar 

  • Colomer V, Kicska GA, Rindler MJ. 1996. Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J Biol Chem 271: 48–55.

    Article  CAS  PubMed  Google Scholar 

  • Cool DR, Fenger M, Snell CR, Loh YP. 1995. Identification of the sorting signal motif within proopiomelanocortin for the regulated secretory pathway. J Biol Chem 270: 8723–8729.

    Article  CAS  PubMed  Google Scholar 

  • Cool DR, Normant E, Shen F, Chen HC, Pannell L, et al. 1997. Carboxypeptidase E is a regulated secretory pathway sorting receptor: Genetic obliteration leads to endocrine disorders in Cpe fat mice. Cell 88: 73–83.

    Article  CAS  PubMed  Google Scholar 

  • Dannies PS. 1999. Protein hormone storage in secretory granules: Mechanisms for concentration and sorting. Endocr Rev 20: 3–21.

    Article  CAS  PubMed  Google Scholar 

  • Day R, Benjannet S, Matsuuchi L, Kelly RB, Marcinkiewicz M, et al. 1995. Maintained PC1 and PC2 expression in the AtT-20 variant cell line 6T3 lacking regulated secretion and POMC: Restored POMC expression and regulated secretion after cAMP treatment. DNA Cell Biol 14: 175–188.

    Article  CAS  PubMed  Google Scholar 

  • De Bie I, Marcinkiewicz M, Malide D, Lazure C, Nakayama K, et al. 1996. The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments. J Cell Biol 135: 1261–1275.

    Article  CAS  PubMed  Google Scholar 

  • Dhanvantari S, Arnaoutova I, Snell CR, Steinbach PJ, Hammond K, et al. 2002. Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry 41: 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Dhanvantari S, Loh YP. 2000. Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem 275: 29887–29893.

    Article  CAS  PubMed  Google Scholar 

  • Dhanvantari S, Shen FS, Adams T, Snell CR, Zhang C, et al. 2003. Disruption of a receptor-mediated mechanism for intracellular sorting of proinsulin in familial hyperproinsulinemia. Mol Endocrinol 17: 1856–1867.

    Article  CAS  PubMed  Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, et al. 2003. The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Feliciangeli S, Kitabgi P. 2002. Insertion of dibasic residues directs a constitutive protein to the regulated secretory pathway. Biochem Biophys Res Commun 290: 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Feliciangeli S, Kitabgi P, Bidard JN. 2001. The role of dibasic residues in prohormone sorting to the regulated secretory pathway. A study with proneurotensin. J Biol Chem 276: 6140–6150.

    Article  CAS  PubMed  Google Scholar 

  • Fricker LD. 1988. Carboxypeptidase E. Annu Rev Physiol 50: 309–321.

    Article  CAS  PubMed  Google Scholar 

  • Gondre-Lewis MC, Petrache HI, Wassif CA, Harries D, Parsegian A, Porter FD, Loh YP. 2006. Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature. J Cell Sci 119: 1876-1885.

    Google Scholar 

  • Gonzalez-Yanes C, Sanchez-Margalet V. 2002. Pancreastatin, a chromogranin A-derived peptide, activates protein synthesis signaling cascade in rat adipocytes. Biochem Biophys Res Commun 299: 525–531.

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Jeon SH, Yoo SH. 2003. Chromogranin B-induced secretory granule biogenesis: Comparison with the similar role of chromogranin A. J Biol Chem 278: 40581–40589.

    Article  CAS  PubMed  Google Scholar 

  • Irminger JC, Verchere CB, Meyer K, Halban PA. 1997. Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E-deficient Cpefat/Cpefat mice. J Biol Chem 272: 27532–27534.

    Article  CAS  PubMed  Google Scholar 

  • Jutras I, Seidah NG, Reudelhuber TL. 2000. A predicted α-helix mediates targeting of the proprotein convertase PC1 to the regulated secretory pathway. J Biol Chem 275: 40337–40343.

    Article  CAS  PubMed  Google Scholar 

  • Keller P, Simons K. 1998. Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140: 1357-1367.

    Google Scholar 

  • Kim T, Loh YP. 2006. Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation. Mol Biol Cell 17: 789-798.

    Google Scholar 

  • Kim T, Tao-Cheng JH, Eiden LE, Loh YP. 2003. The role of chromogranin A and the control of secretory granule genesis and maturation. Trends Endocrinol Metab 14: 56–57.

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Tao-Cheng J-H, Eiden LE, Loh YP. 2001. Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106: 499–509.

    Article  CAS  PubMed  Google Scholar 

  • Kizer JS, Tropsha A. 1991. A motif found in propeptides and prohormones that may target them to secretory vesicles. Biochem Biophys Res Commun 174: 586–592.

    Article  CAS  PubMed  Google Scholar 

  • Knoch KP, Bergert H, Borgonovo B, Saeger HD, Altkruger A, et al. 2004. Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat Cell Biol 6: 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Lacombe MJ, Mercure C, Dikeakos JD, Reudelhuber TL. 2005. Modulation of secretory granule-targeting efficiency by cis and trans compounding of sorting signals. J Biol Chem 280: 4803–4807.

    Article  CAS  PubMed  Google Scholar 

  • Loh YP, Kim T, Rodriguez YM, Cawley NX. 2004. Secretory granule biogenesis and neuropeptide sorting to the regulated secretory pathway in neuroendocrine cells. J Mol Neurosci 22: 63–72.

    Article  PubMed  Google Scholar 

  • Lou H, Kim SK, Zaitsev E, Snell CR, Lu B, et al. 2005. Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase E. Neuron 45: 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Lusson J, Benjannet S, Hamelin J, Savaria D, Chretien M, et al. 1997. The integrity of the RRGDL sequence of the proprotein convertase PC1 is critical for its zymogen and C-terminal processing and for its cellular trafficking. Biochem J 326(Pt 3): 737–744.

    CAS  PubMed  Google Scholar 

  • Matsuuchi L, Kelly RB. 1991. Constitutive and basal secretion from the endocrine cell line, AtT-20. J Cell Biol 112: 843–852.

    Article  CAS  PubMed  Google Scholar 

  • Mouchantaf R, Kumar U, Sulea T, Patel YC. 2001. A conserved α-helix at the amino terminus of prosomatostatin serves as a sorting signal for the regulated secretory pathway. J Biol Chem 276: 26308–26316.

    Article  CAS  PubMed  Google Scholar 

  • Naggert JK, Fricker LD, Varlamov O, Nishina PM, Rouille Y, et al. 1995. Hyperproinsulinemia in obese fat/fat mice associated with a carboxypeptidase E mutation that reduces enzyme activity. Nat Genet 10: 135–142.

    Article  CAS  PubMed  Google Scholar 

  • O'Connor DT, Burton D, Deftos LJ. 1983. Chromogranin A: Immunohistology reveals its universal occurrence in normal polypeptide hormone-producing endocrine glands. Life Sci 33: 1657–1663.

    Article  PubMed  Google Scholar 

  • Porter FD. 2000. RSH/Smith–Lemli–Opitz syndrome: a multiple congenital anomaly/mental retardation syndrome due to an inborn error of cholesterol biosynthesis. Mol Genet Metab 71: 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Rindler MJ. 1998. Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, coaggregates with granule content proteins at acidic pH. J Biol Chem 273: 31180–31185.

    Article  CAS  PubMed  Google Scholar 

  • Rovere C, Luis J, Lissitzky JC, Basak A, Marvaldi J, et al. 1999. The RGD motif and the C-terminal segment of proprotein convertase 1 are critical for its cellular trafficking but not for its intracellular binding to integrin α5β1. J Biol Chem 274: 12461–12467.

    Article  CAS  PubMed  Google Scholar 

  • Seidah NG, Hendy GN, Hamelin J, Paquin J, Lazure C, et al. 1987. Chromogranin A can act as a reversible processing enzyme inhibitor. Evidence from the inhibition of the IRCM-serine protease 1 cleavage of proenkephalin and ACTH at pairs of basic amino acids. FEBS Lett 211: 144–150.

    Article  CAS  PubMed  Google Scholar 

  • Shen FS, Loh YP. 1997. Intracellular misrouting and abnormal secretion of adrenocorticotropin and growth hormone in Cpe fat mice associated with a carboxypeptidase E mutation. Proc Natl Acad Sci USA 94: 5314–5319.

    Article  CAS  PubMed  Google Scholar 

  • Stettler H, Suri G, Spiess M. 2005. Proprotein convertase PC3 is not a transmembrane protein. Biochemistry 44: 5339–5345.

    Article  CAS  PubMed  Google Scholar 

  • Taupenot L, Harper KL, O'Connor DT. 2003. The chromogranin–secretogranin family. N Engl J Med 348: 1134–1149.

    Article  CAS  PubMed  Google Scholar 

  • Thomas L, Leduc R, Thorne BA, Smeekens SP, Steiner DF, et al. 1991. Kex2-like endoproteases, PC2 and PC3, accurately cleave a model prohormone in mammalian cells: Evidence for a common core of neuroendocrine processing enzymes. Proc Natl Acad Sci USA 88: 5297–5301.

    Article  CAS  PubMed  Google Scholar 

  • Tooze SA. 1991. Biogenesis of secretory granules. Implications arising from the immature secretory granule in the regulated pathway of secretion. FEBS Lett 285: 220–224.

    Article  CAS  PubMed  Google Scholar 

  • Tooze SA. 1998. Biogenesis of secretory granules in the trans-golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta 1404: 231-244.

    Google Scholar 

  • Tooze SA, Martens GJ, Huttner WB. 2001. Secretory granule biogenesis: Rafting to the SNARE. Trends Cell Biol 11: 116–122.

    Article  CAS  PubMed  Google Scholar 

  • Tooze SA, Stinchcombe JC. 1992. Biogenesis of secretory granules. Semin Cell Biol 3: 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Thiele C, Huttner WB. 2000. Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans-Golgi network. Traffic 1: 952–962.

    Article  CAS  PubMed  Google Scholar 

  • Wassif CA, Zhu P, Kratz L, Krakowiak PA, Battaile KP, et al. 2001. Biochemical, phenotypic, and neurophysiological characterization of a genetic mouse model of RSH/Smith–Lemli–Opitz syndrome. Hum Mol Genet 10: 555–564.

    Article  CAS  PubMed  Google Scholar 

  • Yoo SH. 1996. pH- and Ca2+-dependent aggregation property of secretory vesicle matrix proteins and the potential role of chromogranins A and B in secretory vesicle biogenesis. J Biol Chem 271: 1558–1565.

    CAS  PubMed  Google Scholar 

  • Yoo SH, Albanesi JP. 1990. Ca2+-induced conformational change and aggregation of chromogranin A. J Biol Chem 265: 14414–14421.

    CAS  PubMed  Google Scholar 

  • Yoo SH, Lewis MS. 1996. Effects of pH and Ca2+ on heterodimer and heterotetramer formation by chromogranin A and chromogranin B. J Biol Chem 271: 17041–17046.

    Article  CAS  PubMed  Google Scholar 

  • Zhang CF, Dhanvantari S, Lou H, Loh YP. 2003. Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of its transmembrane domain with lipid rafts. Biochem J 369: 453–460.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C-F, Snell CR, Loh YP. 1999. Identification of a novel prohormone sorting signal-binding site on carboxypeptidase E, a regulated secretory pathway sorting receptor. Mol Endocrinol 13: 527–536.

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Paquet L, Mains RE. 1995. Structural elements that direct specific processing of different mammalian subtilisin-like prohormone convertases. J Biol Chem 270: 21509–21516.

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Webb G, Zhu X, Steiner DF. 1999. Proteolytic processing in the secretory pathway. J Biol Chem 274: 20745–20748.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Kim, T., Gondré-Lewis, M., Arnaoutova, I., Cawley, N., Peng Loh, Y. (2007). Neurosecretory Protein Trafficking and Dense-Core Granule Biogenesis in Neuroendocrine Cells. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_3

Download citation

Publish with us

Policies and ethics