Skip to main content

Protease Activity in the Aging Brain

  • Reference work entry
  • First Online:
Book cover Handbook of Neurochemistry and Molecular Neurobiology
  • 781 Accesses

Abstract:

There is abundant evidence for the accumulation of damaged and misfolded proteins in the aging mammalian brain. This accumulation may result from an increasing burden of oxidative damage combined with a diminished capacity to degrade aberrant proteins through the lysosomal and proteasomal pathways (the two major systems for the regulated disassembly of proteins). A chronic proteolytic deficit in either or both systems is predicted to lead to a neurotoxic crisis that has been described as “garbage catastrophe.” The evidence for the decline in proteolytic capacity of the degradative systems and the hypothesized events leading up to their catastrophic failure are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Atg:

autophagy related gene

ATPase:

enzyme catalyzing cleavage of adenosine triphosphate

ax:

ataxia

CA:

Cornu Ammonis (Ammon's horn), a region of the hippocampus

CLN:

ceroid lipofuscinosis, neuronal

CNS:

central nervous system

DG:

dentate gyrus, a region of the hippocampus

ERAD:

endoplasmic reticulum associated degradation system

H:

Hilus, a region of the hippocampus

Hsc:

cytosolic heat shock protein

KFERQ:

motif targeting proteins to the lysosome (refers to single letter amino acid code)

NCL:

neuronal ceroid lipofuscinosis

PPT:

palmitoyl protein thioesterase

ROS:

reactive oxygen species

UCH:

ubiquitin carboxyterminal hydrolase

UPS:

ubiquitin proteasome system

Usp:

ubiquitin specific protease

19S:

cap structure of the proteasome (19S refers to centrifugal sedimentation value)

20S:

catalytic core of the proteasome (20S refers to centrifugal sedimentation value)

26S:

complete proteasome assembly with core rings and end caps (26S refers to centrifugal sedimentation value)

References

  • Anderson C, Crimmins S, Wilson JA, Korbel GA, Ploegh HL, et al. 2005. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J Neurochem 95: 724–731.

    Article  CAS  PubMed  Google Scholar 

  • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. 2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805–810.

    Article  CAS  PubMed  Google Scholar 

  • Blanpied TA, Scott DB, Ehlers MD. 2003. Age-related regulation of dendritic endocytosis associated with altered clathrin dynamics. Neurobiol Aging 24: 1095–1104.

    Article  CAS  PubMed  Google Scholar 

  • Bodner RA, Outeiro TF, Altmann S, Maxwell MM, Cho SH, et al. 2006. Pharmacological promotion of inclusion formation: A therapeutic approach for Huntington's and Parkinson's diseases. Proc Natl Acad Sci USA 103: 4246–4251.

    Article  CAS  PubMed  Google Scholar 

  • Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, et al. 2001. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 20: 5187–5196.

    Article  CAS  PubMed  Google Scholar 

  • Brunk UT, Terman A. 2002. The mitochondrial-lysosomal axis theory of aging: Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269: 1996–2002.

    Article  CAS  PubMed  Google Scholar 

  • Bulteau AL, Petropoulos I, Friguet B. 2000. Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol 35: 767–777.

    Article  CAS  PubMed  Google Scholar 

  • Bulteau AL, Szweda LI, Friguet B. 2002. Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys 397: 298–304.

    Article  CAS  PubMed  Google Scholar 

  • Carrard G, Dieu M, Raes M, Toussaint O, Friguet B. 2003. Impact of ageing on proteasome structure and function in human lymphocytes. Int J Biochem Cell Biol 35: 728–739.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Gonos ES. 2004. Proteasome inhibition induces a senescence-like phenotype in primary human fibroblasts cultures. Biogerontology 5: 55–61.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Gonos ES. 2005. Proteasome dysfunction in mammalian aging: Steps and factors involved. Exp Gerontol 40: 931–938.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES. 2000. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 35: 721–728.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, et al. 2005. Overexpression of proteasome β5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 280: 11840–11850.

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Dice JF. 2000a. Regulation of lamp2a levels in the lysosomal membrane. Traffic 1: 570–583.

    Article  CAS  Google Scholar 

  • Cuervo AM, Dice JF. 2000b. When lysosomes get old. Exp Gerontol 35: 119–131.

    Article  CAS  Google Scholar 

  • Cuervo AM, Dice JF, Knecht E. 1997. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 272: 5606–5615.

    Article  CAS  PubMed  Google Scholar 

  • d'Azzo A, Bongiovanni A, Nastasi T. 2005. E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 6: 429–441.

    Article  PubMed  Google Scholar 

  • Deussing J, Roth W, Saftig P, Peters C, Ploegh HL, et al. 1998. Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc Natl Acad Sci USA 95: 4516–4521.

    Article  CAS  PubMed  Google Scholar 

  • Dice JF. 1982. Altered degradation of proteins microinjected into senescent human fibroblasts. J Biol Chem 257: 14624–14627.

    CAS  PubMed  Google Scholar 

  • Dice JF, Chiang HL, Spencer EP, Backer JM. 1986. Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J Biol Chem 261: 6853–6859.

    CAS  PubMed  Google Scholar 

  • Dice JF, Terlecky SR, Chiang HL, Olson TS, Isenman LD, et al. 1990. A selective pathway for degradation of cytosolic proteins by lysosomes. Semin Cell Biol 1: 449–455.

    CAS  PubMed  Google Scholar 

  • Ding Q, Martin S, Dimayuga E, Bruce-Keller AJ, Keller JN. 2006. LMP2-knockout mice have reduced proteasome activities and increased levels of oxidatively damaged proteins. Antioxid Redox Signal 8: 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Dubiel W, Ferrell K, Dumdey R, Standera S, Prehn S, et al. 1995. Molecular cloning and expression of subunit 12: A non-MCP and non-ATPase subunit of the 26S protease. FEBS Lett 363: 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Ehlers MD. 2003. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6: 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, et al. 2002. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA 99: 7883–7888.

    Article  CAS  PubMed  Google Scholar 

  • Gray DA. 2001. Damage control—a possible nonproteolytic role for ubiquitin in limiting neurodegeneration. Neuropathol Appl Neurobiol 27: 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Gray DA, Woulfe J. 2005. Lipofuscin and aging: A matter of toxic waste. Sci Aging Knowledge Environ 2005: RE1.

    Article  PubMed  Google Scholar 

  • Gray DA, Tsirigotis M, Woulfe J. 2003. Ubiquitin, proteasomes, and the aging brain. Sci Aging Knowledge Environ 2003: RE6.

    PubMed  Google Scholar 

  • Gridley T, Gray DA, Orr-Weaver T, Soriano P, Barton DE, et al. 1990. Molecular analysis of the Mov 34 mutation: Transcript disrupted by proviral integration in mice is conserved in Drosophila. Development 109: 235–242.

    CAS  PubMed  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ. 1997. Degradation of oxidized proteins in mammalian cells. FASEB J 11: 526–534.

    CAS  PubMed  Google Scholar 

  • Gupta P, Soyombo AA, Atashband A, Wisniewski KE, Shelton JM, et al. 2001. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci USA 98: 13566–13571.

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: 885–889.

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Li P, Song L, Jeffrey PD, Chenova TA, et al. 2005. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J 24: 3747–3756.

    Article  CAS  PubMed  Google Scholar 

  • Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, et al. 2004. Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 421: 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Kloetzel PM, Ossendorp F. 2004. Proteasome and peptidase function in MHC class I-mediated antigen presentation. Curr Opin Immunol 16: 76–81.

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, et al. 2000. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 20: 6898–6906.

    CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Meusser B, Hirsch C, Jarosch E, Sommer T. 2005. ERAD: The long road to destruction. Nat Cell Biol 7: 766–772.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Roth W, Wong P, Nelson A, Farr A, et al. 1998. Cathepsin L: Critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280: 450–453.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H. 2003. Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2: 367–381.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Amano T, Sastradipura DF, Yoshimine Y, Tsukuba T, et al. 1997. Increased expression of cathepsins E and D in neurons of the aged rat brain and their colocalization with lipofuscin and carboxy-terminal fragments of Alzheimer amyloid precursor protein. J Neurochem 68: 739–749.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Tominaga K, Amano T, Hirotsu I, Inoue T, et al. 1994. Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues. Exp Neurol 126: 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Passmore LA, Barford D. 2004. Getting into position: The catalytic mechanisms of protein ubiquitylation. Biochem J 379: 513–525.

    Article  CAS  PubMed  Google Scholar 

  • Patrick GN. 2006. Synapse formation and plasticity: Recent insights from the perspective of the ubiquitin proteasome system. Curr Opin Neurobiol 16: 90–94.

    Article  CAS  PubMed  Google Scholar 

  • Patrick GN, Bingol B, Weld HA, Schuman EM. 2003. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr Biol 13: 2073–2081.

    Article  CAS  PubMed  Google Scholar 

  • Petropoulos I, Conconi M, Wang X, Hoenel B, Bregegere F, et al. 2000. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 55: B220–B227.

    CAS  PubMed  Google Scholar 

  • Ponnappan U, Zhong M, Trebilcock GU. 1999. Decreased proteasome-mediated degradation in T cells from the elderly: A role in immune senescence. Cell Immunol 192: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Roth W, Deussing J, Botchkarev VA, Pauly-Evers M, Saftig P, et al. 2000. Cathepsin L deficiency as molecular defect of furless: Hyperproliferation of keratinocytes and perturbation of hair follicle cycling. FASEB J 14: 2075–2086.

    Article  CAS  PubMed  Google Scholar 

  • Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, et al. 1999. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23: 47–51.

    CAS  PubMed  Google Scholar 

  • Sakurai M, Ayukawa K, Setsuie R, Nishikawa K, Hara Y, et al. 2006. Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation. J Cell Sci 119: 162–171.

    Article  CAS  PubMed  Google Scholar 

  • Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, et al. 2000. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 5: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, et al. 2000. Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 14: 1490–1498.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PG, Dragicevic NB, Deng JH, Bai Y, Dimayuga E, et al. 2004. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 279: 20699–20707.

    Article  CAS  PubMed  Google Scholar 

  • Terman A. 1995. The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes. Gerontology 41 Suppl 2: 319–326.

    Article  PubMed  Google Scholar 

  • Terman A. 2001. Garbage catastrophe theory of aging: Imperfect removal of oxidative damage? Redox Rep 6: 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Brunk UT. 1998a. Ceroid/lipofuscin formation in cultured human fibroblasts: The role of oxidative stress and lysosomal proteolysis. Mech Ageing Dev 104: 277–291.

    Article  CAS  Google Scholar 

  • Terman A, Brunk UT. 1998b. Lipofuscin: Mechanisms of formation and increase with age. APMIS 106: 265–276.

    Article  CAS  Google Scholar 

  • Terman A, Brunk UT. 2004. Lipofuscin. Int J Biochem Cell Biol 36: 1400–1404.

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Sandberg S. 2002. Proteasome inhibition enhances lipofuscin formation. Ann N Y Acad Sci 973: 309–312.

    Article  CAS  PubMed  Google Scholar 

  • Tofaris GK, Layfield R, Spillantini MG. 2001. α-Synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett 509: 22–26.

    Article  CAS  PubMed  Google Scholar 

  • Torres C, Lewis L, Cristofalo VJ. 2006. Proteasome inhibitors shorten replicative life span and induce a senescent-like phenotype of human fibroblasts. J Cell Physiol 207: 845–853.

    Article  CAS  PubMed  Google Scholar 

  • Tsurumi C, De Martino GN, Slaughter CA, Shimbara N, Tanaka K. 1995. cDNA cloning of p40, a regulatory subunit of the human 26S proteasome, and a homolog of the Mov-34 gene product. Biochem Biophys Res Commun 210: 600–608.

    Article  CAS  PubMed  Google Scholar 

  • Van Kaer L, Ashton-Rickardt PG, Eichelberger M, Gaczynska M, Nagashima K, et al. 1994. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1: 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Viteri G, Carrard G, Birlouez-Aragon I, Silva E, Friguet B. 2004. Age-dependent protein modifications and declining proteasome activity in the human lens. Arch Biochem Biophys 427: 197–203.

    Article  CAS  PubMed  Google Scholar 

  • von Zglinicki T, Nilsson E, Docke WD, Brunk UT. 1995. Lipofuscin accumulation and ageing of fibroblasts. Gerontology 41 Suppl 2: 95–108.

    Article  PubMed  Google Scholar 

  • Wilson SM, Bhattacharyya B, Rachel RA, Coppola V, Tessarollo L, et al. 2002. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet 32: 420–425.

    Article  CAS  PubMed  Google Scholar 

  • Wolf DH, Hilt W. 2004. The proteasome: A proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695: 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Yi JJ, Ehlers MD. 2005. Ubiquitin and protein turnover in synapse function. Neuron 47: 629–632.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. John Woulfe for the image appearing in Figure 23-1 , and to Mei Zhang for the immunohistochemical staining in Figure 23-2 . Mechanisms proposed in the chapter have been refined through serial discussions with Maria Tsirigotis, to whom the author is indebted. The author's work is supported by the Institute of Aging, Canadian Institutes of Health Research.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Gray, D.A. (2007). Protease Activity in the Aging Brain. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_23

Download citation

Publish with us

Policies and ethics