Skip to main content

MMPs and Other Matrix-Degrading Metalloproteinases in Neurological Disease

  • Reference work entry
  • First Online:
Book cover Handbook of Neurochemistry and Molecular Neurobiology
  • 776 Accesses

Abstract:

The metzincin superfamily of metalloproteinases includes the most well-studied matrix metalloproteinases (MMPs), the ADAMs (a disintegrin and metalloproteinase), and the ADAMTSs (ADAM with thrombospondin repeats) families of extracellular matrix (ECM)-degrading enzymes. These proteases are mostly secreted with important exceptions for the transmembrane sheddases and can degrade all protein components of the ECM. In addition to ECM proteins, secreted and cell-surface proteins including growth factors, cytokines, and chemokines may be cleaved by the MMPs. These proteases alter the composition and structural organization of the ECM; and importantly, cleavage affects intracellular signaling induced by binding of matrix molecules to cell-surface receptors. A body of data has been generated on the expression of these proteases in neurological disease, which is summarized here. In addition, the role of individual MMPs in particular animal models of disease has been investigated using genetically targeted mutant mice. In general, these results have suggested a detrimental role for the MMPs that relates to the induction of their expression in response to injury or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAMs:

a distintegrin and metalloproteinase

ADAMTS:

ADAM with thrombospondin repeats

ECM:

extracellular matrix

GPI:

glycosylphosphatidylinositol

MT-MMPs:

membrane-type MMPs

TIMPs:

tissue inhibitors of metalloproteinases

References

  • Abraham M, Shapiro S, Karni A, Weiner HL, et al. 2005. Gelatinases (MMP-2 and MMP-9) are preferentially expressed by Th1 vs. Th2 cells. J Neuroimmunol 163: 157–164.

    CAS  PubMed  Google Scholar 

  • Allan JA, Docherty AJ, Barker PJ, Huskisson NS, Reynolds JJ, et al. 1995. Binding of gelatinases A and B to type I collagen and other matrix components. Biochem J 309: 299–306.

    CAS  PubMed  Google Scholar 

  • Allinson TM, Parkin ET, Turner AJ, Hooper NM. 2003. ADAMs family members as amyloid precursor protein α-secretases. J Neurosci Res 74: 342–352.

    CAS  PubMed  Google Scholar 

  • Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, et al. 2000. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 473: 275–279.

    CAS  PubMed  Google Scholar 

  • Annabi B, Thibeault S, Moumdjian R, Beliveau R. 2004. Hyaluronan cell surface binding is induced by type I collagen and regulated by caveolae in glioma cells. J Biol Chem 21888–21896.

    Google Scholar 

  • Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, et al. 1997. Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 23: 406–415.

    CAS  PubMed  Google Scholar 

  • Apodaca G, Rutka JT, Bouhana K, Berens ME, Giblin JR, et al. 1990. Expression of metalloproteinases and metalloproteinase inhibitors by fetal astrocytes and glioma cells. Cancer Res 50: 2322–2329.

    CAS  PubMed  Google Scholar 

  • Apte SS. 2004. A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type-1 motifs: The ADAMTS family. Int J Biochem Cell Biol 36: 981–985.

    CAS  PubMed  Google Scholar 

  • Arai K, Lee SR, Lo EH. 2003. Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase-9 regulation in rat cortical astrocytes. Glia 43: 254–264.

    PubMed  Google Scholar 

  • Araki S, Masuda S, Maeda H, Ying MJ, Hayashi H. 2002. Involvement of specific integrins in apoptosis induced by vascular apoptosis-inducing protein 1. Toxicon 40: 535–542.

    CAS  PubMed  Google Scholar 

  • Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, et al. 2000. Role for matrix metalloproteinase-9 after focal cerebral ischemia: Effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20: 1681–1689.

    CAS  PubMed  Google Scholar 

  • Asahi M, Wang X, Mori T, Sumii T, Jung JC, et al. 2001. Effects of matrix metalloproteinase-9 gene knockout on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21: 7724–7732.

    CAS  PubMed  Google Scholar 

  • Asai M, Hattori C, Szabo B, Sasagawa N, Maruyama K, et al. 2003. Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase. Biochem Biophys Res Commun 301: 231–215.

    CAS  PubMed  Google Scholar 

  • Aspberg A, Miura R, Bourdoulous S, Shimonaka M, Heinegard D, et al. 1997. The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein–protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci USA 94: 10116–10121.

    CAS  PubMed  Google Scholar 

  • Backstrom JR, Lim GP, Cullen MJ, Tokes ZA. 1996. Matrix metalloproteinase-9 is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-β peptide (1–40). J Neurosci 16: 7910–7919.

    CAS  PubMed  Google Scholar 

  • Backstrom JR, Miller CA, Tokes ZA. 1992. Characterization of neutral proteinases from Alzheimer-affected and control brain specimens: Identification of calcium-dependent metalloproteinases from the hippocampus. J Neurochem 58: 983–992.

    CAS  PubMed  Google Scholar 

  • Belien AT, Paganetti PA, Schwab ME. 1999. Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J Cell Biol 144: 373–384.

    CAS  PubMed  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, et al. 1999. Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 68: 729–777.

    CAS  PubMed  Google Scholar 

  • Binder DK, Berger MS. 2002. Proteases and the biology of glioma invasion. J Neurooncol 56: 149–158.

    PubMed  Google Scholar 

  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, et al. 1997. A metalloproteinase disintegrin that releases tumour necrosis factor-α from cells. Nature 385: 729–733.

    CAS  PubMed  Google Scholar 

  • Blobel CP. 2005. ADAMS: Key components in EGFR signaling and development. Nat Rev Mol Cell Biol 6: 32–43.

    CAS  PubMed  Google Scholar 

  • Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, et al. 2005. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–313.

    CAS  PubMed  Google Scholar 

  • Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW. 2002. Targeting leukocyte MMPs and transmigration: Minocycline as a potential therapy for multiple sclerosis. Brain 125: 1297–1308.

    PubMed  Google Scholar 

  • Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, et al. 1997. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 17: 439–444.

    CAS  PubMed  Google Scholar 

  • Chang DI, Hosomi N, Lucero J, Heo JH, Abumiya T, et al. 2003. Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia. J Cereb Blood Flow Metab 23: 1408–1419.

    CAS  PubMed  Google Scholar 

  • Choe G, Park JK, Jouben-Steele L, Kremen TJ, Liau LM, et al. 2002. Active matrix metalloproteinase-9 expression is associated with primary glioblastoma subtype. Clin Cancer Res 8: 2894–2901.

    CAS  PubMed  Google Scholar 

  • Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR. 1997. Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238: 53–56.

    CAS  PubMed  Google Scholar 

  • Colige A, Sieron AL, Nusgens BV, Prockop DJ, Lapiere CM. 1997. cDNA cloning and expression of bovine procollagen I N-proteinase: A new member of the zinc-metalloproteinases with binding sites for cells and other matrix components. Proc Natl Acad Sci USA 94: 2374–2379.

    CAS  PubMed  Google Scholar 

  • Collins-Racie LA, Flannery CR, Zeng W, Corcoran C, Annis-Freeman B, et al. 2004. ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol 23: 219–230.

    CAS  PubMed  Google Scholar 

  • Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, et al. 1998. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95: 3117–3121.

    CAS  PubMed  Google Scholar 

  • Conant K, McArthur JC, Griffin DE, Sjulson L, Wahl LM, et al. 1999. Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Ann Neurol 46: 391–398.

    CAS  PubMed  Google Scholar 

  • Conant K, St Hillaire C, Nagase H, Visse R, Gary D, et al. 2004. Matrix metalloproteinase 1 interacts with neuronal integrins and stimulates dephosphorylation of Akt. J Biol Chem 279: 8056–8062.

    CAS  PubMed  Google Scholar 

  • Coppock HA, White A, Aplin JD, Westwood M. 2004. Matrix metalloprotease-3 and -9 proteolyze insulin-like growth factor-binding protein-1. Biol Reprod 71: 438–443.

    CAS  PubMed  Google Scholar 

  • Cossins JA, Clements JM, Ford J, Miller KM, Pigott R, et al. 1997. Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions. Acta Neuropathol (Berl) 94: 590–598.

    CAS  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM. 2002. Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 295: 2387–2392.

    CAS  PubMed  Google Scholar 

  • Covington MD, Bayless KJ, Burghardt RC, Davis GE, Parrish AR. 2005. Ischemia-induced cleavage of cadherins in NRK cells: Evidence for a role of metalloproteinases. Am J Physiol Renal Physiol 289: F280–F288.

    CAS  PubMed  Google Scholar 

  • Cross AK, Woodroofe MN. 1999. Chemokine modulation of matrix metalloproteinase and TIMP production in adult rat brain microglia and a human microglial cell line in vitro. Glia 28: 183–189.

    CAS  PubMed  Google Scholar 

  • Cunningham LA, Wetzel M, Rosenberg GA. 2005. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50: 329–339.

    PubMed  Google Scholar 

  • Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, et al. 1996. The expression of tissue-type plasminogen activator, matrix metalloproteases, and endogenous inhibitors in the central nervous system in multiple sclerosis: Comparison of stages in lesion evolution. J Neuropathol Exp Neurol 55: 1194–1204.

    CAS  PubMed  Google Scholar 

  • Deb S, Wenjun Zhang J, Gottschall PE. 2003. β-Amyloid induces the production of active, matrix-degrading proteases in cultured rat astrocytes. Brain Res 970: 205–213.

    PubMed  Google Scholar 

  • Dery O, Corvera CU, Steinhoff M, Bunnett NW. 1998. Proteinase-activated receptors: Novel mechanisms of signaling by serine proteases. Am J Physiol 274: C1429–C1452.

    CAS  PubMed  Google Scholar 

  • Dewil M, Schurmans C, Starckx S, Opdenakker G, Van Den Bosch L, et al. 2005. Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis. Neuroreport 16: 321–324.

    CAS  PubMed  Google Scholar 

  • Dickson DW, Lee SC, Brosnan CF, Sinicropi S, Vlassara H, et al. 1996. Neuroimmunology of aging and Alzheimer's disease with emphasis on cytokines. Cytokines and the CNS. Ransahoff RM, Benveniste EN, editors. Boca Raton: CRC Press; pp. 239–268.

    Google Scholar 

  • Dityatev A, Schachner M. 2003. Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4: 456–468.

    CAS  PubMed  Google Scholar 

  • Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, et al. 2003. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278: 40764–40770.

    CAS  PubMed  Google Scholar 

  • Epstein LG, Gendelman HE. 1993. Human immunodeficiency virus type 1 infection of the nervous system: Pathogenetic mechanisms. Ann Neurol 33: 429–436.

    CAS  PubMed  Google Scholar 

  • Ethell DW, Kinloch R, Green DR. 2002. Metalloproteinase shedding of Fas ligand regulates β-amyloid neurotoxicity. Curr Biol 12: 1595–1600.

    CAS  PubMed  Google Scholar 

  • Ethell IM, Irie F, Kalo MS, Couchman JR, Pasquale EB, et al. 2001. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31: 1001–1013.

    CAS  PubMed  Google Scholar 

  • Ethell IM, Yamaguchi Y. 1999. Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J Cell Biol 144: 575–586.

    CAS  PubMed  Google Scholar 

  • Evert BO, Vogt IR, Kindermann C, Ozimek L, de Vos RA, et al. 2001. Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 21: 5389–5396.

    CAS  PubMed  Google Scholar 

  • Fernandes RJ, Hirohata S, Engle JM, Colige A, Cohn DH, et al. 2001. Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem 276: 31502–31509.

    CAS  PubMed  Google Scholar 

  • Festoff BW, D'Andrea MR, Citron BA, Salcedo RM, Smirnova IV, et al. 2000. Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin. Mol Med 6: 410–429.

    CAS  PubMed  Google Scholar 

  • Flannery CR, Zeng W, Corcoran C, Collins-Racie LA, Chockalingam PS, et al. 2003. Autocatalytic cleavage of ADAMTS-4 (Aggrecanase-1) reveals multiple glycosaminoglycan-binding sites. J Biol Chem 277: 42775–42780.

    Google Scholar 

  • Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, et al. 1999. Gelatinase-A (MMP-2), gelatinase-B (MMP-9), and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Canc 79: 1828–1835.

    CAS  Google Scholar 

  • Fowlkes JL, Serra DM. 1996. Characterization of glycosaminoglycan-binding domains present in insulin-like growth factor-binding protein-3. J Biol Chem 271: 14676–14679.

    CAS  PubMed  Google Scholar 

  • Fuentes ME, Durham SK, Swerdel MR, Lewin AC, Barton DS, et al. 1995. Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol 155: 5769–5776.

    CAS  PubMed  Google Scholar 

  • Fujikawa K, Suzuki H, McMullen B, Chung D. 2001. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 98: 1662–1666.

    CAS  PubMed  Google Scholar 

  • Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, et al. 1999. Early appearance of activated matrix metalloproteinase-9 and blood–brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 842: 92–100.

    CAS  PubMed  Google Scholar 

  • Galko MJ, Tesseir-Lavigne M. 2000. Function of an axonal chemoattractant modulated by metalloprotease activity. Science 289: 1365–1367.

    CAS  PubMed  Google Scholar 

  • Gallay P. 2005. Role of blood–brain barrier proteoglycans in HIV trafficking in the CNS. VIth Conference on Cerebral Vascular Biology, Muenster, Germany, June 25–29, 2005.

    Google Scholar 

  • Gao G, Plaas A, Thompson VP, Jin S, Zuo F, et al. 2004. ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type-4 metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. J Biol Chem 279: 10042–10051.

    CAS  PubMed  Google Scholar 

  • Gao G, Westling J, Thompson VP, Howell TD, Gottschall PE, et al. 2002. Activation of the proteolytic activity of ADAMTS4 (aggrecanase-1) by C-terminal truncation. J Biol Chem 277: 11034–11041.

    CAS  PubMed  Google Scholar 

  • Garcia-Touchard A, Henry TD, Sangiorgi G, Spagnoli LG, Mauriello A, et al. 2005. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 25: 1119–1127.

    CAS  PubMed  Google Scholar 

  • Gary SC, Kelly GM, Hockfield S. 1998. BEHAB/brevican: A brain-specific lectican implicated in gliomas and glial cell motility. Curr Opin Neurobiol 8: 576–581.

    CAS  PubMed  Google Scholar 

  • Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, et al. 1999. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood–brain barrier dysfunction. J Cereb Blood Flow Metab 19: 1020–1028.

    CAS  PubMed  Google Scholar 

  • Ghorpade A, Persidskaia R, Suryadevara R, Che M, Liu XJ, et al. 2001. Mononuclear phagocyte differentiation, activation, and viral infection regulate matrix metalloproteinase expression: Implications for human immunodeficiency virus type 1-associated dementia. J Virol 75: 6572–6583.

    CAS  PubMed  Google Scholar 

  • Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, et al. 2005. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory following transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289: H558–H568.

    CAS  PubMed  Google Scholar 

  • Gijbels K, Galardy RE, Steinman L. 1994. Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J Clin Invest 94: 2177–2182.

    CAS  PubMed  Google Scholar 

  • Gijbels K, Masure S, Carton H, Opdenakker G. 1992. Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol 41: 29–34.

    CAS  PubMed  Google Scholar 

  • Glass JD, Fedor H, Wesselingh SL, McArthur JC. 1995. Immunocytochemical quantitation of human immunodeficiency virus in the brain: Correlations with dementia. Ann Neurol 38: 755–762.

    CAS  PubMed  Google Scholar 

  • Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, et al. 2005. Deletion of ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434: 644–648.

    CAS  PubMed  Google Scholar 

  • Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, et al. 2002. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci USA 99: 13795–13800.

    CAS  PubMed  Google Scholar 

  • Gottschall PE, Deb S. 1996. Regulation of matrix metalloproteinase expression in astrocytes, microglia, and neurons. Neuroimmunomodulation 3: 69–75.

    CAS  PubMed  Google Scholar 

  • Gottschall PE, Yu X. 1995. Cytokines regulate gelatinase A and B (matrix metalloproteinase-2 and -9) activity in cultured rat astrocytes. J Neurochem 64: 1513–1520.

    CAS  PubMed  Google Scholar 

  • Gottschall PE, Yu X, Bing B. 1995. Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J Neurosci Res 42: 335–342.

    CAS  PubMed  Google Scholar 

  • Greenwood J, Walters CE, Pryce G, Kanuga N, Beraud E, et al. 2003. Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J 17: 905–907.

    CAS  PubMed  Google Scholar 

  • Griffin WS, Mrak RE. 2002. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer's disease. J Leukoc Biol 72: 233–238.

    CAS  PubMed  Google Scholar 

  • Grilli M, Goffi F, Memo M, Spano P. 1996. Interleukin-1β and glutamate activate the NF-κB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J Biol Chem 271: 15002–15007.

    CAS  PubMed  Google Scholar 

  • Gu Z, Brown CJ, Fridman S, Mobashery RS, Strongin AY, et al. 2005. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25: 6401–6408.

    CAS  PubMed  Google Scholar 

  • Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, et al. 2002. S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death. Science 297: 1186–1190.

    CAS  PubMed  Google Scholar 

  • Hamel MG, Mayer J, Gottschall PE. 2005. Altered production and proteolytic processing by transforming growth factor β in cultured astrocytes. J Neurochem 93: 1533–1541.

    CAS  PubMed  Google Scholar 

  • Handsley MM, Edwards DR. 2005. Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115: 849–860.

    CAS  PubMed  Google Scholar 

  • Hanisch UK. 2002. Microglia as a source and target of cytokines. Glia 40: 140–155.

    PubMed  Google Scholar 

  • Hattori M, Osterfield M, Flanagan JG. 2000. Regulated cleavage of a contact-mediated axon repellent. Science 289: 1360–1364.

    CAS  PubMed  Google Scholar 

  • Herkenham M, Lee HY, Baker RA. 1998. Temporal and spatial patterns of c-fos mRNA induced by intravenous interleukin-1: A cascade of nonneuronal cellular activation at the blood–brain barrier. J Comp Neurol 400: 175–196.

    CAS  PubMed  Google Scholar 

  • Hockfield S, Kalb RG, Zaremba S, Fryer H. 1990. Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb Symp Quant Biol 55: 505–514.

    CAS  PubMed  Google Scholar 

  • Hodgson JA. 1995. Remodeling MMPIs. Biotechnology 30: 554–557.

    Google Scholar 

  • Hollenberg MD. 2003. Proteinase-mediated signaling: Proteinase-activated receptors (PARs) and much more. Life Sci 74: 237–246.

    CAS  PubMed  Google Scholar 

  • Holmbeck K, Bianco P, Yamada S, Birkedal-Hansen H. 2004. MT1-MMP: A tethered collagenase. J Cell Physiol 200: 11–19.

    CAS  PubMed  Google Scholar 

  • Huovila AP, Turner AJ, Pelto-Huikko M, Karkkainen I, Ortiz RM. 2005. Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30: 413–422.

    CAS  PubMed  Google Scholar 

  • Iruela-Arispe ML, Luque A, Lee N. 2004. Thrombospondin modules and angiogenesis. Int J Bioche Cell Biol 36: 1070–1078.

    CAS  Google Scholar 

  • Iseki E, Marui W, Akiyama H, Ueda K, Kosaka K. 2000. Degeneration process of Lewy bodies in the brains of patients with dementia with Lewy bodies using α-synuclein immunohistochemistry. Neurosci Lett 286: 69–73.

    CAS  PubMed  Google Scholar 

  • Iwata N, Mizukami H, Shirotani K, Takaki Y, Muramatsu S, et al. 2004. Presynaptic localization of neprilysin contributes to efficient clearance of amyloid peptide in mouse brain. J Neurosci 24: 991–998.

    CAS  PubMed  Google Scholar 

  • Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, et al. 1996. Intramuscular interferonβ-1a for disease progression in relapsing multiple sclerosis. The multiple sclerosis collaborative research group (MSCRG). Ann Neurol 39: 285–294.

    CAS  PubMed  Google Scholar 

  • Jaworski DM, Fager N. 2000. Regulation of tissue inhibitor of metalloproteinase-3 (TIMP-3) mRNA expression during rat CNS development. J Neurosci Res 61: 396–408.

    CAS  PubMed  Google Scholar 

  • Jaworski DM, Kelly GM, Piepmeier JM, Hockfield S. 1996. BEHAB (brain-enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines. Cancer Res 56: 2293–2298.

    CAS  PubMed  Google Scholar 

  • Justicia C, Panes J, Sole S, Cervera A, Deulofeu R, et al. 2003. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab 23: 1430–1440.

    CAS  PubMed  Google Scholar 

  • Kaspar BK, Frost LM, Christian L, Umapathi P, Gage FH. 2005. Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol 57: 649–655.

    CAS  PubMed  Google Scholar 

  • Kaspar DL. 2005. Chapter 359: Multiple sclerosis and other demyelinating diseases. Harrison's principles of internal medicine, 16th Edition. Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, et al. , editors. New York: McGraw-Hill.

    Google Scholar 

  • Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE. 1998. β-Chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44: 831–835.

    CAS  PubMed  Google Scholar 

  • Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithaurer BW, et al. 1987. Imaging-based stereotaxic serial biopsies in untreated, intracranial glial neoplasms. J Neurosurg 66: 865–874.

    CAS  PubMed  Google Scholar 

  • Kieseier BC, Pischel H, Neuen-Jacob E, Tourtellotte WW, Hartung HP. 2003. ADAM-10 and ADAM-17 in the inflamed human CNS. Glia 42: 398–405.

    PubMed  Google Scholar 

  • Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, et al. 2005. Matrix metalloproteinase-3: A novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25: 3701–3711.

    CAS  PubMed  Google Scholar 

  • Kleene R, Schachner M. 2004. Glycans and neural cell interactions. Nat Rev Neurosci 5: 195–208.

    CAS  PubMed  Google Scholar 

  • Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, et al. 2005. Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 25: 460–467.

    CAS  PubMed  Google Scholar 

  • Kouwenhoven M, Ozenci V, Tjernlund A, Pashenkov M, Homman M, et al. 2002. Monocyte-derived dendritic cells express and secrete matrix-degrading metalloproteinases and their inhibitors and are imbalanced in multiple sclerosis. J Neuroimmunol 126: 161–171.

    CAS  PubMed  Google Scholar 

  • Kriz J, Nguyen MD, Julien JP. 2002. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 10: 268–278.

    CAS  PubMed  Google Scholar 

  • Kuno K, Kanada N, Nakashima E, Fujiki F, Ichimura F, et al. 1997. Molecular cloning of a gene encoding a new type of metalloprotease–disintegrin family protein with thrombospondin motifs as an inflammation-associated gene. J Biol Chem 272: 556–562.

    CAS  PubMed  Google Scholar 

  • Larsen PH, Yong VW. 2004. The expression of matrix metalloproteinase-12 by oligodendrocytes regulates their maturation and morphological differentiation. J Neurosci 24: 7597–7603.

    CAS  PubMed  Google Scholar 

  • Leake A, Morris CM, Whateley J. 2000. Brain matrix metalloproteinase-1 levels are elevated in Alzheimer's disease. Neurosci Lett 291: 201–203.

    CAS  PubMed  Google Scholar 

  • Lee MA, Palace J, Stabler G, Ford J, Gearing A, et al. 1999. Serum gelatinase B, TIMP-1, and TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study. (see comment). Brain 122: 191–197.

    PubMed  Google Scholar 

  • Leinninger GM, Feldman EL. 2005. Insulin-like growth factors in the treatment of neurological disease. Endocr Dev 9: 135–159.

    CAS  PubMed  Google Scholar 

  • Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, et al. 2003. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40: 1087–1093.

    CAS  PubMed  Google Scholar 

  • Leppert D, Ford J, Stabler G, Grygar C, Lienert C, et al. 1998. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain 121: 2327–2334.

    PubMed  Google Scholar 

  • Leppert D, Waubant E, Burk MR, Oksenberg JR, Hauser SL. 1996. Interferon β-1b inhibits gelatinase secretion and in vitro migration of human T cells: A possible mechanism for treatment efficacy in multiple sclerosis. Ann Neurol 40: 846–852.

    CAS  PubMed  Google Scholar 

  • Levy GG, Nochols WC, Lian EC, Foround T, McClintick JN, et al. 2001. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413: 488–494.

    CAS  PubMed  Google Scholar 

  • Lichtinghagen R, Seifert T, Kracke A, Marckmann S, Wurster U, et al. 1999. Expression of matrix metalloproteinase-9 and its inhibitors in mononuclear blood cells of patients with multiple sclerosis. J Neuroimmunol 99: 19–26.

    CAS  PubMed  Google Scholar 

  • Lim GP, Backstrom JR, Cullen MJ, Miller CA, Atkinson RD, et al. 1996. Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J Neurochem 67: 251–259.

    CAS  PubMed  Google Scholar 

  • Liu LT, Peng JP, Chang HC, Hung WC. 2003. RECK is a target of Epstein–Barr virus latent membrane protein 1. Oncogene 22: 8263–8270.

    CAS  PubMed  Google Scholar 

  • Liuzzi GM, Latronico T, Fasano A, Carlone G, Riccio P. 2004. Interferon-β inhibits the expression of metalloproteinases in rat glial cell cultures: Implications for multiple sclerosis pathogenesis and treatment. Mult Scler 10: 290–297.

    CAS  PubMed  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA. 2003. Mechanisms, challenges, and opportunities in stroke. Nat Rev Neurosci 4: 399–415.

    CAS  PubMed  Google Scholar 

  • Lorenzl S, Calingasan N, Yang L, Albers DS, Shugama S, et al. 2004. Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neuromolecular Med 5: 119–132.

    CAS  PubMed  Google Scholar 

  • Loy M, Burggraf D, Martens KH, Liebetrau M, Wunderlich N, et al. 2002. A gelatin in situ overlay technique localizes brain matrix metalloproteinase activity in experimental focal cerebral ischemia. J Neurosci Methods 116: 125–133.

    CAS  PubMed  Google Scholar 

  • Ludwig A, Hundhausen C, Lambert MH, Broadway N, Andrews RC, et al. 2005. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 8: 161–171.

    CAS  PubMed  Google Scholar 

  • Luque A, Carpizo DR, Iruela-Arispe ML. 2003. ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem 278: 23656–23665.

    CAS  PubMed  Google Scholar 

  • Maeda A, Sobel RA. 1996. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55: 300–309.

    CAS  PubMed  Google Scholar 

  • Malinin NL, Wright S, Seubert P, Schenk D, Griswold-Prenner I. 2005. Amyloid-β neurotoxicity is mediated by FISH adapter protein and ADAM12 metalloprotease activity. Proc Natl Acad Sci USA 102: 3058–3063.

    CAS  PubMed  Google Scholar 

  • Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, et al. 1997. Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42: 963–972.

    CAS  PubMed  Google Scholar 

  • Matthews RT, Gary SC, Zerillo C, Pratta M, Solomon K, et al. 2000. Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. J Biol Chem 275: 22695–22703.

    CAS  PubMed  Google Scholar 

  • McCawley LJ, Matrisian LM. 2001. Matrix metalloproteinases: They're not just for matrix anymore! Curr Opin Cell Biol 13: 534–540.

    CAS  PubMed  Google Scholar 

  • McGeer EG, McGeer PL. 2003. Inflammatory processes in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 27: 741–749.

    CAS  PubMed  Google Scholar 

  • McQuibban GA, Gong J-H, Tam EM, McCulloch, CAG, Clark-Lewis I, et al. 2000. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289: 1202–1205.

    CAS  PubMed  Google Scholar 

  • Moir RD, Tanzi RE. 2005. LRP-mediated clearance of Aβ is inhibited by KPI-containing isoforms of APP. Curr Alzheimer Res 2: 269–273.

    CAS  PubMed  Google Scholar 

  • Mumm JS, Kopan R. 2000. Notch signaling: From the outside in. Dev Biol 228: 151–165.

    CAS  PubMed  Google Scholar 

  • Murphy G, Knauper V, Lee MH, Amour A, Worley JR, et al. 2003. Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: The specificity is in the detail. Biochem Soc Symp 70: 65–80.

    CAS  PubMed  Google Scholar 

  • Nag S. 2003. Morphology and molecular properties of cellular components of normal cerebral vessels. The Blood–Brain Barrier: Biology and research protocols. Nag S, editor. Totowa, NJ: Humana Press; pp. 3–36.

    Google Scholar 

  • Nagano I, Ilieva H, Shiote M, Murakami T, Yokoyama M, et al. 2005. Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of zmyotrophic lateral sclerosis. J Neurol Sci 235: 61–68.

    CAS  PubMed  Google Scholar 

  • Nagase H. 1997. Activation mechanisms of matrix metalloproteinases. Biol Chem 378: 151–160.

    CAS  PubMed  Google Scholar 

  • Nagase H, Woessner JF. 1999. Matrix metalloproteinases. J Biol Chem 274: 21491–21494.

    CAS  PubMed  Google Scholar 

  • Nakada M, Nakamura H, Ikeda E, Fujimoto N, Yamashita J, et al. 1999. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol 154: 417–428.

    CAS  PubMed  Google Scholar 

  • Nakamura H, Fujii Y, Inoki I, Sugimoto K, Tanzawa K, et al. 2000. Brevican is degraded by matrix metalloproteinase and aggrecanase-1 (ADAMTS4) at different sites. J Biol Chem 275: 38885–38890.

    CAS  PubMed  Google Scholar 

  • Nelissen I, Martens E, PE, Van den Steen Proost P, Ronsse I, et al. 2003. Gelatinase B/matrix metalloproteinase-9 cleaves interferon-β and is a target for immunotherapy. Brain 126: 1371–1381.

    PubMed  Google Scholar 

  • Newby AC. 2005. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85: 1–31.

    CAS  PubMed  Google Scholar 

  • Nutt CL, Matthews RT, Hockfield S. 2001. Glial tumor invasion: A role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist 7: 113–122.

    CAS  PubMed  Google Scholar 

  • Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, et al. 2001. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107: 789–800.

    CAS  PubMed  Google Scholar 

  • Ohgaki H. 2005. Genetic pathways to glioblastomas. Neuropathol Appl Neurobiol 25: 1–7.

    Google Scholar 

  • Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, et al. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276: 10229–10233.

    CAS  PubMed  Google Scholar 

  • Opdenakker G, Nelissen I, Van Damme J. 2003. Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neurol 2: 747–756.

    CAS  PubMed  Google Scholar 

  • Opdenakker G, Van Damme J. 1994. Cytokine-regulated proteases in autoimmune diseases. Immunol Today 15: 103–107.

    CAS  PubMed  Google Scholar 

  • Overall CM, McQuibban GA, Clark-Lewis I. 2002. Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning: A new tool for degradomics. Biol Chem 383: 1059–1066.

    CAS  PubMed  Google Scholar 

  • Paemen L, Martens E, Norga K, Masure S, Roets E, et al. 1996. The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol 52: 105–111.

    CAS  PubMed  Google Scholar 

  • Pagenstecher A, Stalder AK, Kincaid CL, Shapiro SD, Campbell IL. 1998. Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am J Pathol 152: 729–741.

    CAS  PubMed  Google Scholar 

  • Pai KS, Cunningham DD. 2002. Geldanamycin specifically modulates thrombin-mediated morphological changes in mouse neuroblasts. J Neurochem 80: 715–718.

    CAS  PubMed  Google Scholar 

  • Pei D, Weiss SJ. 1995. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 37: 244–247.

    Google Scholar 

  • Perez-Martinez L, Jaworski DM. 2005. Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an antimitotic signal. J Neurosci 25: 4917–4929.

    CAS  PubMed  Google Scholar 

  • Porter S, Clark IM, Kevorkian L, Edwards DR. 2005. The ADAMTS metalloproteinases. Biochem J 386: 15–27.

    CAS  PubMed  Google Scholar 

  • Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, et al. 2004. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113: 1456–1464.

    CAS  PubMed  Google Scholar 

  • Proost P, Van Damme J, Opdenakker G. 1993. Leukocyte gelatinase-B cleavage releases encephalitogens from human myelin basic protein. Biochem Biophys Res Commun 192: 1175–1181.

    CAS  PubMed  Google Scholar 

  • Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. 1997. Unique monocyte subset in patients with AIDS dementia. Lancet 349: 692–695.

    CAS  PubMed  Google Scholar 

  • Raithatha SA, Muzik H, Rewcastle NB, Johnston RN, Edwards DR, et al. 2000. Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro-Oncol 2: 145–150.

    CAS  PubMed  Google Scholar 

  • Rao JS. 2003. Molecular mechanisms of glioma invasiveness: The role of proteases. Nat Rev Cancer 3: 489–501.

    CAS  PubMed  Google Scholar 

  • Rao RD, James CD. 2004. Altered molecular pathways in gliomas: An overview of clinically relevant issues. Semin Oncol 31: 595–604.

    CAS  PubMed  Google Scholar 

  • Rivera S, Tremblay E, Timsit S, Canals O, Ben-Ari Y, et al. 1997. Tissue inhibitor of metalloproteinase-1 is differentially induced in neurons and astrocytes after seizures: Evidence for developmental, immediate early gene, and lesion response. J Neurosci 17: 4223–4235.

    CAS  PubMed  Google Scholar 

  • Rivera S, Ogier C, Jourquin J, Timsit S, Szklarczyk AW, et al. 2002. Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur J Neurosci 15: 19–32.

    PubMed  Google Scholar 

  • Rodriguez-Mazaneque JC, Westling J, Thai SN, Luque A, Knauper V, et al. 2002. ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem Biophys Res Comm 293: 501–508.

    Google Scholar 

  • Rohatgi T, Sedehizade F, Reymann KG, Reiser G. 2004. Protease-activated receptors in neuronal development, neurodegeneration, and neuroprotection: Thrombin as signaling molecule in the brain. Neuroscientist 10: 501–512.

    CAS  PubMed  Google Scholar 

  • Roher AE, Kasunic TC, Woods AS, Cotter RJ, Ball MJ, et al. 1994. Proteolysis of Aβ peptide from Alzheimer disease brain by gelatinase A. Biochem Biophys Res Commun 205: 1755–1761.

    CAS  PubMed  Google Scholar 

  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. 1998. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29: 1020–1030.

    CAS  PubMed  Google Scholar 

  • Rosell A, Alvarez-Sabin J, Arenillas JF, Rovira A, Delgado P, et al. 2005. A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke 36: 1415–1420.

    CAS  PubMed  Google Scholar 

  • Rosenberg GA. 2002. Matrix metalloproteinases in neuroinflammation. Glia 39: 279–291.

    PubMed  Google Scholar 

  • Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, et al. 2001. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: Activation of MMP-9 linked to stromelysin and microglia in cell cultures. Brain Res 893: 104–112.

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Dencoff JE, Correa N, Jr., Reiners M, Ford CC. 1996b. Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: Relation to blood–brain barrier injury. Neurology 46: 1626–1632.

    CAS  Google Scholar 

  • Rosenberg GA, Estrada E, Kelley RO, Kornfeld M. 1993. Bacterial collagenase disrupts extracellular matrix and opens blood–brain barrier in rat. Neurosci Lett 160: 117–119.

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Kornfeld M, Estrada E, Kelley RO, Liotta LA, et al. 1992. TIMP-2 reduces proteolytic opening of blood–brain barrier by type IV collagenase. Brain Res 576: 203–207.

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Navratil M, Barone F, Feuerstein G. 1996a. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 16: 360–366.

    CAS  Google Scholar 

  • Rumbaugh J, Turchan-Cholewo J, Anderson C, Conant K, Nath A. 2005. Interaction of HIV proteins and matrix metalloproteinases in HIV neuropathogenesis: A new host defense mechanism. Neurology 64, Suppl.: A408.

    Google Scholar 

  • Sandy JD, Verscharen C. 2001. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 358: 615–626.

    CAS  PubMed  Google Scholar 

  • Sandy JD, Neame PJ, Boynton RE, Flannery CR. 1991. Catabolism of aggrecan in cartilage explants: Identification of a major cleavage site within the interglobular domain. J Biol Chem 266: 8683–8685.

    CAS  PubMed  Google Scholar 

  • Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C, et al. 2001. Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 276: 13372–13378.

    CAS  PubMed  Google Scholar 

  • Schmidtmayerova H, Nottet HS, Nuovo G, Raabe T, Flanagan CR, et al. 1996. Human immunodeficiency virus type-1 infection alters chemokine β peptide expression in human monocytes: Implications for recruitment of leukocytes into brain and lymph nodes. Proc Natl Acad Sci USA 93: 700–704.

    CAS  PubMed  Google Scholar 

  • Schonbeck U, Mach F, Libby P. 1998. Generation of biologically active IL-1β by matrix metalloproteinases: A novel caspase-1-independent pathway of IL-1β processing. J Immunol 161: 3340–3346.

    CAS  PubMed  Google Scholar 

  • Sekine-Aizawa Y, Hama E, Watanabe K, Tsubuki S, Kanai-Azuma M, et al. 2001. Matrix metalloproteinase (MMP) system in brain: Identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur J Neurosci 13: 935–948.

    CAS  PubMed  Google Scholar 

  • Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD. 1996. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA 93: 3942–3946.

    CAS  PubMed  Google Scholar 

  • Snoek-van Beurden PA, Von den Hoff JW. 2005. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques 38: 73–83.

    CAS  PubMed  Google Scholar 

  • Sole S, Petegnief V, Gorina R, Chamorro A, Planas AM. 2004. Activation of matrix metalloproteinase-3 and agrin cleavage in cerebral ischemia/reperfusion. J Neuropathol Exp Neurol 63: 338–349.

    CAS  PubMed  Google Scholar 

  • Somerville RP, Longpre JM, Junger KA, Engle JM, Ross M, et al. 2003. Characterization of ADAMTS-9 and ADAMTS-20 as a distinct subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 278: 9503–9513.

    CAS  PubMed  Google Scholar 

  • Sporer B, Paul R, Koedel U, Grimm R, Wick M, et al. 1998. Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J Infect Dis 178: 854–857.

    CAS  PubMed  Google Scholar 

  • St George-Hyslop PH, Petit A. 2005. Molecular biology and genetics of Alzheimer's disease. C R Biol 328: 119–130.

    Google Scholar 

  • Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, et al. 2005. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434: 648–652.

    CAS  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z. 2001. How matrix metalloproteinases regulate cell behavior. Ann Rev Cell Dev Biol 17: 463–516.

    CAS  Google Scholar 

  • Stuve O, Youssef S, Steinman L, Zamvil SS. 2003. Statins as potential therapeutic agents in neuroinflammatory disorders. Curr Opin Neurol 16: 393–401.

    PubMed  Google Scholar 

  • Su SL, Tsai CD, Lee CH, Salter DM, Lee HS. 2005. Expression and regulation of Toll-like receptor 2 by IL-1β and fibronectin fragments in human articular chondrocytes. Osteoarthritis Cartilage 13: 879–886.

    PubMed  Google Scholar 

  • Sung JY, Park SM, Lee CH, Um JW, Lee HJ, et al. 2005. Proteolytic cleavage of extracellular secreted α-synuclein via matrix metalloproteinases. J Biol Chem 280: 25216–25224.

    CAS  PubMed  Google Scholar 

  • Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L. 2002. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22: 920–930.

    CAS  PubMed  Google Scholar 

  • Thibeault I, Laflamme N, Rivest S. 2001. Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 434: 461–477.

    CAS  PubMed  Google Scholar 

  • Toft-Hansen H, Nuttall RK, Edwards DR, Owens T. 2004. Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis. J Immunol 173: 5209–5218.

    CAS  PubMed  Google Scholar 

  • Tornatore C, Nath A, Amemiya K, Major EO. 1991. Persistent human immunodeficiency virus type 1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor α and interleukin-1β. J Virol 65: 6094–6100.

    CAS  PubMed  Google Scholar 

  • Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, et al. 1999. Purification and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science 284: 1664–1666.

    CAS  PubMed  Google Scholar 

  • Turgeon VL, Lloyd ED, Wang S, Festoff BW, Houenou LJ. 1998. Thrombin perturbs neurite outgrowth and induces apoptotic cell death in enriched chick spinal motoneuron cultures through caspase activation. J Neurosci 18: 6882–6891.

    CAS  PubMed  Google Scholar 

  • Turgeon VL, Milligan CE, Houenou LJ. 1999. Activation of the protease-activated thrombin receptor (PAR)-1 induces motoneuron degeneration in the developing avian embryo. J Neuropathol Exp Neurol 58: 499–504.

    CAS  PubMed  Google Scholar 

  • Valenzuela MA, Cartier L, Collados L, Kettlun AM, Araya F, et al. 1999. Gelatinase activity of matrix metalloproteinases in the cerebrospinal fluid of various patient populations. Res Commun Mol Pathol Pharmacol 104: 42–52.

    CAS  PubMed  Google Scholar 

  • Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W. 2002. Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport 13: 1067–1070.

    Google Scholar 

  • Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G. 2000. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 96: 2673–2681.

    PubMed  Google Scholar 

  • Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, et al. 2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37: 375–536.

    PubMed  Google Scholar 

  • van Noort JM, van Sechel AC, Bajramovic JJ, el Ouagmiri M, Polman CH, et al. 1995. The small heat-shock protein α B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375: 798–801.

    CAS  PubMed  Google Scholar 

  • Vazquez F, Hastings G, Ortega MA, Lane TF, Oikemus S, et al. 1999. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 274: 23349–23357.

    CAS  PubMed  Google Scholar 

  • Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries HE, et al. 2003. Interferon-β blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab 23: 1029–1039.

    CAS  PubMed  Google Scholar 

  • Vergnolle N, Ferazzini M, D'Andrea MR, Buddenkotte J, Steinhoff M. 2003. Proteinase-activated receptors: Novel signals for peripheral nerves. Trends Neurosci 26: 496–500.

    CAS  PubMed  Google Scholar 

  • Vincent AM, Mobley BC, Hiller A, Feldman EL. 2004. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 16: 407–416.

    CAS  PubMed  Google Scholar 

  • Visse R, Nagase H. 2003. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res 92: 827–839.

    CAS  PubMed  Google Scholar 

  • Vos CM, Gartner S, Ransohoff RM, McArthur JC, Wahl L, et al. 2000b. Matrix metalloprotease-9 release from monocytes increases as a function of differentiation: Implications for neuroinflammation and neurodegeneration. J Neuroimmunol 109: 221–227.

    CAS  Google Scholar 

  • Vos CM, Sjulson L, Nath A, McArthur JC, Pardo CA, et al. 2000a. Cytotoxicity by matrix metalloprotease-1 in organotypic spinal cord and dissociated neuronal cultures. Exp Neurol 163: 324–330.

    CAS  Google Scholar 

  • Wang X, Barone FC, White RF, Feuerstein GZ. 1998. Subtractive cloning identifies tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) increased gene expression following focal stroke. Stroke 29: 516–520.

    CAS  PubMed  Google Scholar 

  • Wang X, Lee SR, Arai K, Tsuji K, Rebeck GW, et al. 2003. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 9: 1313–1317.

    CAS  PubMed  Google Scholar 

  • Wells GM, Catlin G, Cossins JA, Mangan M, Ward GA, et al. 1996. Quantitation of matrix metalloproteinases in cultured rat astrocytes using the polymerase chain reaction with a multicompetitor cDNA standard. Glia 18: 332–340.

    CAS  PubMed  Google Scholar 

  • Weskamp G, Cai H, Brodie TA, Higashyama S, Manova K, et al. 2002. Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol Cell Biol 22: 1537–1544.

    CAS  PubMed  Google Scholar 

  • Westling J, Gottschall PE, Thompson VP, Cockburn A, Perides G, et al. 2004. ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate-binding protein. Biochem J 377: 787–795.

    CAS  PubMed  Google Scholar 

  • White JM. 2003. ADAMs: Modulators of cell–cell and cell–matrix interactions. Curr Opin Cell Biol 15: 598–606.

    CAS  PubMed  Google Scholar 

  • Wielockx B, Libert C, Wilson C. 2004. Matrilysin (matrix metalloproteinase-7): A new and promising drug target in cancer and inflammation. Cytokine Growth Factor Rev 15: 111–115.

    CAS  PubMed  Google Scholar 

  • Witek-Zawada B, Koj A. 2003. Regulation of expression of stromelysin-1 by proinflammatory cytokines in mouse brain astrocytes. J Physiol Pharmacol 54: 489–496.

    CAS  PubMed  Google Scholar 

  • Wu CY, Hsieh HL, Jou MJ, Yang CM. 2004. Involvement of p42/p44 MAPK, p38 MAPK, JNK, and nuclear factor-κ B in interleukin-1β-induced matrix metalloproteinase-9 expresssion in rat brain astrocytes. J Neurochem 90: 1477–1488.

    CAS  PubMed  Google Scholar 

  • Yamada T, Yoshiyama Y, Sato H, Seiki M, Shinagawa A, et al. 1995. White matter microglia produce membrane-type matrix metalloprotease, an activator of gelatinase A, in human brain tissues. Acta Neuropathol (Berl) 90: 421–424.

    CAS  Google Scholar 

  • Yamaguchi Y. 2000. Lecticans: Organizers of brain extracellular matrix. Cell Mol Life Sci 57: 276–289.

    CAS  PubMed  Google Scholar 

  • Yong VW, Power C, Forsyth P, Edwards DR. 2001. Metalloproteinases in the biology and pathology of the nervous system. Nat Rev Neurosci 2: 502–511.

    CAS  PubMed  Google Scholar 

  • Yoshiyama Y, Sato H, Seiki M, Shinagawa A, Takahashi M, et al. 1998. Expression of the membrane-type 3 matrix metalloproteinase (MT3-MMP) in human brain tissues. Acta Neuropathol (Berl) 96: 347–350.

    CAS  Google Scholar 

  • Yu Q, Stamenkovic I. 2000. Cell surface-localized matrix metalloproteinase-9 and proteolytically activates TGFβ and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176.

    PubMed  Google Scholar 

  • Yu WH, Woessner JF, McNeish JD, Stamenkovic I. 2002. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16: 307–323.

    CAS  PubMed  Google Scholar 

  • Yuan W, Matthews RT, Sandy J, Gottschall PE. 2002. Association between protease-specific proteolytic cleavage of brevican and synaptic loss in the dentate gyrus of kainic acid treated rats. Neuroscience 114: 1091–1101.

    CAS  PubMed  Google Scholar 

  • Yushchenko M, Weber F, Mader M, Scholl U, Maliszewska M, et al. 2000. Matrix metalloproteinase-9 (MMP-9) in human cerebrospinal fluid (CSF): Elevated levels are primarily related to CSF cell count. J Neuroimmunol 110: 244–251.

    CAS  PubMed  Google Scholar 

  • Zhang JW, Gottschall PE. 1997. Zymographic measurement of gelatinase activity in brain tissue after detergent extraction and affinity-support purification. J Neurosci Methods 76: 15–20.

    CAS  PubMed  Google Scholar 

  • Zhang K, Silva C, Butler GS, Johnston JB, Holden J, et al. 2003. HIV-induced metalloproteinase cleavage of the chemokine SDF-1α causes neurodegeneration. Nat Neurosci 6: 1064–1011.

    CAS  PubMed  Google Scholar 

  • Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, et al. 2001. Structure of von Willebrand factor-cleaving protease (ADAMTS13, a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 276: 41059–41063.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Gottschall, P.E., Conant, K. (2007). MMPs and Other Matrix-Degrading Metalloproteinases in Neurological Disease. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_19

Download citation

Publish with us

Policies and ethics