Skip to main content

Microglial Proteases

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology
  • 822 Accesses

Abstract:

There is growing evidence that the proteolytic machinery of microglia is closely associated with their protective and cytotoxic roles in the central nervous system (CNS). Endosomal and lysosomal proteases including cathepsins E and S have been shown to play important roles in the major histocompatibility complex (MHC) class II-mediated antigen presentation of microglia by processing of exogenous antigens and degradation of the invariant chain (Ii) associated with MHC class II molecules, respectively. There is evidence that some members of cathepsins are involved in extracellular proteolysis in addition to their functions in the endosomal–lysosomal system. We have recently found, by utilizing cathepsin S-deficient mice, that cathepsin S is required for migration of microglia toward axotomized facial motoneurons. Several studies have suggested an involvement of cathepsin D in the clearance of amyloid-β (Aβ) peptides by microglia. On the other hand, attention has been also paid to deleterious effects of proteases secreted from microglia. Cathepsins S and B secreted from microglia are also involved in tissue damage and neuronal death. Moreover, tissue-type plasminogen activator (tPA), a serine protease, secreted from microglia also participates in neuronal death, enhances N-methyl-d-aspartate (NMDA) receptor-mediated neuronal responses, and activates microglia via either its proteolytic or nonproteolytic activity. Calpain, a calcium-dependent cysteine protease, has been demonstrated to play a pivotal role in the pathogenesis of multiple sclerosis (MS) by degrading myelin proteins extracellularly. Furthermore, matrix metalloproteases (MMPs) secreted from microglia also receive great attention as mediators of inflammation and tissue degradation through processing of proinflammatory cytokines and damage to the blood–brain barrier. Therefore, the accumulating knowledge about proteolytic events mediated by microglial proteases will contribute to better understanding of microglial functions in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CLIP:

class II-associated Ii peptide

CNS:

central nervous system

ECM:

extracellular matrix

L-LTP:

late-phase LTP

LPS:

lipopolysaccharide

LRP:

lipoprotein receptor-related protein

MHC:

major histocompatibility complex

MMPs:

matrix metalloproteases

MS:

multiple sclerosis

MS:

multiple sclerosis

NMDA:

N-methyl-d-aspartate

OVA:

ovalbumin

PKC:

protein kinase C

IFN-γ:

interferon-γ

MAPK:

mitogen-activated protein kinase

TIMPs:

tissue inhibitors of metalloproteases

tPA:

tissue-type plasminogen activator

uPA:

Urokinase-type plasminogen activator

References

  • Asahi M, Asahi K, Jung JC, del Zoppo G, Fini ME, et al. 2000. Role of matrix metalloprotease 9 in focal cerebral ischemia: Effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20: 1681–1690.

    Article  CAS  PubMed  Google Scholar 

  • Baranes D, Lederfein D, Huang Y–Y, Chen M, Bailey CH, et al. 1998. Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy pathway. Neuron 21: 813–825.

    Article  CAS  PubMed  Google Scholar 

  • Bennett K, Levine T, Ellis JS, Peanasky RJ, Samloff IM, et al. 1992. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur J Immunol 22: 1519–1524.

    Article  CAS  PubMed  Google Scholar 

  • Campbell SJ, Finlay M, Clements JM, Wells G, Miller KM, et al. 2004. Reduction of excitotoxicity and associated leukocyte recruitment by a broad-spectrum matrix metalloproteinase inhibitor. J Neurochem 89: 1378–1386.

    Article  CAS  PubMed  Google Scholar 

  • Chauvet N, Palin K, Verrier D, Poole S, Dantzer R, et al. 2001. Rat microglial cells secrete predominantly the precursor of interleukin-1β in response to lipopolysaccharide. Eur J Neurosci 14: 609–617.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZL, Strickland S. 1997. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91: 917–925.

    Article  CAS  PubMed  Google Scholar 

  • Colton CA, Krei JE, Chen W–T, Monsky WL. 1993. Protease production by cultured microglia: Substrate gel analysis and immobilized matrix degradation. J Neurosci Res 35, 297–304.

    Article  CAS  PubMed  Google Scholar 

  • Cross AK, Woodroofe MN. 1999. Chemokine modulation of matrix metalloprotease and TIMP production in an adult rat brain microglia and human microglial cell line in vitro. Glia 28 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Deussing J, Roth W, Saftig P, Peters C, Ploegh HL, et al. 1998. Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc Natl Acad Sci USA 95: 4516–4521.

    Article  CAS  PubMed  Google Scholar 

  • Diment S. 1990. Different roles for thiol and aspartyl proteases in antigen presentation of ovalbumin. J Immunol 145: 417–422.

    CAS  PubMed  Google Scholar 

  • Ferrari D, Los M, Bauer MKA, Vandenabeele P, Wesselborg S, et al. 1999. P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett 447: 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Flavin MP, Zhao G. 2001. Tissue plasminogen activator protects hippocampal neurons from oxygen-glucose deprivation injury. J Neurosci Res 63: 388–394.

    Article  CAS  PubMed  Google Scholar 

  • Flavin MP, Zhao G, Ho LT. 2000. Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29: 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Ye S, Chu A, Anton K, Yi S, et al. 2004. Identification of cathepsin B as a mediator of neuronal death induced by Aβ-activated microglial cells using functional genomics approach. J Biol Chem 279: 5565–5572.

    Article  CAS  PubMed  Google Scholar 

  • Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF. 2000. Potentiation of NMDA receptor function by serine protease thrombin. J Neurosci 20: 4582–4595.

    CAS  PubMed  Google Scholar 

  • Gresser O, Weber E, Hellwing A, Riese S, Regnier-Vigouroux A. 2001. Immunocompetent astrocytes and microglia display major differences in the processing of the invariant chain and in the expression of active cathepsin L and cathepsin S. Eur J Immunol 31: 1813–1824.

    Article  CAS  PubMed  Google Scholar 

  • Hamazaki H. 1996. Cathepsin D is involved in the clearance of Alzheimer's β-amyloid protein. FEBS Lett 396: 139–142.

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK, van Rossum D, Xie Y, Gast K, Misselwitz R, et al. 2004. The microglia-activating potential of thrombin. The protease is not involved in the induction of proinflammatory cytokines and chemokines. J Biol Chem 279: 51880–51887.

    Article  CAS  PubMed  Google Scholar 

  • Hinman JD, Duce JA, Siman RA, Hollander W, Abraham CR. 2004. Activation of calpain-1 in myelin and microglia in the white matter of the aged rhesus monkey. J Neurochem 89: 430–441.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y–Y, Bach ME, Lipp H–P, Zhuo M, Wolfer DP, et al. 1996. Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci USA 93: 8699–8704.

    Article  CAS  PubMed  Google Scholar 

  • Husemann J, Loike JD, Kodama T, Silverstein SC. 2001. Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar β-amyloid. J Neuroimmunol 114: 142–150.

    Article  CAS  PubMed  Google Scholar 

  • Inoue K. 1998. The function of ATP receptors in the hippocampus. Pharmacol Rev 38: 323–331.

    CAS  Google Scholar 

  • Jiang X, Namura S, Nagata I. 2001. Matrix metalloprotease inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice. Neurosci Lett 305: 41–44.

    Article  CAS  PubMed  Google Scholar 

  • Kakimura J, Kitamura Y, Takata K, Umeki M, Suzuki S, et al. 2002. Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins. FASEB J 16: 601–603.

    CAS  PubMed  Google Scholar 

  • Kingham PJ, Pocock JM. 2000. Microglial apoptosis induced by chromogranin A is mediated by mithochondrial depolarization and the permeability transition but not by cytochrome c release. J Neurochem 74: 1452–1452.

    Article  CAS  PubMed  Google Scholar 

  • Kingham PJ, Pocock JM. 2001. Microglial secreted cathepsin B induces neuronal apoptosis. J Neurochem 76: 1475–1484.

    Article  CAS  PubMed  Google Scholar 

  • Kolson DL, Lavi E, Gonzalez-Scarano F. 1998. The effects of human immunodeficiency virus in the central nervous system. Adv Virus Res 50: 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Hurt J, Lee P, Kim JY, Cho N, et al. 2001. Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. J Biol Chem 276: 32956–32965.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang K, Gao H–M, Mandavilli B, Wang J–Y, et al. 2001. Molecular consequences of activated microglia in the brain: Overactivation induces apoptosis. J Neurochem 77: 182–189.

    Article  CAS  PubMed  Google Scholar 

  • Lo EH, Wang X, Cuzner ML. 2002. Extracellular proteolysis in brain injury and inflammation: Role for plasminogen activator and matrix metalloproteases. J Neurosci Res 69: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Madani R, Hulo S, Toni N, Madani H, Steimer T, et al. 1999. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J 18: 3007–3012.

    Article  CAS  PubMed  Google Scholar 

  • Maric MA, Taylor MD, Blum JS. 1994. Endosomal aspartic proteinases are required for invariant-chain processing. Proc Natl Acad Sci USA 91: 2171–2175.

    Article  CAS  PubMed  Google Scholar 

  • Matys T, Strickland S. 2003. Tissue plasminogen activator and NMDA receptor cleavage. Nat Med 9: 371–372.

    Article  CAS  PubMed  Google Scholar 

  • McDermott JR, Gibson AM. 1996. Degradation of Alzheimer's β-amyloid protein by human cathepsin D. Neuroreport 7: 2163–2166.

    Article  CAS  PubMed  Google Scholar 

  • Möller T, Hanish UK, Ranson BR. 2000. Thrombin-induced activation of cultured rodent microglia. J Neurochem 75: 1539–1547.

    Article  PubMed  Google Scholar 

  • Nakagami Y, Abe K, Nishiyama N, Matsuki N. 2000. Laminin degradation by plasmin regulates long-term potentiation. J Neurosci 20: 2002–2010.

    Google Scholar 

  • Nakajima K, Tsuzaki N, Shimojo M, Hamanoue M, Kohsaka S. 1992. Microglia isolated from rat brain secrete a urokinase-type plasminogen activator. Brain Res 577: 258–292.

    Article  Google Scholar 

  • Nakanishi H. 2003a. Microglial functions and proteases. Mol Neurobiol 27: 163–176.

    Article  CAS  Google Scholar 

  • Nakanishi H. 2003b. Microglial proteases: Strategic targets for neuroprotective agents. Curr Neuropharmacol 1: 99–108.

    Article  CAS  Google Scholar 

  • Nakanishi H. 2003c. Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2: 367–381.

    Article  CAS  Google Scholar 

  • Nakanishi H. 2005. Proteases and synaptic activity. Proteases in Biology and Disease, Vol. 3. Lendeckel U, Hopper N, editors. New York: Kluwer Academic/Plenum Publishers; pp. 291–310.

    Google Scholar 

  • Nicole O, Docagne F, Ali C, Margailli I, Carmeliet P, et al. 2001. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7: 59–64.

    Article  CAS  PubMed  Google Scholar 

  • Nishioku T, Hashimoto K, Yamashita K, Liou S–Y, Kagamiishi Y, et al. 2002. Involvement of cathepsin E in exogenous antigen processing in primary cultured murine microglia. J Biol Chem 277: 4816–4822.

    Article  CAS  PubMed  Google Scholar 

  • Nishioku T, Takai N, Miyamaoto K–I, Murao K, Hara C, et al. 2000. Involvement of caspase 3-like protease in methylmercury-induced apoptosis of primary cultured rat cerebral microglia. Brain Res 871: 160–164.

    Article  CAS  PubMed  Google Scholar 

  • Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z. 2002. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 22: 7526–7535.

    CAS  PubMed  Google Scholar 

  • Paresce DM, Chung H, Maxfield FR. 1997. Slow degradation of aggregates of the Alzheimer's disease amyloid β-protein by microglial cells. J Biol Chem 46: 29390–29397.

    Article  Google Scholar 

  • Paresce DM, Ghosh RN, Maxfield FR. 1996. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via scavenger receptor. Neuron 17: 553–565.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak R, Strickland S. 2002. Tissue plasminogen activator and seizures: A clot-buster's secret life. J Clin Invest 109: 1529–1531.

    CAS  PubMed  Google Scholar 

  • Petanceska S, Canoll P, Devi LAL. 1996. Expression of rat cathepsin S in phagocytic cells. J Biol Chem 271: 4403–4409.

    Article  CAS  PubMed  Google Scholar 

  • Qiu WQ, Walsh DMW, Ye Z, Vekrellis K, Zhang J, et al. 1998. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J Biol Chem 273: 32730–32738.

    Article  CAS  PubMed  Google Scholar 

  • Qiu WQ, Ye Z, Kholodenko D, Seubert P, Selkoe DJ. 1997. Degradation of amyloid-β protein by a metalloprotease secreted by microglia and other neural and nonneural cells. J Biol Chem 272: 6641–6646.

    Article  CAS  PubMed  Google Scholar 

  • Riese RJ, Chapman HA. 2000. Cathepsins and compartmentalization in antigen presentation. Curr Opin Immunol 12: 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GM, Diment S. 1992. Role of cathepsin D in antigen presentation of ovalbumin. J Immunol 19: 2894–2898.

    Google Scholar 

  • Rogove A, Saio C-J, Keyt B, Strickland S, Tsirka, SE. 1999. Activation of microglia reveals a nonproteolytic cytokine function tissue plasminogen activator in the central nervous system. J Cell Sci 112: 4007–4016.

    CAS  PubMed  Google Scholar 

  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone, FC. 1998. Matrix metalloprotease expression increases after cerebral focal ischemia in rats. Stroke 29: 1020–1030.

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Estrada EY, Dencoff JE. 1998. Matrix metalloprotease and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 29: 2189–2195.

    CAS  PubMed  Google Scholar 

  • Ryan RE, Sloane BF, Sameni M, Wood PL. 1995. Microglial cathepsin B: An immunological examination of cellular and secreted species. J Neurochem 65: 1035–1045.

    Article  CAS  PubMed  Google Scholar 

  • Ryu J, Ryo H, Jou I, Joe E. 2000. Thrombin induces NO release from cultured rst Microglia via protein kinase C, mitogen-activated protein kinase, and NF-κB. J Biol Chem 275: 29955–29959.

    Article  CAS  PubMed  Google Scholar 

  • Sallés FJ, Strickland S. 2002. Localization and regulation of the tissue plasminogen activator–plasmin system in the hippocampus. J Neurosci 22: 2125–2134.

    PubMed  Google Scholar 

  • Santambrogio L, Belyanskaya SL, Fisher FR, Cipriani B, Brosnan CF, et al. 2001. Developmental plasticity of CNS microglia. Proc Natl Acad Sci USA 98: 6295–6300.

    Article  CAS  PubMed  Google Scholar 

  • Sastradipura DF, Nakanishi H, Tsukuba T, Nishishita K, Sakai H, et al. 1998. Identification of cellular compartment involved in processing of cathepsin E in primary cultures of rat microglia. J Neurochem 70: 2045–2056.

    Article  CAS  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, et al. 1999. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Sealy L, Mota F, Rayment N, Tatnell P, Kay J, et al. 1996. Regulation of cathepsin E expression during human B cell differentiation in vitro. Eur J Immunol 26: 1838–1843.

    Article  CAS  PubMed  Google Scholar 

  • Shields DC, Schaecher KE, Saido TC, Banil NL. 1999. A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc Natl Acad Sci USA 96: 11486–11491.

    Article  CAS  PubMed  Google Scholar 

  • Shields DC, Tyor WR, Deibler GE, Hogan EL, Banik NL. 1998. Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 95: 5768–5772.

    Article  CAS  PubMed  Google Scholar 

  • Siao C-J, Fernandez SR, Tsirka SE. 2003. Cell type-specific roles for tissue plasminogen activator released by neurons and microglia after excitotoxic injury. J Neurosci 23: 3234–3242.

    CAS  PubMed  Google Scholar 

  • Siao C-J, Tsirka SE. 2002. Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 22: 3352–3358.

    CAS  PubMed  Google Scholar 

  • Stohwasser R, Giesebrecht J, Kraft R, Müller E–C, Häusler KG, et al. 2000. Biochemical analysis of proteasomes from mouse microglia: Induction of immunoproteasomes by interferon-γ and lipopolysaccharide. Glia 29: 355–365.

    Article  CAS  PubMed  Google Scholar 

  • Sukhova GK, Zhang Y, Pan J–H, Wada Y, Yamamoto T, et al. 2003. Deficiency of cathepsin S reduces artherosclerosis in LDL receptor-deficient mice. J Clin Invest 111: 897–906.

    CAS  PubMed  Google Scholar 

  • Suo Z, Wu M, Ameenuddin S, Anderson HE, Zoloty JE, et al. 2002. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem 80: 655–666.

    Article  CAS  PubMed  Google Scholar 

  • Takai N, Nakanishi H, Tanabe K, Nishioku T, Sugiyama T, et al. 1998. Involvement of caspase-like proteases in apoptosis of neuronal PC12 cells and primary cultured microglia induced by 6-hydroxydopamine. J Neurosci Res 54: 214–222.

    Article  CAS  PubMed  Google Scholar 

  • Tsirka SE. 2002. Tissue plasminogen activator as a modulator of neuronal survival and function. Biochem Soc Transac 30: 222–225.

    Article  CAS  Google Scholar 

  • Tsirka SE, Gualandrils A, Amaral DG, Strickland S. 1995. Excitation-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377: 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Tsirka SE, Rogove AD, Bugge TH, Degen JL, Strickland S. 1997. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci 17: 543–552.

    CAS  PubMed  Google Scholar 

  • van Noort JM, Jacobs MJ. 1994. Cathepsin D, but not cathepsin B, releases T cell stimulatory fragments from lysozyme that are functional in the context of multiple murine class II MHC molecules. Eur J Immunol 24: 2175–2180.

    Article  CAS  PubMed  Google Scholar 

  • Villadangos JA, Bryan RAR, Deussing J, Driessen C, Lennon-Dumenil A, et al. 1999. Proteases involved in MHC class II antigen presentation. Immunol Rev 172: 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Villadangos JA, Riese RJ, Peters C, Chapman HA, Ploegh HL. 1997. Degradation of mouse invariant chain: Roles of cathepsins S and D and the influence of major histocompatibility complex polymorphism. J Exp Med 186: 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Yee CSK, Yao Y, Li P, Klemsz MJ, Blum JS, et al. 2004. Cathepsin E: A novel target for regulation by class II transactivator. J Immunol 172: 5528–5534.

    CAS  PubMed  Google Scholar 

  • Zhuo M, Holtman DM, Li Y, Osaka H, De Maro J, et al. 2000. Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci 20: 542–549.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Nakanishi, H. (2007). Microglial Proteases. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_18

Download citation

Publish with us

Policies and ethics