Skip to main content

The Proteasome, Protein Aggregation, and Neurodegeneration

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology
  • 826 Accesses

Abstract:

The presence of intracellular inclusions containing aggregated proteins feature in affected neurons of patients with neurodegenerative disease. Such inclusions also contain immunoreactive ubiquitin and proteasome subunits. Similar perinuclear inclusions termed aggresomes are formed when cells are treated with proteasome inhibitors. Since unfolded proteins are predominantly degraded by the ubiquitin-proteasome system (UPS), a dysfunction of this system has been proposed to contribute to neurodegeneration. This chapter presents an outline of the biochemistry of the UPS followed by an examination of the experimental evidence relating this protein-degrading system to Parkinson's disease, to protein aggregation and aggresome formation, and to polyglutamine disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARJP:

autosomal recessive juvenile Parkinsonism

AZ:

antizyme

CFTR:

Cystic fibrosis transmembrane conductance regulator

CHIP:

carboxyl terminus of Hsc-70-interacting protein

INF-γ:

Interferon gamma

NII:

neuronal intranuclear inclusions

ODC:

ornithine decarboxylase

Pael-R:

Parkin-associated endothelin receptor-like receptor

PGPH:

peptidyl glutamyl peptide hydrolyzing

PSI:

Z-lle-Glu(O-tBu)-Ala-leucinal

UIM:

ubiquitin-interacting motif

UPS:

ubiquitin-proteasome system

Z:

N-benzyloxycarbonyl

References

  • Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, et al. 2000. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Adams, J. 2003. Potential for proteasome inhibition in the treatment of cancer. Drug Discov Today 8: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Aki M, Shimbara N, Takashina M, Akiyama K, Kagawa S, et al. 1994. Interferon-γ induces different subunit organizations and functional diversity of proteasomes. J Biochem 115: 257–269.

    CAS  PubMed  Google Scholar 

  • Ancolio K, Alves da Costa C, Ueda K, Checler F. 2000. α-synuclein and the Parkinson's disease-related mutant Ala53Thr-α-synuclein do not undergo proteasomal degradation in HEK293 and neuronal cells. Neurosci Lett 285: 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Apostol BL, Kazantsev A, Raffioni S, Illes K, Pallos J, et al. 2003. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc Natl Acad Sci U S A 100: 5950–5955.

    Article  CAS  PubMed  Google Scholar 

  • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. 2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805–10.

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Lotem J, Sachs L, Kahana C, Shaul Y. 2002. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci U S A 99: 13125–13130.

    Article  CAS  PubMed  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemuller E. 1998. The proteasome: Paradigm of a self-compartmentalizing protease. Cell 92: 367–380.

    Article  CAS  PubMed  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR. 2001. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  • Bennett EJ, Bence NF, Jayakumar R, Kopito RR. 2005. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17: 351–365.

    Article  CAS  PubMed  Google Scholar 

  • Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, et al. 1999. Degradation of α-synuclein by proteasome. J Biol Chem 274: 33855–33858.

    Article  CAS  PubMed  Google Scholar 

  • Bercovich Z, Rosenberg-Hasson Y, Ciechanover A, Kahana C. 1989. Degradation of ornithine decarboxylase in reticulocyte lysate is ATP-dependent but ubiquitin-independent. J Biol Chem 264: 15949–15952.

    CAS  PubMed  Google Scholar 

  • Biasini E, Fioriti L, Ceglia I, Invernizzi R, Bertoli A, et al. 2004. Proteasome inhibition and aggregation in Parkinson's disease: A comparative study in untransfected and transfected cells. J Neurochem 88: 545–553.

    Article  CAS  PubMed  Google Scholar 

  • Bowman AB, Yoo SY, Dantuma NP, Zoghbi HY. 2005. Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Hum Mol Genet 14: 679–691.

    Article  CAS  PubMed  Google Scholar 

  • Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, et al. 1995. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378: 416–419.

    Article  CAS  PubMed  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, et al. 1999. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1: 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Burnett B, Li F, Pittman RN. 2003. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet 12: 3195–3205.

    Article  CAS  PubMed  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, et al. 1983. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80: 4546–4550.

    Article  CAS  PubMed  Google Scholar 

  • Cardozo C, Michaud C. 2002. Proteasome-mediated degradation of tau proteins occurs independently of the chymotrypsin-like activity by a nonprocessive pathway. Arch Biochem Biophys 408: 103–110.

    Article  CAS  PubMed  Google Scholar 

  • Cascio P, Call M, Petre BM, Walz T, Goldberg AL. 2002. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J 21: 2636–2645.

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Berke SS, Cohen RE, Paulson HL. 2004. Polyubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J Biol Chem 279: 3605–3611.

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Koppenhafer SL, Shoesmith SJ, Perez MK, Paulson HL. 1999. Evidence for proteasome involvement in polyglutamine disease: Localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum Mol Genet 8: 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, et al. 2001. Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nat Med 7: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A, Elias S, Heller H, Hershko A. 1982. Covalent “affinity purification” of ubiquitin-activating enzyme. J Biol Chem 257: 2537–2542.

    CAS  PubMed  Google Scholar 

  • Ciechanover A, Finley D, Varshavsky A. 1984. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37: 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri F, Duguet M. 1995. A 200-amino-acid ATPase module in search of a basic function. BioEssays 17: 639–650.

    Article  CAS  PubMed  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT. 1998. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat Med 4: 1318–1320.

    Article  CAS  PubMed  Google Scholar 

  • Corti O, Hampe C, Koutnikova H, Darios F, Jacquier S, et al. 2003. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: Linking protein biosynthesis and neurodegeneration. Hum Mol Genet 12: 1427–1437.

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. 2004. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305: 1292–1295.

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Mancini MA, Antalffy B, De Franco DB, Orr HT, et al. 1998. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19: 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, et al. 1999. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24: 879–892.

    Article  CAS  PubMed  Google Scholar 

  • Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, et al. 1989. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett 251: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Dahlmann B, Rutschmann M, Kuehn L, Reinauer H. 1985. Activation of the multicatalytic proteinase from rat skeletal muscle by fatty acids or sodium dodecyl sulphate. Biochem J 228: 171–177.

    CAS  PubMed  Google Scholar 

  • David DC, Layfield R, Serpell L, Narain Y, Goedert M, et al. 2002. Proteasomal degradation of tau protein. J Neurochem 83: 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Davies KJ. 2001. Degradation of oxidized proteins by the 20S proteasome. Biochimie 83: 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, Di Figlia M, Sharp AH, et al. 1997. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537–548.

    Article  CAS  PubMed  Google Scholar 

  • DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Chu-Ping M, et al. 1994. PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J Biol Chem 269: 20878–20884.

    CAS  PubMed  Google Scholar 

  • Deveraux Q, Ustrell V, Pickart C, Rechsteiner M. 1994. A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269: 7059–7061.

    CAS  PubMed  Google Scholar 

  • Diaz-Hernandez M, Hernandez F, Martin-Aparicio E, Gomez-Ramos P, Moran MA, et al. 2003. Neuronal induction of the immunoproteasome in Huntington's disease. J Neurosci 23: 11653–11661.

    CAS  PubMed  Google Scholar 

  • Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, et al. 1998. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 273: 25637–25646.

    Article  CAS  PubMed  Google Scholar 

  • Di Figlia M, Sapp E, Chase KO, Davies SW, Bates GP, et al. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993.

    Article  CAS  Google Scholar 

  • Ding Q, Dimayuga E, Martin S, Bruce-Keller AJ, Nukala V, et al. 2003. Characterization of chronic low-level proteasome inhibition on neural homeostasis. J Neurochem 86: 489–497.

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Lewis JJ, Strum KM, Dimayuga E, Bruce-Keller AJ, et al. 2002. Polyglutamine expansion, protein aggregation, proteasome activity, and neural survival. J Biol Chem 277: 13935–13942.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson KM, Li W, Ching KA, Batalov S, Tsai CC, et al. 2003. Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc Natl Acad Sci USA 100: 8892–8897.

    Article  CAS  PubMed  Google Scholar 

  • Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K. 2003. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol 23: 6469–6483.

    Article  CAS  PubMed  Google Scholar 

  • Dubiel W, Ferrell K, Pratt G, Rechsteiner M. 1992a. Subunit 4 of the 26 S protease is a member of a novel eukaryotic ATPase family. J Biol Chem 267: 22699–22702.

    CAS  Google Scholar 

  • Dubiel W, Pratt G, Ferrell K, Rechsteiner M. 1992b. Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem 267: 22369–22377.

    CAS  Google Scholar 

  • Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, et al. 1995. Penicillin acylase has a single-amino-acid catalytic centre. Nature 373: 264–268.

    Article  CAS  PubMed  Google Scholar 

  • Eleuteri AM, Kohanski RA, Cardozo C, Orlowski M. 1997. Bovine spleen multicatalytic proteinase complex (proteasome). Replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and specificity. J Biol Chem 272: 11824–11831.

    Article  CAS  PubMed  Google Scholar 

  • Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, et al. 2002. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4: 725–730.

    Article  CAS  PubMed  Google Scholar 

  • Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, et al. 1999. Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 22: 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, et al. 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726–731.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo-Pereira ME, Berg KA, Wilk S. 1994. A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin-protein conjugates in a neuronal cell. J Neurochem 63: 1578–1581.

    Article  CAS  PubMed  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A. 1984. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37: 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Finley D, Tanaka K, Mann C, Feldmann H, Hochstrasser M, et al. 1998. Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem Sci 23: 244–245.

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Lenzi P, Gesi M, Ferrucci M, Lazzeri G, et al. 2003. Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J Neurosci 23: 8955–8966.

    CAS  PubMed  Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, et al. 2002. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4: 160–164.

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Li J, Pratt G, Wilk S, Rechsteiner M. 2004. Purification procedures determine the proteasome activation properties of REG gamma (PA28 gamma). Arch Biochem Biophys 425: 158–164.

    Article  CAS  PubMed  Google Scholar 

  • Geier E, Pfeifer G, Wilm M, Lucchiari-Hartz M, Baumeister W, et al. 1999. A giant protease with potential to substitute for some functions of the proteasome. Science 283: 978–981.

    Article  CAS  PubMed  Google Scholar 

  • Gilon T, Chomsky O, Kulka RG. 1998. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J 17: 2759–2766.

    Article  CAS  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A. 2002. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol Rev 82: 373–428.

    CAS  PubMed  Google Scholar 

  • Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, et al. 1998a. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94: 615–623.

    Article  CAS  Google Scholar 

  • Glickman MH, Rubin DM, Fried VA, Finley D. 1998b. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18: 3149–3162.

    CAS  Google Scholar 

  • Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, et al. 2003. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278: 43628–43635.

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, et al. 1997. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386: 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ. 1997. Degradation of oxidized proteins in mammalian cells. FASEB J 11: 526–534.

    CAS  PubMed  Google Scholar 

  • Grziwa A, Baumeister W, Dahlmann B, Kopp F. 1991. Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopy. FEBS Lett 290: 186–190.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, et al. 2002. Phosphorylated α-synuclein is ubiquitinated in α-synucleinopathy lesions. J Biol Chem 277: 49071–49076.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Kakita A, Yamada M, Koide R, Igarashi S, et al. 1998. Hereditary dentatorubral-pallidoluysian atrophy: Detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain. Acta Neuropathol 96: 547–552.

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A, Rose IA. 1979. Resolution of the ATP-dependent proteolytic system from reticulocytes: A component that interacts with ATP. Proc Natl Acad Sci U S A 76: 3107–3110.

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Heller H, Elias S, Ciechanover A. 1983. Components of ubiquitin–protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258: 8206–8214.

    CAS  PubMed  Google Scholar 

  • Hoffner G, Kahlem P, Djian P. 2002. Perinuclear localization of huntingtin as a consequence ot its binding to microtubules through an interaction with β-tubulin: Relevance to Huntington's disease. J Cell Sci 115: 941–948.

    CAS  PubMed  Google Scholar 

  • Hofmann K, Falquet L. 2001. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 26: 347–350.

    Article  CAS  PubMed  Google Scholar 

  • Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel-An I, et al. 1998. Spinocerebellar ataxia type 7 (SCA7): A neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7: 913–918.

    Article  CAS  PubMed  Google Scholar 

  • Holmberg CI, Staniszewski KE, Mensah KN, Matouschek A, Morimoto RI. 2004. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J 23: 4307–4318.

    Article  CAS  PubMed  Google Scholar 

  • Hough R, Pratt G, Rechsteiner M. 1986. Ubiquitin–lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J Biol Chem 261: 2400–2408.

    CAS  PubMed  Google Scholar 

  • Hough R, Pratt G, Rechsteiner M. 1987. Purification of two high-molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 262: 8303–8313.

    CAS  PubMed  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM. 1993. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 13: 775–784.

    CAS  PubMed  Google Scholar 

  • Huntington's Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971-983.

    Google Scholar 

  • Huynh DP, Del Bigio MR, Ho DH, Pulst SM. 1999. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2. Ann Neurol 45: 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Huynh DP, Scoles DR, Nguyen D, Pulst SM. 2003. The autosomal recessive juvenile Parkinson's disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet 12: 2587–2597.

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, et al. 2002. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 10: 55–67.

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, et al. 2001. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin. Cell 105: 891–902.

    Article  CAS  PubMed  Google Scholar 

  • Inden M, Kondo J, Kitamura Y, Takata K, Nishimura K, et al. 2005. Proteasome inhibitors protect against degeneration of nigral dopaminergic neurons in hemiparkinsonian rats. J Pharmacol Sci 97: 203–211.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Watanabe M, Yoshizawa K, Fujita T, Iwamoto H, et al. 1999. Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry 67: 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, et al. 2003. Parkin gene inactivation alters behavior and dopamine neurotransmission in the mouse. Hum Mol Genet 12: 2277–2291.

    Article  CAS  PubMed  Google Scholar 

  • Jakes R, Spillantini MG, Goedert M. 1994. Identification of two distinct synucleins from human brain. FEBS Lett 345: 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Jana NR, Zemskov EA, Wang G, Nukina N. 2001. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet 10: 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  • Jariel-Encontre I, Pariat M, Martin F, Carillo S, Salvat C, et al. 1995. Ubiquitinylation is not an absolute requirement for degradation of c-Jun protein by the 26 S proteasome. J Biol Chem 270: 11623–11627.

    Article  CAS  PubMed  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR. 1998. Aggresomes: A cellular response to misfolded proteins. J Cell Biol 143: 1883–1898.

    Article  CAS  PubMed  Google Scholar 

  • Kajava AV, Gorbea C, Ortega J, Rechsteiner M, Steven AC. 2004. New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J Struct Biol 146: 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, et al. 1996. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 271: 19385–19394.

    Article  CAS  PubMed  Google Scholar 

  • Kishino T, Lalande M, Wagstaff J. 1997. UBE3A/E6-AP mutations cause Angelman's syndrome. Nat Genet 15: 70–73.

    Article  CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608.

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Pramstaller PP, Kis B, Page CC, Kann M, et al. 2000. Parkin deletions in a family with adult-onset, tremor-dominant parkinsonism: Expanding the phenotype. Ann Neurol 48: 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, et al. 1998. Ataxin-1 nuclear localization and aggregation: Role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95: 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Knowlton JR, Johnston SC, Whitby FG, Realini C, Zhang Z, et al. 1997. Structure of the proteasome activator REGα (PA28α). Nature 390: 639–643.

    Article  CAS  PubMed  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, et al. 1999. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96: 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR. 2000. Aggresomes, inclusion bodies, and protein aggregation. Trends Cell Biol 10: 524–530.

    Article  CAS  PubMed  Google Scholar 

  • Kopp F, Dahlmann B, Hendil KB. 1993. Evidence indicating that the human proteasome is a complex dimer. J Mol Biol 229: 14–19.

    Article  CAS  PubMed  Google Scholar 

  • Kopp F, Dahlmann B, Kuehn L. 2001. Reconstitution of hybrid proteasomes from purified PA700-20S complexes and PA28αβ activator: Ultrastructure and peptidase activities. J Mol Biol 313: 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, et al. 1998. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat Genet 18: 106–108.

    Article  CAS  PubMed  Google Scholar 

  • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM. 2002. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416: 763–767.

    Article  CAS  PubMed  Google Scholar 

  • Lam YA, Xu W, DeMartino GN, Cohen RE. 1997. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385: 737–740.

    Article  CAS  PubMed  Google Scholar 

  • Laney JD, Hochstrasser M. 1999. Substrate targeting in the ubiquitin system. Cell 97: 427–430.

    Article  CAS  PubMed  Google Scholar 

  • La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. 1991. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77–79.

    Article  CAS  PubMed  Google Scholar 

  • Lee LW, Moomaw CR, Orth K, McGuire MJ, De Martino GN, et al. 1990. Relationships among the subunits of the high-molecular weight proteinase, macropain (proteasome). Biochim Biophys Acta 1037: 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Stirling W, Xu Y, Xu X, Qui D, et al. 2002. Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99: 8968–8973.

    Article  CAS  PubMed  Google Scholar 

  • Leroy E, Boyer R, Auburger G, Leube B, Ulm G, et al. 1998. The ubiquitin pathway in Parkinson's disease. Nature 395: 451–452.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gao X, Ortega J, Nazif T, Joss L, et al. 2001. Lysine 188 substitutions convert the pattern of proteasome activation by REGγto that of REGs α and β. The EMBO journal 20: 3359–3369.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Miwa S, Kobayashi Y, Merry DE, Yamamoto M, et al. 1998. Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44: 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Lim KL, Chew KC, Tan JM, Wang C, Chung KK, et al. 2005. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: Implications for Lewy body formation. J Neurosci 25: 2002–2009.

    Article  CAS  PubMed  Google Scholar 

  • Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, et al. 2004. Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem 279: 12924–12934.

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Corboy MJ, De Martino GN, Thomas PJ. 2003. Endoproteolytic activity of the proteasome. Science 299: 408–411.

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, McDermott H, Landon M, Mayer RJ, Wilkinson KD. 1990. Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol 161: 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, et al. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268: 533–539.

    Article  CAS  PubMed  Google Scholar 

  • Ma CP, Slaughter CA, DeMartino GN. 1992. Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J Biol Chem 267: 10515–10523.

    CAS  PubMed  Google Scholar 

  • Maroteaux L, Campanelli JT, Scheller RH. 1988. Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8: 2804–2815.

    CAS  PubMed  Google Scholar 

  • Marsh JL, Walker H, Theisen H, Zhu YZ, Fielder T, et al. 2000. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet 9: 13–25.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Aparicio E, Yamamoto A, Hernandez F, Hen R, Avila J, et al. 2001. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. J Neurosci 21: 8772–8781.

    CAS  PubMed  Google Scholar 

  • Martin-Clemente B, Alvarez-Castelao B, Mayo I, Sierra AB, Diaz V, et al. 2004. α-Synuclein expression levels do not significantly affect proteasome function and expression in mice and stably transfected PC12 cell lines. J Biol Chem 279: 52984–52990.

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, et al. 2000. Dopaminergic loss and inclusion body formation in α-synuclein mice: Implications for neurodegenerative disorders. Science 287: 1265–1269.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, et al. 2004. Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J 23: 659–669.

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Jenner P. 2001. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett 297: 191–194.

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Mytilineou C, Jnobaptiste R, Yabut J, Shashidharan P, et al. 2002. Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81: 301–306.

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. 2001. Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat Rev Neurosci 2: 589–594.

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Perl DP, Brownell AL, Olanow CW. 2004. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Ann Neurol 56: 149–162.

    Article  CAS  PubMed  Google Scholar 

  • Michalik A, Van Broeckhoven C. 2004. Proteasome degrades soluble expanded polyglutamine completely and efficiently. Neurobiol Dis 16: 202–211.

    Article  CAS  PubMed  Google Scholar 

  • Mott JD, Pramanik BC, Moomaw CR, Afendis SJ, De Martino GN, et al. 1994. PA28, an activator of the 20 S proteasome, is composed of two nonidentical but homologous subunits. J Biol Chem 269: 31466–31471.

    CAS  PubMed  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, et al. 1992. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360: 597–599.

    Article  CAS  PubMed  Google Scholar 

  • Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, et al. 1999. Growth retardation in mice lacking the proteasome activator PA28γ. J Biol Chem 274: 38211–38215.

    Article  CAS  PubMed  Google Scholar 

  • Myung J, Kim KB, Crews CM. 2001. The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 21: 245–273.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, et al. 2001. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10: 1441–1448.

    Article  CAS  PubMed  Google Scholar 

  • Nikaido T, Shimada K, Shibata M, Hata M, Sakamoto M, et al. 1990. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin Exp Immunol 79: 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, et al. 2004. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA 101: 6403–6408.

    Article  CAS  PubMed  Google Scholar 

  • Okochi M, Walter J, Koyama A, Nakajo S, Baba M, et al. 2000. Constitutive phosphorylation of the Parkinson's disease associated α-synuclein. J Biol Chem 275: 390–397.

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Perl DP, De Martino GN, McNaught KS. 2004. Lewy-body formation is an aggresome-related process: A hypothesis. Lancet Neurol 3: 496–503.

    Article  PubMed  Google Scholar 

  • Ordway JM, Tallaksen-Greene S, Gutekunst CA, Bernstein EM, Cearley JA, et al. 1997. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 91: 753–763.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M. 2001. Selective activation of the 20 S proteasome (multicatalytic proteinase complex) by histone h3. Biochemistry 40: 15318–15326.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Wilk S. 1981. A multicatalytic protease complex from pituitary that forms enkephalin and enkephalin containing peptides. Biochem Biophys Res Commun 101: 814–822.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Wilk S. 2000. Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 383: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Wilk S. 2003. Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 415: 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Cardozo C, Eleuteri AM, Kohanski R, Kam CM, et al. 1997. Reactions of [14C]-3,4-dichloroisocoumarin with subunits of pituitary and spleen multicatalytic proteinase complexes (proteasomes). Biochemistry 36: 13946–13953.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Cardozo C, Michaud C. 1993. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32: 1563–1572.

    Article  CAS  PubMed  Google Scholar 

  • Ortega J, Heymann JB, Kajava AV, Ustrell V, Rechsteiner M, et al. 2005. The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J Mol Biol 346: 1221–1227.

    Article  CAS  PubMed  Google Scholar 

  • Ostrowska H, Wojcik C, Omura S, Worowski K. 1997. Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme. Biochem Biophys Res Commun 234: 729–732.

    Article  CAS  PubMed  Google Scholar 

  • Outeiro TF, Lindquist S. 2003. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302: 1772–1775.

    Article  CAS  PubMed  Google Scholar 

  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. 1994. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78: 773–785.

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Hong S, Kim SJ, Kang S. 2005. Proteasome function is inhibited by polyglutamine-expanded ataxin-1, the SCA1 gene product. Mol Cell 19: 23–30.

    Article  CAS  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT. 1994. Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91: 5355–5358.

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Windle AH. 2001. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412: 143–144.

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA. 1994. Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269: 7709–7718.

    CAS  PubMed  Google Scholar 

  • Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, et al. 2002. Parkin protects against the toxicity associated with mutant α-synuclein: Proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36: 1007–1019.

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski J, Beal R, Hoffman L, Wilkinson KD, Cohen RE, et al. 1997. Inhibition of the 26S proteasome by polyubiquitin chains synthesized to have defined lengths. J Biol Chem 272: 23712–23721.

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276: 2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Pühler G, Weinkauf S, Bachmann L, Muller S, Engel A, et al. 1992. Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J 11: 1607–1616.

    PubMed  Google Scholar 

  • Realini C, Dubiel W, Pratt G, Ferrell K, Rechsteiner M. 1994. Molecular cloning and expression of a gamma-interferon-inducible activator of the multicatalytic protease. J Biol Chem 269: 20727–20732.

    CAS  PubMed  Google Scholar 

  • Rechsteiner M, Rogers SW. 1996. PEST sequences and regulation by proteolysis. Trends Biochem Sci 21: 267–271.

    CAS  PubMed  Google Scholar 

  • Ren Y, Zhao J, Feng J. 2003. Parkin binds to α/β tubulin and increases their ubiquitination and degradation. J Neurosci 23: 3316–3324.

    CAS  PubMed  Google Scholar 

  • Rodgers KJ, Dean RT. 2003. Assessment of proteasome activity in cell lysates and tissue homogenates using peptide substrates. Int J Biochem Cell Biol 35: 716–727.

    Article  CAS  PubMed  Google Scholar 

  • Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D. 1998. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17: 4909–4919.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz de Mena I, Mahillo E, Arribas J, Castano JG. 1993. Kinetic mechanism of activation by cardiolipin (diphosphatidylglycerol) of the rat liver multicatalytic proteinase. Biochem J 296: 93–97.

    CAS  PubMed  Google Scholar 

  • Sanchez I, Mahlke C, Yuan J. 2003. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421: 373–379.

    Article  CAS  PubMed  Google Scholar 

  • Saudou F, Finkbeiner S, Devys D, Greenberg ME. 1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Huibregtse JM, Howley PM. 1994. Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc Natl Acad Sci USA 91: 8797–8801.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, et al. 2005. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12: 294–303.

    Article  CAS  PubMed  Google Scholar 

  • Seemuller E, Lupas A, Stock D, Lowe J, Huber R, et al. 1995. Proteasome from Thermoplasma acidophilum: A threonine protease. Science 268: 579–582.

    Article  CAS  PubMed  Google Scholar 

  • Seo H, Sonntag KC, Isacson O. 2004. Generalized brain and skin proteasome inhibition in Huntington's disease. Ann Neurol 56: 319–328.

    Article  CAS  PubMed  Google Scholar 

  • Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, et al. 2000. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 5: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Shibatani T, Ward WF. 1995. Sodium dodecyl sulfate (SDS) activation of the 20S proteasome in rat liver. Arch Biochem Biophys 321: 160–166.

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, et al. 2000. Familial Parkinson disease gene product, parkin, is a ubiquitin–protein ligase. Nat Genet 25: 302–305.

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, et al. 2001. Ubiquitination of a new form of α-synuclein by parkin from human brain: Implications for Parkinson's disease. Science 293: 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, et al. 2003. Aggregated and monomeric α-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem 278: 11753–11759.

    Article  CAS  PubMed  Google Scholar 

  • Sorimachi H, Kawasaki H, Tsukahara T, Ishiura S, Emori Y, et al. 1991. Sequence comparison among subunits of multicatalytic proteinase. Biomed Biochim Acta 50: 459–464.

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, et al. 1997. α-Synuclein in Lewy bodies. Nature 388: 839–840.

    Article  CAS  PubMed  Google Scholar 

  • Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, et al. 2003. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37: 735–749.

    Article  CAS  PubMed  Google Scholar 

  • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, et al. 1995. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6: 185–197.

    CAS  PubMed  Google Scholar 

  • Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, et al. 2000. Hybrid proteasomes. Induction by interferon-γ and contribution to ATP-dependent proteolysis. J Biol Chem 275: 14336–14345.

    Article  CAS  PubMed  Google Scholar 

  • Tanahashi N, Yokota K, Ahn JY, Chung CH, Fujiwara T, et al. 1997. Molecular properties of the proteasome activator PA28 family proteins and interferon-γ regulation. Genes Cells 2: 195–211.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K. 1998. Molecular biology of the proteasome. Biochem Biophys Res Commun 247: 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kasahara M. 1998. The MHC class I ligand-generating system: Roles of immunoproteasomes and the interferon-γ-inducible proteasome activator PA28. Immunol Rev 163: 161–176.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Suzuki T, Chiba T, Shimura H, Hattori N, et al. 2001a. Parkin is linked to the ubiquitin pathway. J Mol Med 79: 482–494.

    Article  CAS  Google Scholar 

  • Tanaka Y, Engelender S, Igarashi S, Rao RK, Wanner T, et al. 2001b. Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 10: 919–926.

    Article  CAS  Google Scholar 

  • Tarcsa E, Szymanska G, Lecker S, O'Connor CM, Goldberg AL. 2000. Ca2+-free calmodulin and calmodulin damaged by in vitro aging are selectively degraded by 26S proteasomes without ubiquitination. J Biol Chem 275: 20295–20301.

    Article  CAS  PubMed  Google Scholar 

  • Taylor JP, Tanaka F, Robitschek J, Sandoval CM, Taye A, et al. 2003. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 12: 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Tofaris GK, Layfield R, Spillantini MG. 2001. α-Synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett 509: 22–26.

    Article  CAS  PubMed  Google Scholar 

  • Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG. 2003. Ubiquitination of α-Synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 278: 44405–44411.

    Article  CAS  PubMed  Google Scholar 

  • Traenckner EB, Wilk S, Baeuerle PA. 1994. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκB-α that is still bound to NF-κB. EMBO J 13: 5433–5441.

    CAS  PubMed  Google Scholar 

  • Udvardy A. 1993. Purification and characterization of a multiprotein component of the Drosophila 26 S (1500 kDa) proteolytic complex. J Biol Chem 268: 9055–9062.

    CAS  PubMed  Google Scholar 

  • Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, et al. 1993. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer's disease. Proc Natl Acad Sci USA 90: 11282–11286.

    Article  CAS  PubMed  Google Scholar 

  • Ugai S, Tamura T, Tanahashi N, Takai S, Komi N, et al. 1993. Purification and characterization of the 26S proteasome complex catalyzing ATP-dependent breakdown of ubiquitin-ligated proteins from rat liver. J Biochem 113: 754–768.

    CAS  PubMed  Google Scholar 

  • Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, et al. 2002. The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10: 609–618.

    Article  CAS  PubMed  Google Scholar 

  • Ustrell V, Hoffman L, Pratt G, Rechsteiner M. 2002. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21: 3516–3525.

    Article  CAS  PubMed  Google Scholar 

  • van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, et al. 1996. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16: 6020–6028.

    CAS  PubMed  Google Scholar 

  • Varshavsky A, Turner G, Du F, Xie Y. 2000. The ubiquitin system and the N-end rule pathway. Biol Chem 381: 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL. 2004. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell 14: 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Verhoef LG, Lindsten K, Masucci MG, Dantuma NP. 2002. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 11: 2689–2700.

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, et al. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298: 611–615.

    Article  CAS  PubMed  Google Scholar 

  • Vigouroux S, Furukawa Y, Farout LJ, Kish S, Briand M, et al. 2003. Peptidase activities of the 20/26S proteasome and a novel protease in human brain. J Neurochem 84: 392–396.

    Article  CAS  PubMed  Google Scholar 

  • Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, et al. 2001. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 12: 1393–1407.

    CAS  PubMed  Google Scholar 

  • Walz J, Erdmann A, Kania M, Typke D, Koster AJ, et al. 1998. 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121: 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Waxman L, Fagan JM, Goldberg AL. 1987. Demonstration of two distinct high-molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J Biol Chem 262: 2451–2457.

    CAS  PubMed  Google Scholar 

  • Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, et al. 2000. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408: 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, et al. 1999. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145: 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Wilk S, Chen WE. 1997. Synthetic peptide-based activators of the proteasome. Mol Biol Rep 24: 119–124.

    Article  CAS  PubMed  Google Scholar 

  • Wilk S, Chen WE, Magnusson RP. 2000. Properties of the nuclear proteasome activator PA28γ(REGγ). Arch Biochem Biophys 383: 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Wilk S, Orlowski M. 1980. Cation-sensitive neutral endopeptidase: Isolation and specificity of the bovine pituitary enzyme. J Neurochem 35: 1172–1182.

    Article  CAS  PubMed  Google Scholar 

  • Wilk S, Orlowski M. 1983. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem 40: 842–849.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson KD, Hochstrasser M. 1998. The deubiquitinating enzymes. Ubiquitin and the biology of the cell. Peters J-M, Harris JR, Finley D, editors. New York: Plenum Press, pp. 99–125.

    Google Scholar 

  • Wilkinson KD, Urban MK, Haas AL. 1980. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem 255: 7529–7532.

    CAS  PubMed  Google Scholar 

  • Willingham S, Outeiro TF, De Vit MJ, Lindquist SL, Muchowski PJ. 2003. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein. Science 302: 1769–1772.

    Article  CAS  PubMed  Google Scholar 

  • Wojcik C, Schroeter D, Wilk S, Lamprecht J, Paweletz N. 1996. Ubiquitin-mediated proteolysis centers in HeLa cells: Indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur J Cell Biol 71: 311–318.

    CAS  PubMed  Google Scholar 

  • Wojcik C, Tanaka K, Paweletz N, Naab U, Wilk S. 1998. Proteasome activator (PA28) subunits, α, β, and γ (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. Eur J Cell Biol 77: 151–160.

    CAS  PubMed  Google Scholar 

  • Yamano H, Tsurumi C, Gannon J, Hunt T. 1998. The role of the destruction box and its neighboring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: Defining the D-box receptor. EMBO J 17: 5670–5678.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Dunlap JR, Andrews RB, Wetzel R. 2002. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 11: 2905–2917.

    Article  CAS  PubMed  Google Scholar 

  • Yao T, Cohen RE. 2002. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419: 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Kameyama K, Takagi T, Ikai A, Tokunaga F, et al. 1993. Molecular characterization of the “26S” proteasome complex from rat liver. J Struct Biol 111: 200–211.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, et al. 2000. Parkin functions as an E2-dependent ubiquitin–protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97: 13354–13359.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Krutchinsky A, Endicott S, Realini C, Rechsteiner M, et al. 1999. Proteasome activator 11S REG or PA28: Recombinant REG α/REG β heterooligomers are heptamers. Biochemistry 38: 5651–5658.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Ren Y, Jiang Q, Feng J. 2003. Parkin is recruited to the centrosome in response to inhibition of proteasomes. J Cell Sci 116: 4011–4019.

    Article  CAS  PubMed  Google Scholar 

  • Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, et al. 1997. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α 1A-voltage-dependent calcium channel. Nat Genet 15: 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Zwickl P, Grziwa A, Puhler G, Dahlmann B, Lottspeich F, et al. 1992. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31: 964–972.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Wilk, S. (2007). The Proteasome, Protein Aggregation, and Neurodegeneration. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_13

Download citation

Publish with us

Policies and ethics