Skip to main content

Protein Folding

  • Reference work entry
  • First Online:
Book cover Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Since Anfinsen's famous experiments in the 1960s, it has been known that the complex three-dimensional structure of protein molecules is encoded in their amino acid sequences, and the chains autonomously fold under proper conditions. Cracking this code, which is sometimes called “the second part of the genetic code,” has been one of the greatest challenges of molecular biology. Although a full understanding of how proteins fold remains elusive, theoretical and experimental studies of protein folding have come a long way since Anfinsen's findings. In the living cell, folding occurs in a complex and crowded environment, often involving helper proteins, and in some cases it can go awry: the protein can misfold, aggregate, or form amyloid fibers. It is increasingly recognized that misfolded proteins and amyloid formation are the root cause of a number of serious illnesses including several neurodegenerative diseases. Therefore, the study of protein folding remains a key area of biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

CCP:

chaperonin-containing TCP-1

CIDNP:

chemically induced nuclear polarization

DMD:

discrete molecular dynamics

EM:

electron microscopy

ESIMS:

electrospray ionization mass spectrometry

FIS:

factor for inversion stimulation

FMN:

flavin mononucleotide

NOE:

nuclear Overhauser effect

TF:

trigger factor

TCP-1:

tailless complex polypeptide-1

References

  • Akasaka K, Yamada H. 2001. On-line cell high-pressure nuclear magnetic resonance technique: Application to protein studies. Methods Enzymol 338: 134–158.

    CAS  PubMed  Google Scholar 

  • Akiyama S, Takahashi S, Kimura T, Ishimori K, Morishima I, et al. 2002. Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Proc Natl Acad Sci USA 99: 1329–1334.

    Article  CAS  PubMed  Google Scholar 

  • Alm E, Baker D. 1999. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc Natl Acad Sci USA 96: 11305–11310.

    Article  CAS  PubMed  Google Scholar 

  • Alonso DO, Daggett V. 1998. Molecular dynamics simulations of hydrophobic collapse of ubiquitin. Protein Sci 7: 860–874.

    Article  CAS  PubMed  Google Scholar 

  • Amaral MD. 2004. Cftr and chaperones: Processing and degradation. J Mol Neurosci 23: 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181: 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Arai M, Kuwajima K. 2000. Role of the molten globule state in protein folding. Adv Protein Chem 53: 209–282.

    Article  CAS  PubMed  Google Scholar 

  • Arnold MR, Kremer W, Ludemann HD, Kalbitzer HR. 2002. 1H-NMR parameters of common amino acid residues measured in aqueous solutions of the linear tetrapeptides gly-gly-x-ala at pressures between 0.1 and 200 MPa. Biophys Chem 96: 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Sosnick TR, Mayne L, Englander SW. 1995. Protein folding intermediates: Native-state hydrogen exchange. Science 269: 192–197.

    Article  CAS  PubMed  Google Scholar 

  • Baker D. 2000. A surprising simplicity to protein folding. Nature 405: 39–42.

    Article  CAS  PubMed  Google Scholar 

  • Balbach J, Schmid FX. 2000. Proline isomerization and its catalysis in protein folding. Mechanisms of Protein Folding. Pain RH, editor. Oxford: Oxford University Press; pp. 212–249.

    Google Scholar 

  • Balbach J, Forge V, Lau WS, van Nuland NA, Brew K, et al. 1996. Protein folding monitored at individual residues during a two-dimensional NMR experiment. Science 274: 1161–1163.

    Article  CAS  PubMed  Google Scholar 

  • Balbach J, Forge V, van Nuland NA, Winder SL, Hore PJ, et al. 1995. Following protein folding in real time using NMR spectroscopy. Nat Struct Biol 2: 865–870.

    Article  CAS  PubMed  Google Scholar 

  • Balbach J, Steegborn C, Schindler T, Schmid FX. 1999. A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy. J Mol Biol 285: 829–842.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL. 1989. How does protein folding get started? Trends Biochem Sci 14: 291–294.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL. 1996. On-pathway versus off-pathway folding intermediates. Fold Des 1: R1–R8.

    Article  CAS  PubMed  Google Scholar 

  • Becker OM, Karplus M. 1997. The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics. J Chem Phys 106: 1495–1517.

    Article  CAS  Google Scholar 

  • Bennett MJ, Choe S, Eisenberg D. 1994. Domain swapping: Entangling alliances between proteins. Proc Natl Acad Sci USA 91: 3127–3131.

    Article  CAS  PubMed  Google Scholar 

  • Bergman LW, Kuehl WM. 1979. Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J Biol Chem 254: 8869–8876.

    CAS  PubMed  Google Scholar 

  • Blond S, Goldberg ME. 1986. Kinetic characterization of early intermediates in the folding of E. coli tryptophan-synthase β2 subunit. Proteins 1: 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Borysik AJH, Radford SE, Ashcroft AE. 2004. Co-populated conformational ensembles of β2-microglobulin uncovered quantitatively by electrospray ionization mass spectrometry. J Biol Chem 279: 27069–27077.

    Article  CAS  PubMed  Google Scholar 

  • Braakman I, Helenius J, Helenius A. 1992. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11: 1717–1722.

    CAS  PubMed  Google Scholar 

  • Braakman I, Hoover-Litty H, Wagner KR, Helenius A. 1991. Folding of influenza hemagglutinin in the endoplasmic reticulum. J Cell Biol 114: 401–411.

    Article  CAS  PubMed  Google Scholar 

  • Bradley P, Misura KMS, Baker D. 2005. Toward high-resolution de novo structure prediction for small proteins. Science 309: 1868–1871.

    Article  CAS  PubMed  Google Scholar 

  • Brandts JF, Halvorson HR, Brennan M. 1975. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14: 4953–4963.

    Article  CAS  PubMed  Google Scholar 

  • Brinker A, Pfeifer G, Kerner MJ, Naylor DJ, Hartl FU, et al. 2001. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107: 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Broome BM, Hecht MH. 2000. Nature disfavors sequences of alternating polar and non-polar amino acids: Implications for amyloidogenesis. J Mol Biol 296: 961–968.

    Article  CAS  PubMed  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. 1995. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Proteins 21: 167–195.

    Article  CAS  PubMed  Google Scholar 

  • Bryngelson JD, Wolynes PG. 1987. Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci USA 84: 7524–7528.

    Article  CAS  PubMed  Google Scholar 

  • Bulaj G. 2005. Formation of disulfide bonds in proteins and peptides. Biotechnol Adv 23: 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Bulaj G, Goldenberg DP. 2001. Φ-values for BPTI folding intermediates and implications for transition state analysis. Nat Struct Biol 8: 326–330.

    Article  CAS  PubMed  Google Scholar 

  • Bulleid NJ, Freedman RB. 1988. Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335: 649–651.

    Article  CAS  PubMed  Google Scholar 

  • Canet D, Last AM, Tito P, Sunde M, Spencer A, et al. 2002. Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat Struct Biol 9: 308–315.

    Article  CAS  PubMed  Google Scholar 

  • Capaldi AP, Kleanthous C, Radford SE. 2002. Im7 folding mechanism: Misfolding on a path to the native state. Nat Struct Biol 9: 209–216.

    CAS  PubMed  Google Scholar 

  • Carlsson U, Jonsson BH. 1995. Folding of β-sheet proteins. Curr Opin Struct Biol 5: 482–487.

    Article  CAS  PubMed  Google Scholar 

  • Carra JH, Privalov PL. 1996. Thermodynamics of denaturation of staphylococcal nuclease mutants: An intermediate state in protein folding. FASEB J 10: 67–74.

    CAS  PubMed  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, et al. 2000. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74: 63–91.

    Article  CAS  PubMed  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, et al. 1999. Mechanical and chemical unfolding of a single protein: A comparison. Proc Natl Acad Sci USA 96: 3694–3699.

    Article  CAS  PubMed  Google Scholar 

  • Cecconi C, Shank EA, Bustamante C, Marqusee S. 2005. Direct observation of the three-state folding of a single protein molecule. Science 309: 2057–2060.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Ittah V, Bai P, Luo L, Haas E, et al. 2001. Structure and dynamics of the α-lactalbumin molten globule: Fluorescence studies using proteins containing a single tryptophan residue. Biochemistry 40: 7228–7238.

    Article  CAS  PubMed  Google Scholar 

  • Chan CK, Hu Y, Takahashi S, Rousseau DL, Eaton WA, et al. 1997. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc Natl Acad Sci USA 94: 1779–1784.

    Article  CAS  PubMed  Google Scholar 

  • Chan HS, Dill KA. 1996. A simple model of chaperonin-mediated protein folding. Proteins 24: 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Chan HS, Dill KA. 1998. Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics. Proteins 30: 2–33.

    Article  CAS  PubMed  Google Scholar 

  • Chatrenet B, Chang JY. 1992. The folding of hirudin adopts a mechanism of trial and error. J Biol Chem 267: 3038–3043.

    CAS  PubMed  Google Scholar 

  • Cheng HN, Bovey FA. 1977. Cis-trans equilibrium and kinetic studies of acetyl-l-proline and glycyl-l-proline. Biopolymers 16: 1465–1472.

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333–366.

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, et al. 2002. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci USA 99 (Suppl. 4): 16419–16426.

    Article  CAS  PubMed  Google Scholar 

  • Chrunyk BA, Matthews CR. 1990. Role of diffusion in the folding of the α subunit of tryptophan synthase from Escherichia coli. Biochemistry 29: 2149–2154.

    Article  CAS  PubMed  Google Scholar 

  • Clementi C, Nymeyer H, Onuchic JN. 2000. Topological and energetic factors: What determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298: 937–953.

    Article  CAS  PubMed  Google Scholar 

  • Crane JC, Koepf EK, Kelly JW, Gruebele M. 2000. Mapping the transition state of the WW domain β-sheet. J Mol Biol 298: 283–292.

    Article  CAS  PubMed  Google Scholar 

  • Creighton TE. 1979. Intermediates in the refolding of reduced ribonuclease A. J Mol Biol 129: 411–431.

    Article  CAS  PubMed  Google Scholar 

  • Creighton TE. 1990. Protein folding. Biochem J 270: 1–16.

    CAS  PubMed  Google Scholar 

  • Creighton TE. 1997. Protein folding coupled to disulphide bond formation. Biol Chem 378: 731–744.

    Article  CAS  PubMed  Google Scholar 

  • Creighton TE. 2000. Protein folding coupled to disulphide-bond formation. Mechanisms of protein folding. Pain RH, editor. Oxford: Oxford University Press; pp. 250–278.

    Google Scholar 

  • Creighton TE, Goldenberg DP. 1984. Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J Mol Biol 179: 497–526.

    Article  CAS  PubMed  Google Scholar 

  • Dabora JM, Pelton JG, Marqusee S. 1996. Structure of the acid state of Escherichia coli ribonuclease HI. Biochemistry 35: 11951–11958.

    Article  CAS  PubMed  Google Scholar 

  • Daggett V, Fersht AR. 2000. Transition states in protein folding. Mechanisms of protein folding. Pain RH, editor. Oxford: Oxford University Press; pp. 175–211.

    Google Scholar 

  • Daggett V, Fersht AR. 2003. Is there a unifying mechanism for protein folding? Trends Biochem Sci 28: 18–25.

    Article  CAS  PubMed  Google Scholar 

  • Dautry-Varsat A, Garel JR. 1981. Independent folding regions in aspartokinase-homoserine dehydrogenase. Biochemistry 20: 1396–1401.

    Article  CAS  PubMed  Google Scholar 

  • Day R, Daggett V. 2003. All-atom simulations of protein folding and unfolding. Adv Protein Chem 66: 373–403.

    Article  CAS  PubMed  Google Scholar 

  • Demarest SJ, Horng JC, Raleigh DP. 2001. A protein dissection study demonstrates that two specific hydrophobic clusters play a key role in stabilizing the core structure of the molten globule state of human α-lactalbumin. Proteins 42: 237–242.

    Article  CAS  PubMed  Google Scholar 

  • Dill KA. 1985. Theory for the folding and stability of globular proteins. Biochemistry 24: 1501–1509.

    Article  CAS  PubMed  Google Scholar 

  • Dill KA. 1990. Dominant forces in protein folding. Biochemistry 29: 7133–7155.

    Article  CAS  PubMed  Google Scholar 

  • Dill KA. 1999. Polymer principles and protein folding. Protein Sci 8: 1166–1180.

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, Chan HS. 1997. From Levinthal to pathways to funnels. Nat Struct Biol 4: 10–19.

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, et al. 1995. Principles of protein folding—a perspective from simple exact models. Protein Sci 4: 561–602.

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Dokholyan NV. 2005. Simple but predictive protein models. Trends Biotechnol 23: 450–455.

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Buldyrev SV, Dokholyan NV. 2005a. Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. Biophys J 88: 147–155.

    Article  CAS  Google Scholar 

  • Ding F, Guo W, Dokholyan NV, Shakhnovich EI, Shea J. 2005b. Reconstruction of the src-SH3 protein domain transition state ensemble using multiscale molecular dynamics simulations. J Mol Biol 350: 1035–1050.

    Article  CAS  Google Scholar 

  • Dobson CM. 1994. Protein folding. Solid evidence for molten globules. Curr Biol 4: 636–640.

    Article  CAS  PubMed  Google Scholar 

  • Dokholyan NV. 2006. Studies of folding and misfolding using simplified models. Curr Opin Struct Biol 16: 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Kollman PA. 1998. Pathways to a protein folding intermediate observed in a 1-μs simulation in aqueous solution. Science 282: 740–744.

    Article  CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE. 1996. Insights into protein folding from NMR. Annu Rev Phys Chem 47: 369–395.

    Article  CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE. 2002. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12: 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Ellgaard L, Ruddock LW. 2005. The human protein disulphide isomerase family: Substrate interactions and functional properties. EMBO Rep 6: 28–32.

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ. 2005. Chaperone function: The orthodox view. Molecular Chaperones and Cell Signalling. Henderson B, Pockley AG, editors. Cambridge University Press; pp. 3–21.

    Google Scholar 

  • Ellis RJ. 2006. Molecular chaperones: Assisting assembly in addition to folding. Trends Biochem Sci 31: 395–401.

    Article  CAS  PubMed  Google Scholar 

  • Englander SW. 2000. Protein folding intermediates and pathways studied by hydrogen exchange. Annu Rev Biophys Biomol Struct 29: 213–238.

    Article  CAS  PubMed  Google Scholar 

  • Englander SW, Mayne L. 1992. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct 21: 243–265.

    Article  CAS  PubMed  Google Scholar 

  • Erickson HP. 1997. Stretching single protein molecules: Titin is a weird spring. Science 276: 1090–1092.

    Article  CAS  PubMed  Google Scholar 

  • Evans MS, Clarke TF, Clark PL. 2005. Conformations of co-translational folding intermediates. Protein Pept Lett 12: 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Evans PA, Dobson CM, Kautz RA, Hatfull G, Fox RO. 1987. Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis. Nature 329: 266–268.

    Article  CAS  PubMed  Google Scholar 

  • Eyles SJ. 2001. Proline not the only culprit? Nat Struct Biol 8: 380–381.

    Article  CAS  PubMed  Google Scholar 

  • Eyles SJ, Kaltashov IA. 2004. Methods to study protein dynamics and folding by mass spectrometry. Methods 34: 88–99.

    Article  CAS  PubMed  Google Scholar 

  • Fabian H, Naumann D. 2004. Methods to study protein folding by stopped-flow FT-IR. Methods 34: 28–40.

    Article  CAS  PubMed  Google Scholar 

  • Farr GW, Furtak K, Rowland MB, Ranson NA, Saibil HR, et al. 2000. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 100: 561–573.

    Article  CAS  PubMed  Google Scholar 

  • Fersht AR. 1995. Optimization of rates of protein folding: The nucleation-condensation mechanism and its implications. Proc Natl Acad Sci USA 92: 10869–10873.

    Article  CAS  PubMed  Google Scholar 

  • Fersht AR. 1997. Nucleation mechanisms in protein folding. Curr Opin Struct Biol 7: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Fersht AR, Daggett V. 2002. Protein folding and unfolding at atomic resolution. Cell 108: 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Fersht AR, Sato S. 2004. Φ-value analysis and the nature of protein-folding transition states. Proc Natl Acad Sci USA 101: 7976–7981.

    Article  CAS  PubMed  Google Scholar 

  • Fersht AR, Matouschek A, Serrano L. 1992. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol 224: 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Fitch CA, Whitten ST, Hilser VJ, Garcia-Moreno EB. 2006. Molecular mechanisms of pH-driven conformational transitions of proteins: Insights from continuum electrostatics calculations of acid unfolding. Proteins 63: 113–126.

    Article  CAS  PubMed  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB. 1990. Three-dimensional structure of the ATPase fragment of a 70k heat-shock cognate protein. Nature 346: 623–628.

    Article  CAS  PubMed  Google Scholar 

  • Flynn GC, Pohl J, Flocco MT, Rothman JE. 1991. Peptide-binding specificity of the molecular chaperone BiP. Nature 353: 726–730.

    Article  CAS  PubMed  Google Scholar 

  • Forge V, Wijesinha RT, Balbach J, Brew K, Robinson CV, et al. 1999. Rapid collapse and slow structural reorganisation during the refolding of bovine α-lactalbumin. J Mol Biol 288: 673–688.

    Article  CAS  PubMed  Google Scholar 

  • Franks F. 1995. Protein destabilization at low temperatures. Adv Protein Chem 46: 105–139.

    Article  CAS  PubMed  Google Scholar 

  • Freedman RB. 1989. Protein disulfide isomerase: Multiple roles in the modification of nascent secretory proteins. Cell 57: 1069–1072.

    Article  CAS  PubMed  Google Scholar 

  • Frydman J. 2001. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu Rev Biochem 70: 603–647.

    Article  CAS  PubMed  Google Scholar 

  • Fulton KF, Main ER, Daggett V, Jackson SE. 1999. Mapping the interactions present in the transition state for unfolding/folding of FKBP12. J Mol Biol 291: 445–461.

    Article  CAS  PubMed  Google Scholar 

  • Galzitskaya OV, Finkelstein AV. 1999. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proc Natl Acad Sci USA 96: 11299–11304.

    Article  CAS  PubMed  Google Scholar 

  • Garel JR, Dautry-Varsat A. 1980. Sequential folding of a bifunctional allosteric protein. Proc Natl Acad Sci USA 77: 3379–3383.

    Article  CAS  PubMed  Google Scholar 

  • Gejyo F, Yamada T, Odani S, Nakagawa Y, Arakawa M, et al. 1985. A new form of amyloid protein associated with chronic hemodialysis was identified as β2-microglobulin. Biochem Biophys Res Commun 129: 701–706.

    Article  CAS  PubMed  Google Scholar 

  • Gibson QH, Milnes L. 1964. Apparatus for rapid and sensitive spectrophotometry. Biochem J 91: 161–171.

    CAS  PubMed  Google Scholar 

  • Gilbert HF. 1997. Protein disulfide isomerase and assisted protein folding. J Biol Chem 272: 29399–29402.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie B, Plaxco KW. 2004. Using protein folding rates to test protein folding theories. Annu Rev Biochem 73: 837–859.

    Article  CAS  PubMed  Google Scholar 

  • Gloss LM, Simler BR, Matthews CR. 2001. Rough energy landscapes in protein folding: Dimeric E. coli trp repressor folds through three parallel channels. J Mol Biol 312: 1121–1134.

    Article  CAS  PubMed  Google Scholar 

  • Go N. 1983. Theoretical studies of protein folding. Annu Rev Biophys Bioeng 12: 183–210.

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg DP. 1999. Finding the right fold. Nat Struct Biol 6: 987–990.

    Article  CAS  PubMed  Google Scholar 

  • Gothel SF, Marahiel MA. 1999. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55: 423–436.

    Article  CAS  PubMed  Google Scholar 

  • Grantcharova V, Alm EJ, Baker D, Horwich AL. 2001. Mechanisms of protein folding. Curr Opin Struct Biol 11: 70–82.

    Article  CAS  PubMed  Google Scholar 

  • Grantcharova VP, Riddle DS, Santiago JV, Baker D. 1998. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nat Struct Biol 5: 714–720.

    Article  CAS  PubMed  Google Scholar 

  • Grathwohl C, Wuthrich K. 1981. NMR studies of the rates of proline cis-trans isomerization in oligopeptides. Biopolymers 20: 2623–2633.

    Article  CAS  Google Scholar 

  • Gross M, Hessefort S. 1996. Purification and characterization of a 66-kDa protein from rabbit reticulocyte lysate which promotes the recycling of hsp 70. J Biol Chem 271: 16833–16841.

    Article  CAS  PubMed  Google Scholar 

  • Gruebele M. 2002. Protein folding: The free energy surface. Curr Opin Struct Biol 12: 161–168.

    Article  CAS  PubMed  Google Scholar 

  • Gruebele M. 2005. Downhill protein folding: Evolution meets physics. C R Biol 328: 701–712.

    Article  CAS  PubMed  Google Scholar 

  • Hamada D, Segawa S, Goto Y. 1996. Non-native α-helical intermediate in the refolding of β-lactoglobulin, a predominantly β-sheet protein. Nat Struct Biol 3: 868–873.

    Article  CAS  PubMed  Google Scholar 

  • Harrison SC, Durbin R. 1985. Is there a single pathway for the folding of a polypeptide chain?. Proc Natl Acad Sci USA 82: 4028–4030.

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571–579.

    Article  CAS  PubMed  Google Scholar 

  • Heidary DK, Gross LA, Roy M, Jennings PA. 1997. Evidence for an obligatory intermediate in the folding of interleukin-1β. Nat Struct Biol 4: 725–731.

    Article  CAS  PubMed  Google Scholar 

  • Herning T, Yutani K, Taniyama Y, Kikuchi M. 1991. Effects of proline mutations on the unfolding and refolding of human lysozyme: The slow refolding kinetic phase does not result from proline cis-trans isomerization. Biochemistry 30: 9882–9891.

    Article  CAS  PubMed  Google Scholar 

  • Herold M, Leistler B, Hage A, Luger K, Kirschner K. 1991. Autonomous folding and coenzyme binding of the excised pyridoxal 5′-phosphate binding domain of aspartate aminotransferase from Escherichia coli. Biochemistry 30: 3612–3620.

    Article  CAS  PubMed  Google Scholar 

  • Hesterkamp T, Hauser S, Lutcke H, Bukau B. 1996. Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci USA 93: 4437–4441.

    Article  CAS  PubMed  Google Scholar 

  • Hobart SA, Ilin S, Moriarty DF, Osuna R, Colon W. 2002. Equilibrium denaturation studies of the Escherichia coli factor for inversion stimulation: Implications for in vivo function. Protein Sci 11: 1671–1680.

    Article  CAS  PubMed  Google Scholar 

  • Hoerner JK, Xiao H, Kaltashov IA. 2005. Structural and dynamic characteristics of a partially folded state of ubiquitin revealed by hydrogen exchange mass spectrometry. Biochemistry 44: 11286–11294.

    Article  CAS  PubMed  Google Scholar 

  • Hohfeld J, Jentsch S. 1997. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16: 6209–6216.

    Article  CAS  PubMed  Google Scholar 

  • Hoshino M, Katou H, Hagihara Y, Hasegawa K, Naiki H, et al. 2002. Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange. Nat Struct Biol 9: 332–336.

    Article  CAS  PubMed  Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402: 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Huang GS, Oas TG. 1995. Submillisecond folding of monomeric λ repressor. Proc Natl Acad Sci USA 92: 6878–6882.

    Article  CAS  PubMed  Google Scholar 

  • Hubner IA, Edmonds KA, Shakhnovich EI. 2005. Nucleation and the transition state of the SH3 domain. J Mol Biol 349: 424–434.

    Article  CAS  PubMed  Google Scholar 

  • Hubner IA, Shimada J, Shakhnovich EI. 2004. Commitment and nucleation in the protein G transition state. J Mol Biol 336: 745–761.

    Article  CAS  PubMed  Google Scholar 

  • Hughson FM, Wright PE, Baldwin RL. 1990. Structural characterization of a partly folded apomyoglobin intermediate. Science 249: 1544–1548.

    Article  CAS  PubMed  Google Scholar 

  • Ikeguchi M, Kuwajima K, Mitani M, Sugai S. 1986. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: A comparative study of the folding reactions of α-lactalbumin and lysozyme. Biochemistry 25: 6965–6972.

    Article  CAS  PubMed  Google Scholar 

  • Isenman DE, Lancet D, Pecht I. 1979. Folding pathways of immunoglobulin domains. The folding kinetics of the cγ3 domain of human IgG1. Biochemistry 18: 3327–3336.

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R. 1987. Folding and association of proteins. Prog Biophys Mol Biol 49: 117–237.

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R. 1991. Protein folding: Local structures, domains, subunits, and assemblies. Biochemistry 30: 3147–3161.

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R. 1999. Stability and folding of domain proteins. Prog Biophys Mol Biol 71: 155–241.

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R. 2000. Stability and stabilization of globular proteins in solution. J Biotechnol 79: 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R, Lilie H. 2000. Folding and association of oligomeric and multimeric proteins. Adv Protein Chem 53: 329–401.

    Article  CAS  PubMed  Google Scholar 

  • Jahn TR, Radford SE. 2005. The Yin and Yang of protein folding. FEBS J 272: 5962–5970.

    Article  CAS  PubMed  Google Scholar 

  • Jamin M, Baldwin RL. 1998. Two forms of the pH 4 folding intermediate of apomyoglobin. J Mol Biol 276: 491–504.

    Article  CAS  PubMed  Google Scholar 

  • Janin J, Wodak SJ. 1983. Structural domains in proteins and their role in the dynamics of protein function. Prog Biophys Mol Biol 42: 21–78.

    Article  CAS  PubMed  Google Scholar 

  • Jecht M, Tomschy A, Kirschner K, Jaenicke R. 1994. Autonomous folding of the excised coenzyme-binding domain of d-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima. Protein Sci 3: 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Gao J. 1988. Cis-trans energy difference for the peptide bond in the gas phase and in aqueous solution. J Am Chem Soc 110: 4212–4216.

    Article  CAS  Google Scholar 

  • Kad NM, Myers SL, Smith DP, Smith DA, Radford SE, et al. 2003. Hierarchical assembly of β2-microglobulin amyloid in vitro revealed by atomic force microscopy. J Mol Biol 330: 785–797.

    Article  CAS  PubMed  Google Scholar 

  • Kaltashov IA, Mohimen A. 2005. Estimates of protein surface areas in solution by electrospray ionization mass spectrometry. Anal Chem 77: 5370–5379.

    Article  CAS  PubMed  Google Scholar 

  • Kamatari YO, Kitahara R, Yamada H, Yokoyama S, Akasaka K. 2004. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods 34: 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Kamatari YO, Yamada H, Akasaka K, Jones JA, Dobson CM, et al. 2001. Response of native and denatured hen lysozyme to high pressure studied by 15N/1H NMR spectroscopy. Eur J Biochem 268: 1782–1793.

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, Sherman M, Moerschell R, Goldberg AL. 1997. Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. J Biol Chem 272: 1730–1734.

    Article  CAS  PubMed  Google Scholar 

  • Kang YK, Choi HY. 2004. Cis-trans isomerization and puckering of proline residue. Biophys Chem 111: 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Karplus M, Weaver DL. 1976. Protein-folding dynamics. Nature 260: 404–406.

    Article  CAS  PubMed  Google Scholar 

  • Karplus M, Weaver DL. 1994. Protein folding dynamics: The diffusion-collision model and experimental data. Protein Sci 3: 650–668.

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Goto Y. 1996. X-ray solution scattering studies of protein folding. Fold Des 1: R107–R114.

    Article  CAS  PubMed  Google Scholar 

  • Kazmirski SL, Daggett V. 1998a. Simulations of the structural and dynamical properties of denatured proteins: The “molten coil” state of bovine pancreatic trypsin inhibitor. J Mol Biol 277: 487–506.

    Article  CAS  Google Scholar 

  • Kazmirski SL, Daggett V. 1998b. Non-native interactions in protein folding intermediates: Molecular dynamics simulations of hen lysozyme. J Mol Biol 284: 793–806.

    Article  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Granzier HL, Bustamante C. 1997. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276: 1112–1116.

    Article  CAS  PubMed  Google Scholar 

  • Kelley RF, Richards FM. 1987. Replacement of proline-76 with alanine eliminates the slowest kinetic phase in thioredoxin folding. Biochemistry 26: 6765–6774.

    Article  CAS  PubMed  Google Scholar 

  • Kelly SM, Price NC. 2000. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1: 349–384.

    Article  CAS  PubMed  Google Scholar 

  • Khare SD, Ding F, Gwanmesia KN, Dokholyan NV. 2005. Molecular origin of polyglutamine aggregation in neurodegenerative diseases. PLoS Comput Biol 1: 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Kiefhaber T, Grunert HP, Hahn U, Schmid FX. 1992. Folding of RNase T1 is decelerated by a specific tertiary contact in a folding intermediate. Proteins 12: 171–179.

    Article  CAS  PubMed  Google Scholar 

  • Kiefhaber T, Quaas R, Hahn U, Schmid FX. 1990a. Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry 29: 3053–3061.

    Article  CAS  Google Scholar 

  • Kiefhaber T, Quaas R, Hahn U, Schmid FX. 1990b. Folding of ribonuclease T1. 2. Kinetic models for the folding and unfolding reactions. Biochemistry 29: 3061–3070.

    Article  CAS  Google Scholar 

  • Kihara D, Lu H, Kolinski A, Skolnick J. 2001. Touchstone: An ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc Natl Acad Sci USA 98: 10125–10130.

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Akiyama S, Uzawa T, Ishimori K, Morishima I, et al. 2005. Specifically collapsed intermediate in the early stage of the folding of ribonuclease A. J Mol Biol 350: 349–362.

    Article  CAS  PubMed  Google Scholar 

  • Kitahara R, Yamada H, Akasaka K, Wright PE. 2002. High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded. J Mol Biol 320: 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Kitahara R, Yokoyama S, Akasaka K. 2005. NMR snapshots of a fluctuating protein structure: Ubiquitin at 30 bar-3 kbar. J Mol Biol 347: 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Konermann L, Simmons DA. 2003. Protein-folding kinetics and mechanisms studied by pulse-labeling and mass spectrometry. Mass Spectrom Rev 22: 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Konishi Y, Ooi T, Scheraga HA. 1982. Regeneration of ribonuclease A from the reduced protein. Rate-limiting steps. Biochemistry 21: 4734–4740.

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Hynes G, Willison K. 1995. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multi-subunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem 230: 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nussinov R. 2002. Close-range electrostatic interactions in proteins. Chembiochem 3: 604–617.

    Article  CAS  PubMed  Google Scholar 

  • Kunugi S, Tanaka N. 2002. Cold denaturation of proteins under high pressure. Biochim Biophys Acta 1595: 329–344.

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima K. 1996. The molten globule state of α-lactalbumin. FASEB J 10: 102–109.

    CAS  PubMed  Google Scholar 

  • Kuwajima K, Hiraoka Y, Ikeguchi M, Sugai S. 1985. Comparison of the transient folding intermediates in lysozyme and α-lactalbumin. Biochemistry 24: 874–881.

    Article  CAS  PubMed  Google Scholar 

  • Kuwata K, Li H, Yamada H, Batt CA, Goto Y, et al. 2001. High pressure NMR reveals a variety of fluctuating conformers in β-lactoglobulin. J Mol Biol 305: 1073–1083.

    Article  CAS  PubMed  Google Scholar 

  • Kuwata K, Li H, Yamada H, Legname G, Prusiner SB, et al. 2002. Locally disordered conformer of the hamster prion protein: A crucial intermediate to PrPSc? Biochemistry 41: 12277–12283.

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima K, Nitta K, Yoneyama M, Sugai S. 1976. Three-state denaturation of α-lactalbumin by guanidine hydrochloride. J Mol Biol 106: 359–373.

    Article  CAS  PubMed  Google Scholar 

  • Lakey JH, Raggett EM. 1998. Measuring protein-protein interactions. Curr Opin Struct Biol 8: 119–123.

    Article  CAS  PubMed  Google Scholar 

  • Lassalle MW, Li H, Yamada H, Akasaka K, Redfield C. 2003. Pressure-induced unfolding of the molten globule of all-Ala α-lactalbumin. Protein Sci 12: 66–72.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Tsai FTF. 2005. Molecular chaperones in protein quality control. J Biochem Mol Biol 38: 259–265.

    CAS  PubMed  Google Scholar 

  • Levinthal C. 1969. How to fold graciously. DeBrunner P, Tsibris JCM, Munck E, editors. Mössbauer spectroscopy in biological systems: Proceedings of a meeting held at Allerton house, Monticello, Illinois. University of Illinois Press; pp. 22–24.

    Google Scholar 

  • Levy Y, Cho SS, Onuchic JN, Wolynes PG. 2005. A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J Mol Biol 346: 1121–1145.

    Article  CAS  PubMed  Google Scholar 

  • Levy Y, Wolynes PG, Onuchic JN. 2004. Protein topology determines binding mechanism. Proc Natl Acad Sci USA 101: 511–516.

    Article  CAS  PubMed  Google Scholar 

  • Lewis VA, Hynes GM, Zheng D, Saibil H, Willison K. 1992. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358: 249–252.

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Zhou XX, Lu P. 2005. Structural features of thermozymes. Biotechnol Adv 23: 271–281.

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Rogen P, Paci E, Vendruscolo M, Dobson CM. 2005. Protein folding and the organization of the protein topology universe. Trends Biochem Sci 30: 13–19.

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Vendruscolo M, Paci E, Dobson CM. 2004. Transition states for protein folding have native topologies despite high structural variability. Nat Struct Mol Biol 11: 443–449.

    Article  CAS  PubMed  Google Scholar 

  • Lipman EA, Schuler B, Bakajin O, Eaton WA. 2003. Single-molecule measurement of protein folding kinetics. Science 301: 1233–1235.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Siegel DL, Fan P, Brodsky B, Baum J. 1996. Direct NMR measurement of folding kinetics of a trimeric peptide. Biochemistry 35: 4306–4313.

    Article  CAS  PubMed  Google Scholar 

  • Lomas DA, Carrell RW. 2002. Serpinopathies and the conformational dementias. Nat Rev Genet 3: 759–768.

    Article  CAS  PubMed  Google Scholar 

  • Luders J, Demand J, Hohfeld J. 2000. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275: 4613–4617.

    Article  CAS  PubMed  Google Scholar 

  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, et al. 1999. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 155: 853–862.

    CAS  PubMed  Google Scholar 

  • Lyon CE, Suh E, Dobson CM, Hore PJ. 2002. Probing the exposure of tyrosine and tryptophan residues in partially folded proteins and folding intermediates by CIDNP pulse-labeling. J Am Chem Soc 124: 13018–13024.

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Gruebele M. 2005. Kinetics are probe-dependent during downhill folding of an engineered λ6-85 protein. Proc Natl Acad Sci USA 102: 2283–2287.

    Article  CAS  PubMed  Google Scholar 

  • Makhatadze GI, Privalov PL. 1995. Energetics of protein structure. Adv Protein Chem 47: 307–425.

    Article  CAS  PubMed  Google Scholar 

  • Maki K, Ikura T, Hayano T, Takahashi N, Kuwajima K. 1999. Effects of proline mutations on the folding of staphylococcal nuclease. Biochemistry 38: 2213–2223.

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Grunblatt E, Riederer P, Amariglio N, Jacob-Hirsch J, et al. 2005. Gene expression profiling of sporadic Parkinson's disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1a, aldehyde dehydrogenase, and chaperone HSC-70. Ann N Y Acad Sci 1053: 356–375.

    Article  CAS  PubMed  Google Scholar 

  • Marti DN, Bjelic S, Lu M, Bosshard HR, Jelesarov I. 2004. Fast folding of the HIV-1 and SIV gp41 six-helix bundles. J Mol Biol 336: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Mateu MG, Sanchez Del Pino MM, Fersht AR. 1999. Mechanism of folding and assembly of a small tetrameric protein domain from tumor suppressor p53. Nat Struct Biol 6: 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Matouschek A, Kellis JTJ, Serrano L, Bycroft M, Fersht AR. 1990. Transient folding intermediates characterized by protein engineering. Nature 346: 440–445.

    Article  CAS  PubMed  Google Scholar 

  • Matouschek A, Otzen DE, Itzhaki LS, Jackson SE, Fersht AR. 1995. Movement of the position of the transition state in protein folding. Biochemistry 34: 13656–13662.

    Article  CAS  PubMed  Google Scholar 

  • Matthews CR, Hurle MR. 1987. Mutant sequences as probes of protein folding mechanisms. Bioessays 6: 254–257.

    Article  CAS  PubMed  Google Scholar 

  • Mazhul’ VM, Zaitseva EM, Shavlovsky MM, Stepanenko OV, Kuznetsova IM, et al. 2003. Monitoring of actin unfolding by room temperature tryptophan phosphorescence. Biochemistry 42: 13551–13557.

    Article  PubMed  CAS  Google Scholar 

  • McCarney ER, Kohn JE, Plaxco KW. 2005. Is there or isn't there? The case for (and against) residual structure in chemically denatured proteins. Crit Rev Biochem Mol Biol 40: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, et al. 1999. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 46: 860–866.

    Article  CAS  PubMed  Google Scholar 

  • Meersman F, Smeller L, Heremans K. 2006. Protein stability and dynamics in the pressure-temperature plane. Biochim Biophys Acta 1764: 346–354.

    CAS  PubMed  Google Scholar 

  • Mersol JV, Steel DG, Gafni A. 1993. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase. Biophys Chem 48: 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Miranker A, Robinson CV, Radford SE, Dobson CM. 1996. Investigation of protein folding by mass spectrometry. FASEB J 10: 93–101.

    CAS  PubMed  Google Scholar 

  • Missiakas D, Betton JM, Chaffotte A, Minard P, Yon JM. 1992. Kinetic studies of the refolding of yeast phosphoglycerate kinase: Comparison with the isolated engineered domains. Protein Sci 1: 1485–1493.

    Article  CAS  PubMed  Google Scholar 

  • Mohimen A, Dobo A, Hoerner JK, Kaltashov IA. 2003. A chemometric approach to detection and characterization of multiple protein conformers in solution using electrospray ionization mass spectrometry. Anal Chem 75: 4139–4147.

    Article  CAS  PubMed  Google Scholar 

  • Mok KH, Hore PJ. 2004. Photo-CIDNP NMR methods for studying protein folding. Methods 34: 75–87.

    Article  CAS  PubMed  Google Scholar 

  • Mok KH, Nagashima T, Day IJ, Jones JA, Jones CJV, et al. 2003. Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: Applications to real-time protein folding. J Am Chem Soc 125: 12484–12492.

    Article  CAS  PubMed  Google Scholar 

  • Monera OD, Shaw GS, Zhu BY, Sykes BD, Kay CM, et al. 1992. Role of interchain α-helical hydrophobic interactions in Ca2+ affinity, formation, and stability of a two-site domain in troponin c. Protein Sci 1: 945–955.

    Article  CAS  PubMed  Google Scholar 

  • Muller K, Garel JR. 1984. Folding of aspartokinase-homoserine dehydrogenase I is dominated by tertiary interactions. Biochemistry 23: 655–660.

    Article  CAS  PubMed  Google Scholar 

  • Munoz V, Eaton WA. 1999. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc Natl Acad Sci USA 96: 11311–11316.

    Article  CAS  PubMed  Google Scholar 

  • Myers SL, Thomson NH, Radford SE, Ashcroft AE. 2006a. Investigating the structural properties of amyloid-like fibrils formed in vitro from β2-microglobulin using limited proteolysis and electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 20: 1628–1636.

    Article  CAS  Google Scholar 

  • Myers SL, Jones S, Jahn TR, Morten IJ, Tennent GA, et al. 2006b. A systematic study of the effect of physiological factors on β2-microglobulin amyloid formation at neutral pH. Biochemistry 45: 2311–2321.

    Article  CAS  Google Scholar 

  • Nelson ED, Onuchic JN. 1998. Proposed mechanism for stability of proteins to evolutionary mutations. Proc Natl Acad Sci USA 95: 10682–10686.

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Eisenberg D. 2006. Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16: 260–265.

    Article  CAS  PubMed  Google Scholar 

  • Niraula TN, Konno T, Li H, Yamada H, Akasaka K, et al. 2004. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci USA 101: 4089–4093.

    Article  CAS  PubMed  Google Scholar 

  • Novokhatny VV, Kudinov SA, Privalov PL. 1984. Domains in human plasminogen. J Mol Biol 179: 215–232.

    Article  CAS  PubMed  Google Scholar 

  • Nozaka M, Kuwajima K, Nitta K, Sugai S. 1978. Detection and characterization of the intermediate on the folding pathway of human α-lactalbumin. Biochemistry 17: 3753–758.

    Article  CAS  PubMed  Google Scholar 

  • Odefey C, Mayr LM, Schmid FX. 1995. Non-prolyl cis-trans peptide bond isomerization as a rate-determining step in protein unfolding and refolding. J Mol Biol 245: 69–78.

    CAS  PubMed  Google Scholar 

  • Ohgushi M, Wada A. 1983. “Molten-globule state”: A compact form of globular proteins with mobile side-chains. FEBS Lett 164: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Onuchic JN, Wolynes PG. 2004. Theory of protein folding. Curr Opin Struct Biol 14: 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Onuchic JN, Socci ND, Luthey-Schulten Z, Wolynes PG. 1996. Protein folding funnels: The nature of the transition state ensemble. Fold Des 1: 441–450.

    Article  CAS  PubMed  Google Scholar 

  • Ostermann J, Horwich AL, Neupert W, Hartl FU. 1989. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341: 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Osvath S, Gruebele M. 2003. Proline can have opposite effects on fast and slow protein folding phases. Biophys J 85: 1215–1222.

    Article  CAS  PubMed  Google Scholar 

  • Osvath S, Herenyi L, Zavodszky P, Fidy J, Kohler G. 2006. Hierarchic finite level energy landscape model—to describe the refolding kinetics of phosphoglycerate kinase. J Biol Chem. 281: 24375-24380.

    Google Scholar 

  • Osvath S, Sabelko JJ, Gruebele M. 2003. Tuning the heterogeneous early folding dynamics of phosphoglycerate kinase. J Mol Biol 333: 187–199.

    Article  CAS  PubMed  Google Scholar 

  • Otzen DE, Kristensen O, Oliveberg M. 2000. Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: A structural clue to amyloid assembly. Proc Natl Acad Sci USA 97: 9907–9912.

    Article  CAS  PubMed  Google Scholar 

  • Pace CN, Shirley BA, McNutt M, Gajiwala K. 1996. Forces contributing to the conformational stability of proteins. FASEB J 10: 75–83.

    CAS  PubMed  Google Scholar 

  • Paci E, Clarke J, Steward A, Vendruscolo M, Karplus M. 2003. Self-consistent determination of the transition state for protein folding: Application to a fibronectin type III domain. Proc Natl Acad Sci USA 100: 394–399.

    Article  CAS  PubMed  Google Scholar 

  • Pande VS, Baker I, Chapman J, Elmer SP, Khaliq S, et al. 2003. Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers 68: 91–109.

    Article  CAS  PubMed  Google Scholar 

  • Parrini C, Taddei N, Ramazzotti M, Degl'Innocenti D, Ramponi G, et al. 2005. Glycine residues appear to be evolutionarily conserved for their ability to inhibit aggregation. Structure (Camb) 13: 1143–1151.

    Article  CAS  Google Scholar 

  • Pearl LH, Prodromou C. 2006. Structure and mechanism of the hsp90 molecular chaperone machinery. Annu Rev Biochem 75: 271–294.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen JS, Christensen G, Otzen DE. 2004. Modulation of S6 fibrillation by unfolding rates and gatekeeper residues. J Mol Biol 341: 575–588.

    Article  CAS  PubMed  Google Scholar 

  • Peters TJ, Davidson LK. 1982. The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds. J Biol Chem 257: 8847–8853.

    CAS  PubMed  Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau W, Mattson MP, et al. 2005. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307: 262–265.

    Article  CAS  PubMed  Google Scholar 

  • Pfeil W. 1981. The problem of the stability globular proteins. Mol Cell Biochem 40: 3–28.

    Article  CAS  PubMed  Google Scholar 

  • Plaxco KW, Simons KT, Baker D. 1998. Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 277: 985–994.

    Article  CAS  PubMed  Google Scholar 

  • Plotkin S, Wang J, Wolynes P. 1996. Correlated energy landscape model for finite, random heteropolymers. Phys Rev E Stat Nonlin Soft Matter Phys 53: 6271–6296.

    Article  CAS  Google Scholar 

  • Pokarowski P, Kolinski A, Skolnick J. 2003. A minimal physically realistic protein-like lattice model: Designing an energy landscape that ensures all-or-none folding to a unique native state. Biophys J 84: 1518–1526.

    Article  CAS  PubMed  Google Scholar 

  • Prabhu NV, Sharp KA. 2005. Heat capacity in proteins. Annu Rev Phys Chem 56: 521–548.

    Article  CAS  PubMed  Google Scholar 

  • Privalov PL. 1996. Intermediate states in protein folding. J Mol Biol 258: 707–725.

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB. 1992. The molten globule state. Protein folding. Creighton TE, editor. New York: W.H. Freeman & Co.; pp. 243–300.

    Google Scholar 

  • Ptitsyn OB. 1995. Molten globule and protein folding. Adv Protein Chem 47: 83–229.

    Article  CAS  PubMed  Google Scholar 

  • Puett D. 1973. The equilibrium unfolding parameters of horse and sperm whale myoglobin. Effects of guanidine hydrochloride, urea, and acid. J Biol Chem 248: 4623–4634.

    CAS  PubMed  Google Scholar 

  • Radford SE, Dobson CM, Evans PA. 1992. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358: 302–307.

    Article  CAS  PubMed  Google Scholar 

  • Raffen R, Dieckman LJ, Szpunar M, Wunschl C, Pokkuluri PR, et al. 1999. Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains. Protein Sci 8: 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran GN, Mitra AK. 1976. An explanation for the rare occurrence of cis peptide units in proteins and polypeptides. J Mol Biol 107: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Ramboarina S, Redfield C. 2003. Structural characterisation of the human α-lactalbumin molten globule at high temperature. J Mol Biol 330: 1177–1188.

    Article  CAS  PubMed  Google Scholar 

  • Raschke TM, Kho J, Marqusee S. 1999. Confirmation of the hierarchical folding of RNase H: A protein engineering study. Nat Struct Biol 6: 825–831.

    Article  CAS  PubMed  Google Scholar 

  • Razvi A, Scholtz JM. 2006. Lessons in stability from thermophilic proteins. Protein Sci 15: 1569–1578.

    Article  CAS  PubMed  Google Scholar 

  • Redfield C. 2004. Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins. Methods 34: 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Refaee M, Tezuka T, Akasaka K, Williamson MP. 2003. Pressure-dependent changes in the solution structure of hen egg-white lysozyme. J Mol Biol 327: 857–865.

    Article  CAS  PubMed  Google Scholar 

  • Richardson JS, Richardson DC. 2002. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA 99: 2754–2759.

    Article  CAS  PubMed  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.

    Article  CAS  PubMed  Google Scholar 

  • Robinson CR, Sauer RT. 1996. Equilibrium stability and sub-millisecond refolding of a designed single-chain Arc repressor. Biochemistry 35: 13878–13884.

    Article  CAS  PubMed  Google Scholar 

  • Robson B, Pain RH. 1976. The mechanism of folding of globular proteins. Equilibria and kinetics of conformational transitions of penicillinase from Staphylococcus aureus involving a state of intermediate conformation. Biochem J 155: 331–344.

    CAS  PubMed  Google Scholar 

  • Roder H, Elove GA, Englander SW. 1988. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335: 700–704.

    Article  CAS  PubMed  Google Scholar 

  • Roder H, Elöve GA, Shastry MC. R. 2000. Early stages of protein folding. Mechanisms of Protein Folding. Pain RH, editor. Oxford: Oxford University Press; pp. 65–104.

    Google Scholar 

  • Roder H, Shastry MR. 1999. Methods for exploring early events in protein folding. Curr Opin Struct Biol 9: 620–626.

    Article  CAS  PubMed  Google Scholar 

  • Roder H, Maki K, Cheng H. 2006. Early events in protein folding explored by rapid mixing methods. Chem Rev 106: 1836–1861.

    Article  CAS  PubMed  Google Scholar 

  • Roder H, Maki K, Cheng H, Shastry MCR. 2004. Rapid mixing methods for exploring the kinetics of protein folding. Methods 34: 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Pickart CM. 2004. The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol 14: 703–711.

    Article  CAS  PubMed  Google Scholar 

  • Rounsevell R, Forman JR, Clarke J. 2004. Atomic force microscopy: Mechanical unfolding of proteins. Methods 34: 100–111.

    Article  CAS  PubMed  Google Scholar 

  • Rousseau F, Schymkowitz JWH, Itzhaki LS. 2003. The unfolding story of three-dimensional domain swapping. Structure 11: 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B. 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16: 1501–1507.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph R, Siebendritt R, Nesslauer G, Sharma AK, Jaenicke R. 1990. Folding of an all-β protein: Independent domain folding in γ II-crystallin from calf eye lens. Proc Natl Acad Sci USA 87: 4625–4629.

    Article  CAS  PubMed  Google Scholar 

  • Sabelko J, Ervin J, Gruebele M. 1999. Observation of strange kinetics in protein folding. Proc Natl Acad Sci USA 96: 6031–6036.

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Shakhnovich E, Karplus M. 1994. How does a protein fold? Nature 369: 248–251.

    Article  CAS  PubMed  Google Scholar 

  • Scharnagl C, Reif M, Friedrich J. 2005. Stability of proteins: Temperature, pressure and the role of the solvent. Biochim Biophys Acta 1749: 187–213.

    CAS  PubMed  Google Scholar 

  • Schellman JA. 1997. Temperature, stability, and the hydrophobic interaction. Biophys J 73: 2960–2964.

    Article  CAS  PubMed  Google Scholar 

  • Scherer G, Kramer ML, Schutkowski M, Reimer U, Fischer G. 1998. Barriers to rotation of secondary amide peptide bonds. J Am Chem Soc 120: 5568–5574.

    Article  CAS  Google Scholar 

  • Schmid FX, Mayr LM, Mucke M, Schonbrunner ER. 1993. Prolyl isomerases: Role in protein folding. Adv Protein Chem 44: 25–66.

    Article  CAS  PubMed  Google Scholar 

  • Schonbrunner ER, Schmid FX. 1992. Peptidyl-prolyl cis-trans isomerase improves the efficiency of protein disulfide isomerase as a catalyst of protein folding. Proc Natl Acad Sci USA 89: 4510–4513.

    Article  CAS  PubMed  Google Scholar 

  • Schwaller M, Wilkinson B, Gilbert HF. 2003. Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase. J Biol Chem 278: 7154–7159.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz R, Istrail S, King J. 2001. Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues. Protein Sci 10: 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  • Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB, et al. 2000. The protofilament substructure of amyloid fibrils. J Mol Biol 300: 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  • Serrano L, Matouschek A, Fersht AR. 1992. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol 224: 805–818.

    Article  CAS  PubMed  Google Scholar 

  • Sha B, Lee S, Cyr DM. 2000. The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein sis1. Structure 8: 799–807.

    Article  CAS  PubMed  Google Scholar 

  • Shakhnovich EI, Finkelstein AV. 1989. Theory of cooperative transitions in protein molecules. I. Why denaturation of globular protein is a first-order phase transition. Biopolymers 28: 1667–1680.

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Minke-Gogl V, Gohl P, Siebendritt R, Jaenicke R, et al. 1990. Limited proteolysis of γ II-crystallin from calf eye lens. Physicochemical studies on the N-terminal domain and the intact two-domain protein. Eur J Biochem 194: 603–609.

    Article  CAS  PubMed  Google Scholar 

  • Shastry MC, Luck SD, Roder H. 1998. A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophys J 74: 2714–2721.

    Article  CAS  PubMed  Google Scholar 

  • Shaw PE. 2002. Peptidyl-prolyl isomerases: A new twist to transcription. EMBO Rep 3: 521–526.

    Article  CAS  PubMed  Google Scholar 

  • Shoelson SE, Sivaraja M, Williams KP, Hu P, Schlessinger J, et al. 1993. Specific phosphopeptide binding regulates a conformational change in the PI-3-kinase SH2 domain associated with enzyme activation. EMBO J 12: 795–802.

    CAS  PubMed  Google Scholar 

  • Shoemaker BA, Portman JJ, Wolynes PG. 2000. Speeding molecular recognition by using the folding funnel: The fly-casting mechanism. Proc Natl Acad Sci USA 97: 8868–8873.

    Article  CAS  PubMed  Google Scholar 

  • Shortle D. 1996. The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J 10: 27–34.

    CAS  PubMed  Google Scholar 

  • Shtilerman M, Lorimer GH, Englander SW. 1999. Chaperonin function: Folding by forced unfolding. Science 284: 822–825.

    Article  CAS  PubMed  Google Scholar 

  • Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I. 2000. Structure of the molecular chaperone prefoldin: Unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103: 621–632.

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Cordeiro Y, Foguel D. 2006. Protein folding and aggregation: Two sides of the same coin in the condensation of proteins revealed by pressure studies. Biochim Biophys Acta 1764: 443–451.

    CAS  PubMed  Google Scholar 

  • Smeller L. 2002. Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta 1595: 11–29.

    Article  CAS  PubMed  Google Scholar 

  • Smith AV, Hall CK. 2001. Assembly of a tetrameric α-helical bundle: Computer simulations on an intermediate-resolution protein model. Proteins 44: 376–391.

    Article  CAS  PubMed  Google Scholar 

  • Smith LJ, Fiebig KM, Schwalbe H, Dobson CM. 1996. The concept of a random coil. Residual structure in peptides and denatured proteins. Fold Des 1: R95–106.

    Article  CAS  PubMed  Google Scholar 

  • Snow CD, Qiu L, Du D, Gai F, Hagen SJ, et al. 2004. Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy. Proc Natl Acad Sci USA 101: 4077–4082.

    Article  CAS  PubMed  Google Scholar 

  • Song J, Bai P, Luo L, Peng ZY. 1998. Contribution of individual residues to formation of the native-like tertiary topology in the α-lactalbumin molten globule. J Mol Biol 280: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Sorin EJ, Pande VS. 2005. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys J 88: 2472–2493.

    Article  CAS  PubMed  Google Scholar 

  • Stefani M, Dobson CM. 2003. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81: 678–699.

    Article  CAS  PubMed  Google Scholar 

  • Stein RL. 1993. Mechanism of enzymatic and nonenzymatic prolyl cis-trans isomerization. Adv Protein Chem 44: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Steward A, Adhya S, Clarke J. 2002. Sequence conservation in Ig-like domains: The role of highly conserved proline residues in the fibronectin type III superfamily. J Mol Biol 318: 935–940.

    Article  CAS  PubMed  Google Scholar 

  • Stewart DE, Sarkar A, Wampler JE. 1990. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol 214: 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Stine WBJ, Dahlgren KN, Krafft GA, LaDu MJ. 2003. In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Biol Chem 278: 11612–11622.

    Article  CAS  PubMed  Google Scholar 

  • Street TO, Bradley CM, Barrick D. 2005. An improved experimental system for determining small folding entropy changes resulting from proline to alanine substitutions. Protein Sci 14: 2429–2435.

    Article  CAS  PubMed  Google Scholar 

  • Sunde M, Blake C. 1997. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50: 123–159.

    Article  CAS  PubMed  Google Scholar 

  • Szilagyi A, Zavodszky P. 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure 8: 493–504.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Yeh SR, Das TK, Chan CK, Gottfried DS, et al. 1997. Folding of cytochrome c initiated by submillisecond mixing. Nat Struct Biol 4: 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, et al. 1997. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16: 4887–4896.

    Article  CAS  PubMed  Google Scholar 

  • Teale JM, Benjamin DC. 1977. Antibody as immunological probe for studying refolding of bovine serum albumin. Refolding within each domain. J Biol Chem 252: 4521–4526.

    CAS  PubMed  Google Scholar 

  • Terada K, Mori M. 2000. Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70. J Biol Chem 275: 24728–24734.

    Article  CAS  PubMed  Google Scholar 

  • Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, et al. 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97: 755–765.

    Article  CAS  PubMed  Google Scholar 

  • Texter FL, Spencer DB, Rosenstein R, Matthews CR. 1992. Intramolecular catalysis of a proline isomerization reaction in the folding of dihydrofolate reductase. Biochemistry 31: 5687–5691.

    Article  CAS  PubMed  Google Scholar 

  • Tirado-Rives J, Jorgensen WL. 1993. Molecular dynamics simulations of the unfolding of apomyoglobin in water. Biochemistry 32: 4175–4184.

    Article  CAS  PubMed  Google Scholar 

  • Todd MJ, Lorimer GH, Thirumalai D. 1996. Chaperonin-facilitated protein folding: Optimization of rate and yield by an iterative annealing mechanism. Proc Natl Acad Sci USA 93: 4030–4035.

    Article  CAS  PubMed  Google Scholar 

  • Tsai C, Maizel JVJ, Nussinov R. 2002. The hydrophobic effect: A new insight from cold denaturation and a two-state water structure. Crit Rev Biochem Mol Biol 37: 55–69.

    Article  CAS  PubMed  Google Scholar 

  • Tsai J, Levitt M, Baker D. 1999. Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. J Mol Biol 291: 215–225.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji T, Chrunyk BA, Chen X, Matthews CR. 1993. Mutagenic analysis of the interior packing of an α/β barrel protein. Effects on the stabilities and rates of interconversion of the native and partially folded forms of the α subunit of tryptophan synthase. Biochemistry 32: 5566–5575.

    Article  CAS  PubMed  Google Scholar 

  • Tsunenaga M, Goto Y, Kawata Y, Hamaguchi K. 1987. Unfolding and refolding of a type κ immunoglobulin light chain and its variable and constant fragments. Biochemistry 26: 6044–6051.

    Article  CAS  PubMed  Google Scholar 

  • Tycko R. 2006. Molecular structure of amyloid fibrils: Insights from solid-state NMR. Q Rev Biophys: 1–55.

    Google Scholar 

  • Udgaonkar JB, Baldwin RL. 1988. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 335: 694–699.

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Souillac P, Millett IS, Doniach S, et al. 2002. Biophysical properties of the synucleins and their propensities to fibrillate: Inhibition of α-synuclein assembly by β- and γ-synucleins. J Biol Chem 277: 11970–11978.

    Article  CAS  PubMed  Google Scholar 

  • Uzawa T, Akiyama S, Kimura T, Takahashi S, Ishimori K, et al. 2004. Collapse and search dynamics of apomyoglobin folding revealed by submillisecond observations of α-helical content and compactness. Proc Natl Acad Sci USA 101: 1171–1176.

    Article  CAS  PubMed  Google Scholar 

  • Vanhove M, Lejeune A, Pain RH. 1998. β-lactamases as models for protein-folding studies. Cell Mol Life Sci 54: 372–377.

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Signon L, Le Bras G, Garel JR. 1987. Mechanism of renaturation of a large protein, aspartokinase-homoserine dehydrogenase. Biochemistry 26: 2785–2790.

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo M, Zurdo J, MacPhee CE, Dobson CM. 2003. Protein folding and misfolding: A paradigm of self-assembly and regulation in complex biological systems. Philos Transact A Math Phys Eng Sci 361: 1205–1222.

    Article  CAS  PubMed  Google Scholar 

  • Villegas V, Martinez JC, Aviles FX, Serrano L. 1998. Structure of the transition state in the folding process of human procarboxypeptidase α2 activation domain. J Mol Biol 283: 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Wagner G, Wuthrich K. 1982. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol 160: 343–361.

    Article  CAS  PubMed  Google Scholar 

  • Walkenhorst WF, Green SM, Roder H. 1997. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease. Biochemistry 36: 5795–5805.

    Article  CAS  PubMed  Google Scholar 

  • Walker KW, Gilbert HF. 1997. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J Biol Chem 272: 8845–8848.

    Article  CAS  PubMed  Google Scholar 

  • Wand AJ, Roder H, Englander SW. 1986. Two-dimensional 1H NMR studies of cytochrome c: Hydrogen exchange in the N-terminal helix. Biochemistry 25: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  • Wedemeyer WJ, Welker E, Narayan M, Scheraga HA. 2000. Disulfide bonds and protein folding. Biochemistry 39: 4207–4216.

    Article  CAS  PubMed  Google Scholar 

  • Wedemeyer WJ, Welker E, Scheraga HA. 2002. Proline cis-trans isomerization and protein folding. Biochemistry 41: 14637–14644.

    Article  CAS  PubMed  Google Scholar 

  • Welker E, Maki K, Shastry MCR, Juminaga D, Bhat R, et al. 2004. Ultrarapid mixing experiments shed new light on the characteristics of the initial conformational ensemble during the folding of ribonuclease A. Proc Natl Acad Sci USA 101: 17681–17686.

    Article  CAS  PubMed  Google Scholar 

  • Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, et al. 2005. Amyloid: Toward terminology clarification. Report from the nomenclature committee of the international society of amyloidosis. Amyloid 12: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Wetlaufer DB. 1973. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci USA 70: 697–701.

    Article  CAS  PubMed  Google Scholar 

  • Williams KP, Shoelson SE. 1993. Cooperative self-assembly of SH2 domain fragments restores phosphopeptide binding. Biochemistry 32: 11279–11284.

    Article  CAS  PubMed  Google Scholar 

  • Wolynes PG. 2005. Energy landscapes and solved protein-folding problems. Philos Transact A Math Phys Eng Sci 363: 453–464; discussion 464–467.

    Article  CAS  PubMed  Google Scholar 

  • Wolynes PG, Onuchic JN, Thirumalai D. 1995. Navigating the folding routes. Science 267: 1619–1620.

    Article  CAS  PubMed  Google Scholar 

  • Wong KB, Clarke J, Bond CJ, Neira JL, Freund SM, et al. 2000. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding. J Mol Biol 296: 1257–1282.

    Article  CAS  PubMed  Google Scholar 

  • Wong KP, Tanford C. 1973. Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions. J Biol Chem 248: 8518–8523.

    CAS  PubMed  Google Scholar 

  • Wood LC, White TB, Ramdas L, Nall BT. 1988. Replacement of a conserved proline eliminates the absorbance-detected slow folding phase of iso-2-cytochrome c. Biochemistry 27: 8562–8568.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Matthews CR. 2002. Parallel channels and rate-limiting steps in complex protein folding reactions: Prolyl isomerization and the α subunit of Trp synthase, a TIM barrel protein. J Mol Biol 323: 309–325.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, et al. 2004. Low concentrations of sodium dodecyl sulfate induce the extension of β2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43: 11075–11082.

    Article  CAS  PubMed  Google Scholar 

  • Yang WY, Gruebele M. 2003. Folding at the speed limit. Nature 423: 193–197.

    Article  CAS  PubMed  Google Scholar 

  • Yang WY, Gruebele M. 2004a. Detection-dependent kinetics as a probe of folding landscape microstructure. J Am Chem Soc 126: 7758–7759.

    Article  CAS  Google Scholar 

  • Yang WY, Gruebele M. 2004b. Folding λ-repressor at its speed limit. Biophys J 87: 596–608.

    Article  CAS  Google Scholar 

  • Zarrine-Afsar A, Larson SM, Davidson AR. 2005. The family feud: Do proteins with similar structures fold via the same pathway? Curr Opin Struct Biol 15: 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Zeeb M, Balbach J. 2004. Protein folding studied by real-time NMR spectroscopy. Methods 34: 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Skolnick J. 2004. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 101: 7594–7599.

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, et al. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–1614.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SB, Trach SO. 1991. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222: 599–620.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SS, Scheraga HA. 1976. Stability of cis, trans, and nonplanar peptide groups. Macromolecules 9: 408–416.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.S. and J.K. were supported by Bolyai János fellowships. A.S. and P.Z. were supported by grants from the Hungarian Scientific Research Fund (OTKA T046423 and NI-61915). S.O. was supported by a grant from the Hungarian Scientific Research Fund (OTKA D-38480).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Szilágyi, A., Kardos, J., Osváth, S., Barna, L., Závodszky, P. (2007). Protein Folding. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_10

Download citation

Publish with us

Policies and ethics