Skip to main content

Nuclear Lipids and Their Metabolic and Signaling Properties

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 2007 Accesses

Abstract:

Nuclei have a relative paucity of lipids, perhaps accounting for the early assumption that their role in that organelle is limited to providing structural support to the nuclear envelope. In addition to the growing awareness that lipids of this double membrane structure have dynamic signaling properties, biochemists and cell biologists now recognize that lipids also occur in endonuclear compartments where they exert an astounding array of signaling capabilities with profound influence on cellular functioning. Gone also is the concept of the nucleus as passive recipient of lipids that are synthesized elsewhere in the cell and imported, since numerous enzymes have been discovered that synthesize and catabolize lipids within the nucleus. Phosphatidylinositol is synthesized in extranuclear compartments and transferred to the nucleus where it is phosphorylated to phosphatidylinositol bisphosphate, a substrate for phospholipase C. The latter generates the two second messengers, inositol trisphosphate and diacylglycerol, which draws protein kinase C to the nucleus and activates it; the polyunsaturated forms of diacylglycerol are especially active in that regard. Phosphatidylinositol bisphosophate can also react with phospholipase A2 to liberate arachidonic acid, which can in turn undergo conversion to eicosanoids within the nucleus. More saturated forms of diacylglycerol are formed by hydrolysis of phosphatidylcholine, some of which are disaturated in terms of the aliphatic chains. Phosphatidylcholine is synthesized within the nucleus, as evidenced in the presence of the Kennedy pathway enzymes. The diacylglycerol form of signaling is terminated by diacylglycerol kinase, several isoforms of which occur in the nucleus. Sphingolipids such as sphingomyelin also have a prominent role in nuclear signaling, the main metabolic product being ceramide that is generated by sphingomyelinase. Evidence has suggested that the ratio of ceramide to diacylglycerol is a form of regulatory control critical for homeostatic properties of the nucleus. Sphingomyelin comprises a significant component of chromatin lipids and its variation in relation to cholesterol and phosphatidylcholine indicated that nuclear matrix lipids are metabolized independently of chromatin lipids. Current and prior studies suggest several key processes involving RNA and DNA reactivity that are dependent on these lipid-initiated events. Considerable interest has focused on inositides whose activities include promotion of transcription through neutralizing histone-mediated repression. These and other lipids occur in specles, the microdomains that are believed to contain molecules involved in splicing of pre-mRNA. Nuclei from mammalian cells all have the same general structure consisting of the double-membrane envelope and various less well-defined endonuclear compartments. The two membranes that make up the nuclear envelope are quite different in lipid composition and function: the outer membrane is continuous with the endoplasmic reticulum and bears many similarities to the latter, whereas the inner membrane is unique and contains elements that mediate communication between nucleoplasm and the lumen of the nuclear envelope. The latter is a calcium storage site, continuous with that of the endoplasmic reticulum, from which calcium can be released in signaling mode to the nucleoplasm and to which excess calcium can be transferred via a sodium–calcium exchanger in conjunction with GM1 ganglioside. This was shown to exert an important neuroprotective function in neural cells. GM1 and GD1a are the primary species of gangliosides found in the nuclear envelope; those together with GD3 are also present in some endonuclear domains. These ganglioside characteristics of the nucleus were observed in neural cells of various types and in certain nonneural cells as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CGN:

cerebellar granule neurons

CER:

ceramide

DAG:

diacylglycerol

DGK:

diacylglycerol kinase

ER:

endoplasmic reticulum

INM:

inner nuclear membrane

Ins(1,4,5)P3 :

inositol trisphosphate

NCX:

sodium–calcium exchanger

NE:

nuclear envelope

ONM:

outer nuclear membrane

PGHS:

postaglandin H Synthase

PI3K:

PtdIns(4,5)P2 3-kinase

PI-PLC:

phosphoinositide specific phospholipase C

PL:

phospholipid

PLA2 :

phospholipase A2

PLase:

phospholipase

PLC:

phospholipase C

PLD:

phospholipase D

PtdCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

PtdIns:

phosphatidylinositol

PtdIns(4)P:

phosphatidylinositol 4-phosphate

PtdIns(4,5)P2 :

phosphatidylinositol 4,5-bisphosphate

PtdOH:

phosphatidic acid

PtsSer:

phosphatidylserine

S-1-P:

sphingosine-1-phosphate

SM:

sphingomyelin

SMase:

sphingomyelinase. Nomenclature of individual phospholipids is in comformity with the recommendations of the IUPAC-IUB Commission on Nomenclature of Lipids. Ganglioside nomenclature is that of the JCBN recommendations [Eur. J. Biochem. 257: 293–298 (1998)]

References

  • Al-Mohanna FA, Caddy KWT, Bolsover SR. 1994. The nucleus is insulated from large cytosolic calcium ion changes. Nature 367: 745–750.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Mersel M, Leray C, Tomassoni ML, Viola Magni MP. 1994. Rat liver chromatin phospholipids. Lipids 29: 715–719.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Micheli M, Viola Magni MP. 1996. Phospholipids and nuclear RNA. Biol Internat 20: 407–412.

    CAS  Google Scholar 

  • Albi E, Viola Magni MP. 1997. Chromatin neutral sphingomyelinase and its role in hepatic regeneration. Biochem Biophys Res Commun 236: 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Viola Magni MP. 1999. Sphingomyelin synthase in rat liver nuclear membrane and chromatin. FEBS Lett 460: 369–372.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Viola Magni MP. 2002. The presence and the role of chromatin cholesterol in rat liver regeneration. J Hepatol 36: 395–400.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Cataldi S, Rossi G, Viola Magni MP. 2003a. A possible role of cholesterol-sphingomyelin/phosphatidylcholine in the nuclear matrix during rat liver regeneration. J Hepatol 38: 623–628.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Lazzarini R, Viola Magni MP. 2003b. Reverse sphingomyelin synthase in rat liver chromatin. FEBS Lett 549: 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Pieroni S, Viola Magni MP, Sartori C. 2003c. Chromatin sphingomyelin changes in cell proliferation and/or apoptosis induced by ciprofibrate. J Cell Physiol 196: 354–361.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Viola Magni MP. 2004. The role of intranuclear lipids. Biol Cell 96: 657–667.

    Article  CAS  PubMed  Google Scholar 

  • Albi E, Cataldi S, Bartoccini E, Viola Magni MP, Marini F, et al. 2005. Nuclear sphingomyelin pathway in serum deprivation-induced apoptosis of embryonic hippocampal cells. J Cell Physiol 9999: 1–7.

    Google Scholar 

  • Albi E, Lazzarini R, Viola Magni MP. 2008. Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biolchem J 410: 381–389.

    Article  CAS  Google Scholar 

  • Alessenko AV. 1995. Functional role of the sphingomyelin cycle in cell nuclei during activation of cell proliferation and oncogenes expression. Cevc G, Paltant F, editors. Phospholipids: Characterization, Metabolism and Novel Biological Applications. Champaign, IL: AOCS Press; pp. 299–310.

    Google Scholar 

  • Alessenko AV, Chatterjee S. 1995. Neutral sphingomyelinase: Localization in rat liver nuclei and involvement in regeneration/proliferation. Mol Cell Biochem 143: 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Alessenko AV, Khrenov AV. 1999. Role of sphingosine in induced apoptosis. Lipids 34(Suppl.): 75–76.

    Article  Google Scholar 

  • Alroy J, Merk FB, Goyal V, Ucci A. 1981. Heterogeneous distribution of filipin-sterol complexes in nuclear membranes. Biochem Biophys Acta 649: 239–243.

    Article  CAS  PubMed  Google Scholar 

  • Antony P, Kanfer JN, Freysz L. 2000. Phosphatidylcholine metabolism in nuclei of phorbol ester-activated LA-N-1 neuroblastoma cells. Neurochem Res 25: 1073–1082.

    Article  CAS  PubMed  Google Scholar 

  • Antony P, Freysz L, Horrocks LA, Farooqui AA. 2001. Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem Res 26: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Arab S, Lingwood CA. 1998. Intracellular targeting of the endoplasmic reticulum/nuclear envelope by retrograde transport may determine cell hypersensitivity to verotoxin via globotriaosyl ceramfide fatty acid isoform traffic. J Cell Physiol 177: 646–660.

    Article  CAS  PubMed  Google Scholar 

  • Asano M, Tamiya-Koizumi K, Homma Y, Takenawa T, Nimura Y, et al. 1994. Purification and characterization of nuclear phospholipase C specific for phosphoinositides. J Biol Chem 269: 12360–12366.

    CAS  PubMed  Google Scholar 

  • Badminton MN, Kendall JM, Rembold CM, Campbell AK. 1998. Current evidence suggests independent regulation of nuclear calcium. Cell Calcium 23: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Bahk YY, Song H, Baek SH, Park BY, Kim H, et al. 1998. Localization of two forms of phospholipase Cβ-1, a and b, in C6Bu-1 cells. Biochim Biophys Acta 1389: 76–80.

    CAS  PubMed  Google Scholar 

  • Baker RR, Chang HY. 1981a. A comparison of lysophosphatidylcholine acyltransferase activities in neuronal nuclei and microsomes isolated from immature rabbit cerebral cortex. Biochem Biophys Acta 666: 223–229.

    CAS  PubMed  Google Scholar 

  • Baker RR, Chang HY. 1981b. The acylation of 1-acyl-sn-glycero-3-phosphorylcholine by glial and neuronal nuclei and derived neuronal nuclear envelopes: A comparison of nuclear and microsomal membranes. Can J Biochem 59: 848–856.

    Article  CAS  PubMed  Google Scholar 

  • Baker RR, Chang HY. 1990. Phosphatidylinositol synthetase activities in neuronal nuclei and microsomal fractions isolated from immature rabbit cerebral cortex. Biochim Biophys Acta 1042: 55–61.

    CAS  PubMed  Google Scholar 

  • Baldassare JJ, Jarpe MB, Alferes L, Raben DM. 1997. Nuclear translocation of RhoA mediates the mitogen-induced activation of phospholipase D involved in nuclear envelope signal transduction. J Biol Chem 272: 4911–4914.

    Article  CAS  PubMed  Google Scholar 

  • Banfic H, Zizak M, Divecha N, Irvine RF. 1993. Nuclear diacylglycerol is increased during cell proliferation in vivo. Biochem J 290: 633–636.

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Cossart R. 2000. Kainate, a double agent that generates seizures: Two decades of progress. Trends Neurosci 23: 580–587.

    Article  CAS  PubMed  Google Scholar 

  • Bertagnolo V, Marchisio M, Capitani S, Neri LM. 1997. Intranuclear translocation of phospholipase Ca2 during HL-60 myeloid differentiation. Biochem Biophys Res Commun 235: 831–837.

    Article  CAS  PubMed  Google Scholar 

  • Bkaily G, Jacques D, D’Orleans-Juste P. 2003. Receptors and channels of nuclear membranes as a new target for drug action. Pathophysiology of Cardiovascular Disease. Dhalla NS, Rupp H, Angel A, Pierce GN, editors. Boston: Kluwer Academic Publishers; pp. 473–482.

    Google Scholar 

  • Blaschke AJ, Weiner JA, Chun J. 1998. Programmed cell death is a universal feature of embryonic postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 396: 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Blobel G, Potter VR. 1966. Nuclei from rat liver: An isolation method that combines purity with high yield. Science 154: 1662–1665.

    Article  CAS  PubMed  Google Scholar 

  • Bocckina SB, Wilson PB, Exton JH. 1989. An early elevation of diacylglycerol and phosphatidate in regenerating liver. Biochem Biophys Res Commun 164: 290–294.

    Article  Google Scholar 

  • Bootman MD, Thomas D, Tovey SC, Berridge MJ, Lipp P. 2000. Nuclear calcium signaling. Cell Mol Life Sci 57: 371–388.

    Article  CAS  PubMed  Google Scholar 

  • Boronenkov IV, Loijens JC, Umeda M, Anderson RA. 1998. Phosphoinositide signaling pathways in nuclei are associated with nuclear specles containing pre-mRNA processing factors. Mol Biol Cell 9: 3547–3560.

    CAS  PubMed  Google Scholar 

  • Carter KC, Bowman D, Carrington W, Fogarty K, McNeil JA, et al. 1993. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science 259: 1330–1335.

    Article  CAS  PubMed  Google Scholar 

  • Casolari JM, Brown CR, Komili West J, Hieronymus H, Silver PA. 2004. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117: 427–439.

    Article  CAS  PubMed  Google Scholar 

  • Cave C, Gahan PB. 1970. A cytochemical and autoradiographic investigation of nuclear phospholipids. Cardiologia 23: 303–312.

    CAS  Google Scholar 

  • Cocco L, Faenza I, Fiume R, Billi AM, Gilmour RS, et al. 2006. Phosphoinositide-specific phospholipase C (PI-PLC) β1 and nuclear lipid-dependent signaling. Biochim Biophys Acta 1761: 509–521.

    CAS  PubMed  Google Scholar 

  • Cocco L, Gilmour RS, Ognibene A, Ldtcher AJ, Manzoli FA, et al. 1987. Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosophoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 248: 765–770.

    CAS  PubMed  Google Scholar 

  • Cocco L, Maraldi NM, Manzoli FA, Gilmour, RS, Lang, A. 1980. Phospholipid interactions in rat liver nuclear matrix. Biochem Biophys Res Commun 96: 890–898.

    Article  CAS  PubMed  Google Scholar 

  • Cocco L, Martelli AM, Gilmour RS, Rhee SG, Manzoli FA. 2001. Nuclear phospholipase C and signaling. Biochem Biophys Acta 1530: 1–14.

    CAS  PubMed  Google Scholar 

  • Colina C, Flores A, Casstillo C, del Rosario Garrido M, Israel A, et al. 2005. Ceramide-1-P induces Ca2+ mobilization in Jurkat T-cells by elevation of Ins(1,4,5)-P3 and activation of a store-operated calcium channel. Biochem Biophys Res Commun 336: 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Copani A, Melchiorri D, Caricasole A, Martini F, Sale P, et al. 2002. β-Amyloid-induced synthesis of the ganglioside Gd3 is a requisite for cell cycle reactivation and apoptosis in neurons. J Neurosci 22: 3963–3968.

    CAS  PubMed  Google Scholar 

  • Davidson PJ, Li SY, Lohse AG, Vandergaast R, Verde E, et al. 2006. Transport of galectin-3 between the nucleus and cytoplasm. I. Conditions and signals for nuclear import. Glycobiology 16: 602–611.

    Article  CAS  PubMed  Google Scholar 

  • DeLong CJ, Qin L, Cui Z. 2000. Nuclear localization of enzymatically active green fluorescent protein-CTP: Phosphocholine cytidylyltransferase alpha fusion protein is independent of cell cycle conditions and cell types. J Biol Chem 275: 32325–32330.

    Article  CAS  PubMed  Google Scholar 

  • Divecha N, Banfic H, Irvine RF. 1991. The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-1) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10: 3207–3214.

    CAS  PubMed  Google Scholar 

  • Divecha N, Banfic H, Irvine RF. 1993a. Inositides and the nucleus and inositides in the nucleus. Cell 74: 405–407.

    Article  CAS  PubMed  Google Scholar 

  • Divecha N, Rhee SG, Letcher AJ, Irvine RF. 1993b. Phosphoinositide signaling enzymes in rat liver nuclei: Phosphoinositidase C isoform beta 1 is specifically, but not predominantly, located in the nucleus. Biochem J 289: 617–620.

    CAS  PubMed  Google Scholar 

  • Dwyer N, Blobel G. 1976. A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei. J Cell Biol 70: 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Fatima S, Yaghini FA, Ahmed A, Khandekar Z, Malik KU. 2003. CaM kinase II alpha mediates norepinephrine-induced translocation of cytosolic phospholipase A2 to the nuclear envelope. J Cell Sci 116: 353–365.

    Article  CAS  PubMed  Google Scholar 

  • Fraschini A, Albi E, Gahan PB, Viola Magni MP. 1992. TEM cytochemical study of localization of phospholipids in interphase chromatin in rat hepatocytes. Histochemistry 97: 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto K, Yano Y, Virgona N, Hagiwara H, Sato, H, et al. 2005. Peroxisome proliferator-activated receptor δ as a molecular target to regulate lung cancer cell growth. FEBS Lett 579: 3829–3836.

    Article  CAS  PubMed  Google Scholar 

  • Garner MH. 2002. Na,K-ATPase in the nuclear envelope regulates Na+: K+ gradients in hepatocyte nuclei. J Membr Biol 187: 97–115.

    Article  CAS  PubMed  Google Scholar 

  • Georgatos SD, Blobel G. 1987. Lamin B constitutes an intermediate filament attachment site at the nuclear envelope. J Cell Biol 105: 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. 1995. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP- ribose-mediated release of Ca2+ from the nuclear envelope. Cell 80: 439–444.

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko JV, Maruyama Y, Yano K, Dolman NJ, Tepikin AV, et al. 2003. NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. J Cell Biol 163: 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV. 2004. New aspects of nuclear calcium signaling. J Cell Sci 117: 3087–3094.

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist JSC, Pearce GN. 1993. Identification and purification of a calcium-binding protein in hepatic nuclear membranes. J Biol Chem 268: 4291–4299.

    CAS  PubMed  Google Scholar 

  • Goto K, Kondo H. 1999. Diacylglycerol kinase in the central nervous system—molecular heterogeneity and gene expression. Chem Phys Lipids 98: 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Hozumi Y, Kondo H. 2006. Diacylglycerol, phosphatidic acid, and the converting enzyme, diacylglycerol kinase, in the nucleus. Biochim Biophys Acta 1761: 535–541.

    CAS  PubMed  Google Scholar 

  • Goureau MF, Raulin J. 1970. Unsaturation of exogenous fatty acids and composition of phospholipids linked to liver nucleus chromatin. Bull Soc Chim Biol 52: 941–953.

    CAS  Google Scholar 

  • Graham JM. (Nov.) 2001. Isolation of nuclei and nuclear membranes from animal tissues. Curr Protoc Cell Biol Chapter 3: Unit 3.10.

    Google Scholar 

  • Gurr MI, Finean JB, Hawthorne JN. 1963. The phospholipids of liver-cell fractions. I. The phospholipid composition of the liver cell nucleus. Biochem Biophys Acta 70: 406–416.

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Cruzalegui FH, Chawla S, Bading H. 1998. Mechanisms controlling gene expression by nuclear calcium signals. Cell Calcium 23: 131–134.

    Article  CAS  PubMed  Google Scholar 

  • He S, Ruknudin A, Bambrick LL, Lederer WJ, Schulze DH. 1998. Isoform-specific regulation of the Na+/Ca2+ exchanger in rat astrocytes and neurons by PKA. J Neurosci 18: 4833–4841.

    CAS  PubMed  Google Scholar 

  • Hodgkin MN, Pettitt TR, Martin A, Michell RH, Pemberton AJ, et al. 1998. Diacylglycerols and phosphatidates: Which molecular species are intracellular messengers?. Trends Biochem Sci 23: 200–204.

    Article  CAS  PubMed  Google Scholar 

  • Houssa B, de Widt J, Kranenburg O, Moolenaar WH, van Blitterswijk WJ. 1999. Diacylglycerol kinase theta binds to and is negatively regulated by active Rho A. J Biol Chem 274: 6820–6822.

    Article  CAS  PubMed  Google Scholar 

  • Hozumi Y, Ito T, Nakano T, Nakagawa T, Aoyagi M, et al. 2003. Nuclear localization of diacylglycerol kinase zeta in neurons. Eur J Neurosci 18: 1448–1457.

    Article  PubMed  Google Scholar 

  • Humbert J-P, Matter N, Artault J-C, Koppler P, Malviya AN. 1996. Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. J Biol Chem 271: 478–485.

    Article  CAS  PubMed  Google Scholar 

  • Hunt AN, Clark GT, Attard GS, Postle AD. 2001. Highly saturated endonuclear phosphatidylcholine is synthesized in situ and colocated with CDP-choline pathway enzymes. J Biol Chem 276: 8492–8499.

    Article  CAS  PubMed  Google Scholar 

  • Hunt AN, Clark GT, Neale JR, Postle AD. 2002. A comparison of the molecular specificities of whole cell and endonuclear phosphatidylcholine synthesis. FEBS Lett 530: 89–93.

    Article  CAS  PubMed  Google Scholar 

  • Hunt AN, Alb JG, Koster G, Postle AD, Bankaitis VA. 2004. Use of mass spectrometry-based lipidomics to probe PITPa (phosphatidylinositol transfer protein alpha) function inside the nuclei of PITPa+/+ and PITPa−/− cells. Biochem Soc Trans 32: 1063–1065.

    Article  CAS  PubMed  Google Scholar 

  • Hunt AN. 2006a. Dynamic lipidomics of the nucleus. J Cell Biochem 97: 244–251.

    Article  CAS  PubMed  Google Scholar 

  • Hunt AN. 2006b. Completing the cycles; the dynamics of endonucler lipidomics. Biochim Biophys Acts 1761: 577–587.

    CAS  Google Scholar 

  • Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, et al. 2003. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278: 46832–46839.

    Article  CAS  PubMed  Google Scholar 

  • Irvine RF. 2003. Nuclear lipid signaling. Nat Rev Mol Cell Biol 4: 349–361.

    Article  CAS  PubMed  Google Scholar 

  • Irvine RF. 2006. Nuclear inositide signaling – expansion, structures and clarification. Biochim Biophys Acta 1761: 505–508.

    CAS  PubMed  Google Scholar 

  • Jaffrezou JP, Bruno AP, Moisand A, Levade T, Laurent G. 2001. Activation of a nuclear sphingomyelinase in radiation-induced apoptosis. FASEB J 15: 123–133.

    Article  CAS  PubMed  Google Scholar 

  • James JL, Clawson GA, Chan CH, Smuckler EA. 1981. Analysis of the phospholipid of the nuclear envelope and endoplasmic reticulum of liver cells by high pressure liquid chromatography. Lipids 16: 541–545.

    Article  CAS  PubMed  Google Scholar 

  • Jarpe MB, Leach KL, Raben DM. 1994. Alpha-thrombin-induced nuclear sn-1,2-diacylglycerols are derived from phosphatidylcholine hydrolysis in cultured fibroblasts. Biochemistry 33: 526–534.

    Article  CAS  PubMed  Google Scholar 

  • Jones DR, Divecha N. 2004. Linking lipids to chromatin. Curr Opin Genet Devel 14: 196–202.

    Article  CAS  Google Scholar 

  • Jones SM, Luo M, Peters-Golden M, Brock TG. 2003. Identification of two novel nuclear import sequences on the 5-lipoxygenase protein. J Biol Chem 278: 10257–10263.

    Article  CAS  PubMed  Google Scholar 

  • Kanfer JN, McCartney D, Singh IN, Freysz L. 1996. Phospholipase D activity of rat brain neuronal nuclei. J Neurochem 67: 760–766.

    Article  CAS  PubMed  Google Scholar 

  • Katoh N, Kira T, Yuasa. 1993. A. Protein kinase C substrates and ganglioside inhibitors in bovine mammary nuclei. J Dairy Sci 76: 3400–3409.

    Article  CAS  PubMed  Google Scholar 

  • Keenan TW, Berezney R, Crane FL. 1972a. Lipid composition of further purified bovine liver nuclear membranes. Lipids 7: 212–215.

    Article  CAS  PubMed  Google Scholar 

  • Keenan TW, Morre DJ, Huang CM. 1972b. Distribution of gangliosides among subcellular fractions from rat liver and bovine mammary gland. FEBS Lett 24: 204–208.

    Article  CAS  PubMed  Google Scholar 

  • Khandwala AS, Kasper CB. 1971. The fatty acid composition of individual phospholipids from rat liver nuclear membrane and nuclei. J Biol Chem 246: 6242–6246.

    CAS  PubMed  Google Scholar 

  • Kim J, Okada Y. 1983. Asymmetric distribution and temperature-dependent clustering of filipin-sterol complexes in the nuclear membrane of Ehrlich ascites tumor cells. Eur J Cell Biol 29: 244–252.

    CAS  PubMed  Google Scholar 

  • Kleuser B, Maceyka M, Milstien S, Spiegel S. 2001. Stimulation of nuclear sphingosine kinase activity by platelet-derived growth factor. FEBS Lett 503: 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Kofuji P, Lederer WJ, Schulze DH. 1994. Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na+/Ca2+ exchanger. J Biol Chem 269: 5145–5149.

    CAS  PubMed  Google Scholar 

  • Kozireski-Chuback D, Wu G, Ledeen RW. 1999a. Developmental appearance of nuclear GM1 in neurons of the central and peripheral nervous systems. Devel Brain Res 115: 201–208.

    Article  CAS  Google Scholar 

  • Kozireski-Chuback D, Wu G, Ledeen RW. 1999b. Upregulation of nuclear GM1 accompanies axon-like, but not dendrite-like, outgrowth in NG108–15 cells. J Neurosci Res 55: 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Kuriki H, Tamiya-Koizumi K, Asano M, Yoshida S, Kojima K, et al. 1992. Existence of phosphoinositide-specific phospholipase C in rat liver nuclei and its change during liver regeneration. J Biochem (Tokyo) 111: 283–286.

    CAS  Google Scholar 

  • Lachyankar MB, Sultana N, Schonhoff CM, Mitra P, Poluha W, et al. 2000. A role for PTEN in neuronal differentiation. J Neurosci 20: 1404–1413.

    CAS  PubMed  Google Scholar 

  • Lamond AI, Earnshaw WC. 1998. Structure and function in the nucleus. Science 280: 547–553.

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G. 2006a. Gangliosides of the nuclear membrane: A crucial locus of cytoprotective modulation. J Cell Biochem 97: 893–903.

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G. 2006b. Sphingolipids of the nucleus and their role in nuclear signaling. Biochim Biophys Acta 1761: 588–598.

    CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G. 2007. GM1 in the nuclear envelope regulates nuclear calcium through association with a nuclear sodium-calcium exchanger. J Neurochem 103: (Suppl. 1): 126–134.

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Rhee SG. 1996. Molecular cloning, splice variants, expression, and purification of phospholipase C-(4). J Biol Chem 271: 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Le Stunff H, Milstein S, Spiegel S. 2004. Generation and metabolism of bioactive sphingosine-1-phosphate. J Cell Biochem 92: 882–899.

    Article  CAS  PubMed  Google Scholar 

  • Lewis RS. 2001. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19: 487–521.

    Article  Google Scholar 

  • Lingwood CA, Khine AA, Arab S. 1998. Globotriaosyl ceramide (Gb3) expression in human tumour cells: Intracellular trafficking defines a new retrograde transport pathway from the cell surface to the nucleus, which correlates with sensitivity to verotoxin. Acta Biochem Pol 45: 351–359.

    CAS  Google Scholar 

  • Liu N, Fukami K, Yu H, Takenawa T. 1996. A new phospholipase C-(4 is induced at S-phase of the cell cycle and appears in the nucleus. J Biol Chem 271: 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wada R, Kawai H, Sango K, Deng C, et al. 1999. A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J Clin Invest 103: 497–505.

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Flamand N, Brock TG. 2006. Metabolism of arachidonic acid to eicosanoids within the nucleus. Biochim Biophys Acta 1761: 618–625.

    CAS  PubMed  Google Scholar 

  • Macchioni L, Corazzi L, Nardicchi V, et al. 2004. Rat brain cortex mitochondria release group II secretory phospholipase A2 under reduced membrane potential. J Biol Chem 279: 37860–37869.

    Article  CAS  PubMed  Google Scholar 

  • Manev H, Favaron M, Vicini S, Guidotti A, Costa E. 1990. Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: Protection by synthetic derivatives of endogenous sphingolipids. J Pharmacol Exp Ther 252: 419–427.

    CAS  PubMed  Google Scholar 

  • Manzoli FA, Muchmore JH, Bonora B, Capitani S, Bartoli S. 1974. Lipid-DNA interactions. II. Phospholipids, cholesterol, glycerophosphorylcholine, sphingosine and fatty acids. Biochim Biophys Acta 340: 1–15.

    CAS  PubMed  Google Scholar 

  • Maraldi NM, Cocco L, Capitani S, Mazzotti G, Barnabei O, et al. 1994. Lipid-dependent nuclear signalling: Morphological and functional features. Adv Enzyme Regul 34: 129–143.

    Article  CAS  PubMed  Google Scholar 

  • Maraldi NM, Mazzotti G, Capitani S, Rizzoli R, Zini N, et al. 1992a. Morphological evidence of function-related localization of phospholipids in the cell nucleus. Adv Enzyme Regul 32: 73–90.

    Article  CAS  PubMed  Google Scholar 

  • Maraldi NM, Santi S, Zini N, Ognibene A, Rizzoli R, et al. 1993. Decrease in nuclear phospholipids associated with DNA replication. J Cell Sci 104: 853–859.

    CAS  PubMed  Google Scholar 

  • Maraldi NM, Zini N, Santi S, Ognibene A, Rizzoli R, et al. 1998. Cytochemistry of the functional domains of the nucleus in normal and in pathological conditions. Eur J Histochem 42: 41–53.

    PubMed  Google Scholar 

  • Maraldi NM, Zini N, Santi S, Manzoli FA. 1999. Topology of inositol lipid signal transduction in the nucleus. J Cell Physiol 181: 203–217.

    Article  CAS  PubMed  Google Scholar 

  • Maraldi NM, Zini N, Squarzoni S, Del Coco R, Sabatelli P, et al. 1992b. Intranuclear localization of phospholipids by ultrastructural cytochemistry. J Histochem Cytochem 40: 1383–1392.

    Article  CAS  PubMed  Google Scholar 

  • Martelli AM, Gilmour RS, Bertaganolo V, Neri LM, Manzoli L, et al. 1992. Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3T3 cells. Nature 358: 242–245.

    Article  CAS  PubMed  Google Scholar 

  • Martelli AM, Sang N, Borgatti P, Capitani S, Neri LM. 1999. Multiple biological responses activated by nuclear protein kinase C. J Cell Biochem 74: 499–521.

    Article  CAS  PubMed  Google Scholar 

  • Martelli AM, Bortul R, Tabellini G, Aluigi M, Peruzzi D, et al. 2001. Re-examination of the mechanisms regulating nuclear inositol lipid metabolism. FEBS Lett 505: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Martelli AM, Falcieri E, Zweyer M, Bortul G, Tabellini G, et al. 2002. The controversial nuclear matrix: A balanced point of view. Histol Histopathol 17: 1193–1205.

    CAS  PubMed  Google Scholar 

  • Martelli AM, Follo MY, Evangelisti C, Fala F, Fiume R, et al. 2005. Nuclear inositol lipid metabolism: More than just second messenger generation?. J Cell Biochem 96: 285–292.

    Article  CAS  PubMed  Google Scholar 

  • Mathias S, Kolesnick R. 1993. Ceramide: A novel second messenger. Adv Lipid Res 25: 65–90.

    CAS  PubMed  Google Scholar 

  • Mattson MP, Chan SL. 2003. Calcium orchestrates apoptosis. Nat Cell Biol 5: 1041–1043.

    Article  CAS  PubMed  Google Scholar 

  • Matunis MJ. 2006. Isolation and fractionation of rat liver nuclear envelopes and nuclear pore complexes. Methods 39: 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni M, Bertagnolo V, Neri LM, Carini C, Marchisio M, et al. 1992. Discrete subcellular localization of phosphoinositidase C beta, gamma and delta in PC12 rat pheochromocytoma cells. Biochem Biophys ResCommun 187: 114–120.

    Article  CAS  Google Scholar 

  • Mazzotti G, Zini N, Rizzi E, Rizzoli R, Galanzi A, et al. 1995. Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J Histochem Cytochem 43: 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Mejian A, Roll RL, Ma AD, Abrams SC. 1999. Agonists cause nuclear translocation of phosphatidylinositol 3-kinase-γ. A G β-dependent pathway that requires the p110 γamino terminus. J Biol Chem 274: 27943–27947.

    Article  Google Scholar 

  • Micheli M, Albi E, Leray C, Viola Magni M. 1998. Nuclear sphingomyelin protects RNA from RNase action. FEBS Lett 431: 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Mitsutake S, Igarashi Y. 2005. Calmodulin is involved in the Ca2+-dependent activation of ceramide kinase as a calcium sensor. J Biol Chem 280: 40436–40441.

    Article  CAS  PubMed  Google Scholar 

  • Mizutani Y, Tamiya-Koizumi K, Nakamura N, Kobayashi M, Hirabayashi Y, et al. 2001. Nuclear localization of neutral sphingomyelinase 1: Biochemical and immunocytochemical analyses. J Cell Sci 114: 3727–3736.

    CAS  PubMed  Google Scholar 

  • Mocchetti I. 2005. Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 62: 2283–2294.

    Article  CAS  PubMed  Google Scholar 

  • Nardicchi V, Macchioni L, Ferrini M, Goracci G. 2007. The presence of a secretory phospholipase A2 in the nuclei of neuronal and glial cells of rat brain cortex. Biochim Biophys Acta 1771: 1345–1352.

    CAS  PubMed  Google Scholar 

  • Neitcheva T, Peeva D. 1995. Phospholipid composition, phospholipase A2 and sphingomyelinase activities in rat liver nuclear membrane and matrix. Int J Biochem Cell Biol 27: 995–1001.

    Article  CAS  PubMed  Google Scholar 

  • Neri LM, Martelli AM, Borgatti P, Colamussi ML, Marchisio M, et al. 1999. Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKC-ζ translocation to the nucleus of NGF-treated PC12 cells. FASEB J 13: 2299–2310.

    CAS  PubMed  Google Scholar 

  • Neufeld EJ, Majerus PW, Krueger CM, Saffitz JE. 1985. Uptake and subcellular distribution of [3H]arachidonic acid in murine fibrosarcoma cells measured by electron microscope autoradiography. J Cell Biol 101: 573–581.

    Article  CAS  PubMed  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR, York JD. 2000. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 297: 2026–2029.

    Article  Google Scholar 

  • Osborne SL, Thomas CL, Gschmeissner S, Shiavo G. 2001. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 114: 2501–2511.

    CAS  PubMed  Google Scholar 

  • Parijs LV, Abbas AK. 1998. Homeostasis and self-tolerance in the immune system: Turning lymphocytes off. Science 280: 243–248.

    Article  PubMed  Google Scholar 

  • Parkinson ME, Smith CG, Garland PB, van Heyningen S. 1989. Identification of cholera toxin-binding sites in the nucleus of intestinal epithelial cells. FEBS Lett 242: 309–313.

    Article  CAS  PubMed  Google Scholar 

  • Payrastre B, Nievers M, Boonstra J, Breton M, Verkleij AJ, et al. 1992. A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J Biol Chem 267: 5078–5084.

    CAS  PubMed  Google Scholar 

  • Philipson KD, Nicoll DA. 2000. Sodium-calcium exchange: A molecular perspective. Annu Rev Physiol 62: 111–133.

    Article  CAS  PubMed  Google Scholar 

  • Quesada I, Rovira JM, Martin F, Roche E, Nadal A, et al. 2002. KATP channels trigger nuclear Ca2+ transients that modulate nuclear function. Proc Natl Acad Sci USA 99: 9544–9549.

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Fronda LL, Yu RK. 1996. Sialidase activity in nuclear membranes of rat brain. J Neurochem 66: 2205–2208.

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Sugiyama K. 2002. Characterization of nuclear gangliosides in rat brain: Concentration, composition, and developmental changes. Arch Biochem Biophys 398: 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Santos CS, Clarke JH, Irvine RF, Divecha N. 1999. Nuclei contain two differentially regulated pools of diacylglycerol. Curr Biol 9: 437–440.

    Article  PubMed  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu W-H, Wu C. 2003. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299: 112–114.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi T, Imai S, Uda Y. 2003. The presence of ceramidase activity in liver nuclear membrane. Biol Pharm Bull 26: 775–779.

    Article  CAS  PubMed  Google Scholar 

  • Shopland LS, Lawrence JB. 2000. Seeking common ground in nuclear complexity. J Cell Biol 150: 41–51.

    Article  Google Scholar 

  • Smith CD, Wells WW. 1983. Phosphorylation of rat liver nuclear envelopes. II. Characterization of in vitro lipid phosphorylation. J Biol Chem 258: 9368–9373.

    CAS  PubMed  Google Scholar 

  • Spector DL. 1996. Nuclear organization and gene expression. Exp Cell Res 229: 189–197.

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Foster D, Kolesnick R. 1996. Signal transduction through lipid second messengers. Curr Opin Cell Biol 8: 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Steger DH, Haswell ES, Miller AL, Wente SR, O’Shea EK. 2003. Regulation of chromatin remodeling by inositol polyphosphates. Science 299: 114–116.

    Article  CAS  PubMed  Google Scholar 

  • Stehno-Bittel L, Lückhoff A, Clapham DE. 1995. Calcium release from the nucleus by InsP3 receptor channels. Neuron 14: 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Struchkov VA, Strazhevskaya NB, Zhdanov RI. 2002. DNA-bound lipids of normal and tumor cells: Retrospective and outlooks for functional genomics. Bioelectrochemistry 58: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Surette ME, Chilton FH. 1998. The distribution and metabolism of arachidonate-containing phospholipids in cellular nuclei. Biochem J 330: 915–921.

    CAS  PubMed  Google Scholar 

  • Tabellini G, Bortul R, Santi S, Riccio M, Baldini G, et al. 2003. Diacylglycerol kinase-theta is localized in the speckle domains of the nucleus. Exp Cell Res 287: 143–154.

    Article  CAS  PubMed  Google Scholar 

  • Tamiya-Koizumi K. 2002. Nuclear lipid metabolism & signaling. J Biochem 132: 13–22.

    CAS  PubMed  Google Scholar 

  • Tamiya-Koizumi K, Umekawa H, Yoshida S, Ishihara H, Kojima K. 1989a. A novel phospholipase A2 associated with nuclear matrix: Stimulation of the activity and modulation of the Ca2+ dependency by polyphosphoinositides. Biochim Biophys Acta 1002: 182–188.

    CAS  PubMed  Google Scholar 

  • Tamiya-Koizumi K, Umekawa H, Yoshida S, Kojima K. 1989b. Existence of Mg2+-dependent neutral sphingomyelinase in nuclei of rat ascites hepatoma cells. J Biochem 106: 593–598.

    CAS  PubMed  Google Scholar 

  • Tempera, I, Buchetti, B, Lococo, E, Gradini, R, Mastronardi, A, et al. 2008. GD3 nuclear localization after apoptosis induction in HUT-78 cells. Biochem Biophys Res Commun 368: 495–500.

    Article  CAS  PubMed  Google Scholar 

  • Thurneysen T, Nicoll DA, Philipson KD, Porzig H. 2002. Sodium/calcium exchanger subtypes NCX1, NCX2, and NCX3 show cell-specific expression in rat hippocampus cultures. Mol Brain Res 107: 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Tran D, Gassard P, Berthon B, Fukami K, Takenawa T, et al. 1993. Cellular distribution of polyphosphoinositides in rat hepatocytes. Cell Signal 5: 565–581.

    Article  CAS  PubMed  Google Scholar 

  • Tsugane K, Tamiya-Koizumi K, Nagino M, Nimura Y, Yoshida S. 1999. A possible role of nuclear ceramide and sphingosine in hepatocyte apoptosis in rat liver. J Hepatol 31: 8–17.

    Article  CAS  PubMed  Google Scholar 

  • Vamecq J, Latruffe N. 1999. Medical significance of peroxisome proliferator-activated receptors. Lancet 354: 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Vann LR, Wooding FB, Irvine RF, Divecha N. 1997. Metabolism and possible compartmentalization of inositol lipids in isolated rat liver nuclei. Biochem J 327: 569–576.

    CAS  PubMed  Google Scholar 

  • Vlcek S, Dechat T, Foisner R. 2001. Nuclear envelope and nuclear matrix: Interactions and dynamics. Cell Mol Life Sci 58: 1758–1765.

    Article  CAS  PubMed  Google Scholar 

  • Voorhout WF, van Genderen IL, Yoshioka T, Fukami K, Geuze HJ, et al. 1992. Subcellular localization of glycolipids as revealed by immuno-electronmicroscopy. Trends Glycosci Glycotechnol 4: 533–542.

    CAS  Google Scholar 

  • Weiss A, Imboden J, Shoback, Stobo DJ. 1984. Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc Natl Acad Sci USA 81: 4169–4173.

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Lu Z-H, Ledeen RW. 1995. Induced and spontaneous neuritogenesis are associated with enhanced expression of ganglioside GM1 in the nuclear membrane. J Neurosci 15: 3739–3746.

    CAS  PubMed  Google Scholar 

  • Wu G, Lu Z-H, Xie X, Ledeen RW. 2004. Susceptibility of cerebellar granule neurons from GM2/GD2 synthase-null mice to apoptosis induced by glutamate excitotoxicity and elevated KCl: Rescue by GM1 and LIGA20. Glycoconj J 21: 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Lu Z-H, Wang J, Wang Y, Xie X, et al. 2005. Enhanced susceptibility to kainite-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides, protection with LIGA 20, a membrane-permeant analog of GM1. J Neurosci 23: 11014–11022.

    Article  CAS  Google Scholar 

  • Wu G, Xie X, Lu Z-H, Ledeen RW. 2001. Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci USA 98: 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Wu G, Ledeen RW. 2004a. C6 cells express a sodium-calcium exchanger/GM1 complex in the nuclear envelope but have no exchanger in the plasma membrane: Comparison to astrocytes. J Neurosci Res 76: 363–375.

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Wu G, Lu Z-H, Ledeen RW. 2002. Potentiation of a sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J Neurochem 81: 1185–1195.

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Wu G, Lu Z-H, Rohowsky-Kochan C, Ledeen RW. 2004b. Presence of sodium-calcium exchanger/GM1 complex in the nuclear envelope of non-neural cells: Nature of exchanger-GM1 interaction. Neurochem Res 29: 2135–2146.

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Johnson CV, Dobner PR, Lawrence JB. 1993. Higher level organization of individual gene transcription and RNA splicing. Science 259: 1326–1330.

    Article  CAS  PubMed  Google Scholar 

  • Xu A, Suh P-G, Marmy-Conus N, Pearson RB, Seok OK, et al. 2001. Phosphorylation of nuclear phospholipase C β1 by extracellular signal-regulated kinase mediates the mitogenic action of insulin-like growth factor I. Mol Cell Biol 21: 2981–2990.

    Article  CAS  PubMed  Google Scholar 

  • Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, et al. 2000. Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 103: 919–930.

    Article  CAS  PubMed  Google Scholar 

  • Yeo W, Gautier J. 2004. Early neural cell death: Dying to become neurons. Dev Biol 274: 233–244.

    Article  CAS  PubMed  Google Scholar 

  • Yokogawa T, Nagata S, Nishio Y, Tsutsumi T, Ihara S, et al. 2000. Evidence that 3′-phosphorylated polyphosphoinositides are generated at the nuclear surface: Use of immunostaining technique with monoclonal antibodies specific for PI 3,4-P(2). FEBS Lett 473: 222–226.

    Article  CAS  PubMed  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR. 1999. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 295: 96–100.

    Article  Google Scholar 

  • Yu H, Fukami K, Watanabe Y, Ozaki C, Takenawa T. 1998. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur J Biochem 251: 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, et al. 1998. Rapid and phosphatidylinositol-dependent binding of the SWI-SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95: 625–636.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Sim J, Griffith J, Reed R. 2002. Purification and electron microscopic visualization of functional human spliceosomes. Proc Natl Acad Sci USA 99: 122203–12207.

    Google Scholar 

  • Zini N, Maraldi NM, Martelli AM, Antonucci A, Santi P, et al. 1989. Phospholipase C digestion induces the removal of nuclear RNA: A cytochemical quantitative study. Histochem J 21: 491–500.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ledeen, R., Wu, G. (2009). Nuclear Lipids and Their Metabolic and Signaling Properties. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_7

Download citation

Publish with us

Policies and ethics