Skip to main content

Brain Phosphatidylserine: Metabolism and Functions

  • Reference work entry

Abstract:

Phosphatidylserine (PtdSer) is involved in cell signaling and apoptosis. In the brain, PtdSer is enriched in polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA). Numerous studies have indicated that the abundance of DHA in the brain is essential for optimal neuronal function. PtdSer concentration in the nervous tissue membranes varies with age, brain areas, cell type and subcellular components. PtdSer is synthesized by base exchange between free serine and the nitrogen base present in phosphatidylethanolamine or phosphatidylcholine. The capability to synthesize PtdSer by base exchange varies with cell types, subcellular fractions and developmental stage. At least two isoforms of PtdSer synthesizing enzymes are present in brain. PtdSer cellular levels also depend on its decarboxylation to phosphatidylethanolamine or conversion to lysoPtdSer by phospholipases. The mechanisms regulating PtdSer synthesis and degradation are still not defined. Thus, the role of PtdSer in cell signaling and apoptosis cannot be clearly established at molecular level. Several reports indicate that alteration in PtdSer synthesis might participate to development of brain damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BEE:

base exchange enzyme

CGC:

cerebellar granule cells

CHO:

Chinese hamster ovary

DHA:

docosahexaenoic acid

lysoPtdSer:

lysophosphatidylserine

PLA1 :

phospholipase A1

PLA2 :

phospholipase A2

PtdCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

PtdIns(4,5)P2 :

phosphatidylinositol-4,5-bisphosphate

PtdIns(3,4,5)P3 :

phosphatidylinositol-3,4,5-trisphosphate

PtdSer:

phosphatidylserine

PSD:

PtdSer decarboxylase

PSS:

PtdSer synthase

[S]SBEE:

serine base exchange enzyme specific for serine

[SE]SBEE:

serine/ethanolamine base exchange enzyme

References

  • Akbar M, Calderon F, Wen Z, Kim HY. 2005. Docosahexaenoic acid: A positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 102: 10858–10863.

    PubMed  Google Scholar 

  • Akbar M, Kim HY. 2002. Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: Involvement of phosphatidylinositol-3 kinase pathway. J Neurochem 82: 655–665.

    PubMed  Google Scholar 

  • Aoki J, Inoue A, Makide K, Saiki N, Arai H. 2007. Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89: 197–204.

    PubMed  Google Scholar 

  • Aoki J, Nagai Y, Hosono H, Inoue K, Arai H. 2002. Structure and function of phosphatidylserine-specific phospholipase A(1). Biochim Biophys Acta 1582: 26–32.

    PubMed  Google Scholar 

  • Baranska J. 1988. A new pathway for phosphatidylserine synthesis in rat liver microsomes. FEBS Lett 228: 175–178.

    PubMed  Google Scholar 

  • Baranska J, Przybylek K, Sabala P. 1999. Capacitative calcium entry. Glioma C6 as a model of nonexcitable cells. Pol J Pharmacol 51: 153–162.

    PubMed  Google Scholar 

  • Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ. 2004. Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207–1216.

    PubMed  Google Scholar 

  • Bergo MO, Gavino BJ, Steenbergen R, Sturbois B, Parlow AF, et al. 2002. Defining the importance of phosphatidylserine synthase 2 in mice. J Biol Chem 277: 47701–47708.

    PubMed  Google Scholar 

  • Blomstrand C, Hamberger A. 1969. Protein turnover in cell-enriched fractions from rabbit brain. J Neurochem 16: 1401–1407.

    PubMed  Google Scholar 

  • Blusztajn JK, Zeisel SH, Wurtman RJ. 1979. Synthesis of lecithin (phosphatidylcholine) from phosphatidylethanolamine in bovine brain. Brain Res 179: 319–327.

    PubMed  Google Scholar 

  • Borkenhagen LF, Kennedy EP. 1958. The enzymic equilibration of L-serine with O-phospho-L-serine. Biochim Biophys Acta 28: 222–223.

    PubMed  Google Scholar 

  • Bratosin D, Mazurier J, Tissier JP, Estaquier J, Huart JJ, et al. 1998. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 80: 173–195.

    PubMed  Google Scholar 

  • Brumatti G, Sheridan C, Martin SJ. 2008. Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. Methods 44: 235–240.

    PubMed  Google Scholar 

  • Bruni A, Bigon E, Battistella A, Boarato E, Mietto L, et al. 1984. Lysophosphatidylserine as histamine releaser in mice and rats. Agents Actions 14: 619–625.

    PubMed  Google Scholar 

  • Buchanan AG, Kanfer JN. 1980. The effects of various incubation temperatures, particulate isolation, and possible role of calmodulin on the activity of the base exchange enzymes of rat brain. J Neurochem 35: 815–822.

    PubMed  Google Scholar 

  • Buratta S, Felicetti M, Mozzi R. 2007. Synthesis of phosphatidylserine by base exchange in Triton-insoluble floating fractions from rat cerebellum. J Neurochem 103: 942–951.

    PubMed  Google Scholar 

  • Buratta S, Hamberger A, Ryberg H, Nystrom B, Sandberg M, et al. 1998. Effect of serine and ethanolamine administration on phospholipid-related compounds and neurotransmitter amino acids in the rabbit hippocampus. J Neurochem 71: 2145–2150.

    PubMed  Google Scholar 

  • Buratta S, Mambrini R, Miniaci MC, Tempia F, Mozzi R. 2004. Group I metabotropic glutamate receptors mediate the inhibition of phosphatidylserine synthesis in rat cerebellar slices: A possible role in physiology and pathology. J Neurochem 89: 730–738.

    PubMed  Google Scholar 

  • Buratta S, Migliorati G, Marchetti C, Mambrini R, Riccardi C, et al. 2000. Dexamethasone increases the incorporation of [3H]serine into phosphatidylserine and the activity of serine base exchange enzyme in mouse thymocytes: A possible relation between serine base exchange enzyme and apoptosis. Mol Cell Biochem 211: 61–67.

    PubMed  Google Scholar 

  • Buratta S, Puxeddu E, Felicetti M, Moretti S, Mozzi R. 2005. Synthesis of phosphatidylserine by base exchange in rat cerebellum and cortex. J Neurochem 94(Suppl. 2): P456.

    Google Scholar 

  • Burke JE, Dennis EA. 2009. Phospholipase A2 Biochemistry Cardiovasc Drug 23: 49-59.

    Google Scholar 

  • Butler M, Morell P. 1983. The role of phosphatidylserine decarboxylase in brain phospholipid metabolism. J Neurochem 41: 1445–1454.

    PubMed  Google Scholar 

  • Calderon C, Huang ZH, Gage DA, Sotomayor EM, Lopez DM. 1994. Isolation of a nitric oxide inhibitor from mammary tumor cells and its characterization as phosphatidylserine. J Exp Med 180: 945–958.

    PubMed  Google Scholar 

  • Calderon F, Kim HY. 2008. Detection of intracellular phosphatidylserine in living cells. J Neurochem 104: 1271–1279.

    PubMed  Google Scholar 

  • Camici O, Corazzi L. 1995. Import of phosphatidylethanolamine for the assembly of rat brain mitochondrial membranes. J Membr Biol 148: 169–176.

    PubMed  Google Scholar 

  • Carlini E, Corazzi L, Camici O, Arienti G. 1993. The fate of phosphatidylethanolamine formed by decarboxylation in rat brain mitochondria. Biochem Mol Biol Int 29: 821–829.

    PubMed  Google Scholar 

  • Catania MV, Landwehrmeyer GB, Testa CM, Staendaert DG, Penny JB Jr, et al. 1994. Metabotropic glutamate receptors are differently regulated during development. Neuroscience 61: 484–495.

    Google Scholar 

  • Chandler LJ, Harris RA, Crews FT. 1998. Ethanol tolerance and synaptic plasticity. Trends Pharmacol Sci 19: 491–495.

    PubMed  Google Scholar 

  • Corazzi L, Pistolesi R, Carlini E, Arienti G. 1993. Transport of phosphatidylserine from microsomes to the inner mitochondrial membrane in brain tissue. J Neurochem 60: 50–56.

    PubMed  Google Scholar 

  • Czarny M, Nalecz K, Azzi A, Baranska J. 1992a. Interaction between phosphatidylserine biosynthesis and protein kinase C activation in neuroblastoma NB2a cells. Acta Neurobiol Exp (Wars) 52: 276.

    Google Scholar 

  • Czarny M, Sabala P, Ucieklak A, Kaczmarek L, Baranska J. 1992b. Inhibition of phosphatidylserine synthesis by glutamate, acetylcholine, thapsigargin and ionophore A23187 in glioma C6 cells. Biochem Biophys Res Commun 186: 1582–1587.

    PubMed  Google Scholar 

  • Czarny M, Wiktorek M, Sabala P, Pomorski P, Baranska J. 1995. Phosphatidylserine synthesis in phorbol ester treated glioma C6 cells. Biochem Mol Biol Int 36: 659–667.

    PubMed  Google Scholar 

  • Daleke DL. 2003. Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res 44: 233–242.

    PubMed  Google Scholar 

  • Dennis EA, Kennedy EP. 1972. Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J Lipid Res 13: 263–267.

    PubMed  Google Scholar 

  • Devaux PF, Zachowski A. 1994. Maintenance and consequences of membrane phospholipid asymmetry. Chem Phys Lipids 73: 107–120.

    Google Scholar 

  • Eichberg J, Shein HM, Hauser G. 1976. Lipid composition and metabolism of cultured hamster brain astrocytes. J Neurochem 27: 679–685.

    PubMed  Google Scholar 

  • Facci L, Skaper SD, Levin DL, Varon S. 1987. Dissociation of the stellate morphology from intracellular cyclic AMP levels in cultured rat brain astroglial cells: Effects of ganglioside GM1 and lysophosphatidylserine. J Neurochem 48: 566–573.

    PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA. 2004. Brain phospholipases A2: A perspective on the history. Prost Leukot Essent Fatty Acids 71: 161–169.

    Google Scholar 

  • Farooqui AA, Horrocks LA. 2007. Glycerophospholipids in brain. Phospholipases A2 in neurological disorder. New York: Springer.

    Google Scholar 

  • Farooqui AA, Rapoport SI, Horrocks LA. 1997. Membrane phospholipid alterations in Alzheimer’s disease: Deficiency of ethanolamine plasmalogens. Neurochem Res 22: 523–527.

    PubMed  Google Scholar 

  • Foster AC, Fagg GE, Harris EW, Cotman CW. 1982. Regulation of glutamate receptors: Possible role of phosphatidylserine. Brain Res 242: 374–377.

    PubMed  Google Scholar 

  • Gagne J, Giguere C, Tocco G, Ohayon M, Thompson RF, et al. 1996. Effect of phosphatidylserine on the binding properties of glutamate receptors in brain sections from adult and neonatal rats. Brain Res 740: 337–345.

    PubMed  Google Scholar 

  • Gaiti A, De Medio GE, Brunetti M, Amaducci L, Porcellati G. 1974. Properties and function of the calcium-dependent incorporation of choline, ethanolamine and serine into the phospholipids of isolated rat brain microsomes. J Neurochem 23: 1153–1159.

    PubMed  Google Scholar 

  • Garcia MC, Ward G, Ma YC, Salem N Jr, Kim HY. 1998. Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells. J Neurochem 70: 24–30.

    PubMed  Google Scholar 

  • Gatti C, Brunetti M, Gaiti A. 1989. Serine incorporation into phospholipids in vivo and serine phosphoglyceride metabolic transformations in cerebral areas from adult and aged rats. Neurobiol Aging 10: 241–245.

    PubMed  Google Scholar 

  • Gerstin EH Jr, McMahon T, Dadgar J, Messing RO. 1998. Protein kinase Cdelta mediates ethanol-induced up-regulation of L-type calcium channels. J Biol Chem 273: 16409–16414.

    PubMed  Google Scholar 

  • Ghosh S, Strum JC, Sciorra VA, Daniel L, Bell RM. 1996. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J Biol Chem 271: 8472–8480.

    PubMed  Google Scholar 

  • Giusto NM, Salvador GA, Castagnet PI, Pasquare SJ, Ilincheta de Boschero MG. 2002. Age-associated changes in central nervous system glycerolipid composition and metabolism. Neurochem Res 27: 1513–1523.

    PubMed  Google Scholar 

  • Goracci G, Blomstrand C, Arienti G, Hamberger A, Porcellati G. 1973. Base-exchange enzymic system for the synthesis of phospholipids in neuronal and glial cells and their subfractions: A possible marker for neuronal membranes. J Neurochem 20: 1167–1180.

    PubMed  Google Scholar 

  • Green P, Yavin E. 1995. Modulation of fetal rat brain and liver phospholipid content by intraamniotic ethyl docosahexaenoate administration. J Neurochem 65: 2555–2560.

    PubMed  Google Scholar 

  • Guan Z, Li S, Smith DC, Shaw WA, Raetz CR. 2007. Identification of N-acylphosphatidylserine molecules in eukaryotic cells. Biochem 46: 14500–14513.

    Google Scholar 

  • Guo M, Stockert L, Akbar M, Kim HY. 2007. Neuronal specific increase of phosphatidylserine by docosahexaenoic acid. J Mol Neurosci 33: 67–73.

    PubMed  Google Scholar 

  • Hagberg H, Lehmann A, Sandberg M, Nystrom B, Jacobson I, et al. 1985. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab 5: 413–419.

    PubMed  Google Scholar 

  • Hamilton L, Greiner R, Salem N Jr, Kim HY. 2000. n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 35: 863–869.

    PubMed  Google Scholar 

  • Hashimoto A, Oka T, Nishikawa T. 1995. Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66: 635–643.

    PubMed  Google Scholar 

  • Holbrook PG, Wurtman RJ. 1988. Presence of base-exchange activity in rat brain nerve endings: Dependence on soluble substrate concentrations and effect of cations. J Neurochem 50: 156–162.

    PubMed  Google Scholar 

  • Horrocks LA, van Rollins M, Yates AJ. 1981. Lipid changes in the ageing brain. The Molecular Basis of Neuropathology. Thompson RSH, Davidson AN, editors. London: Edward Arnold Publisher Ltd.

    Google Scholar 

  • Hosono H, Aoki J, Nagai Y, Bandoh K, Ishida M, et al. 2001. Phosphatidylserine-specific phospholipase A1 stimulates histamine release from rat peritoneal mast cells through production of 2-acyl-1-lysophosphatidylserine. J Biol Chem 276: 29664–29670.

    PubMed  Google Scholar 

  • Hu ZY, Sun GY, Rhodes PG. 1992. In utero ethanol exposure decreases the biosynthesis of phosphatidylserine in rat pup cerebrum. Alcohol Clin Exp Res 16: 432–435.

    PubMed  Google Scholar 

  • Ilincheta de Boschero MG, Roque ME, Salvador GA, Giusto NM. 2000. Alternative pathways for phospholipid synthesis in different brain areas during aging. Exp Gerontol 35: 653–668.

    PubMed  Google Scholar 

  • Infante JP. 1984. Biosynthesis of acyl-specific glycerophospholipids in mammalian tissues. Postulation of new pathways. FEBS Lett 170: 1–14.

    PubMed  Google Scholar 

  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, et al. 2004. Oxidative lipidomics of apoptosis: Redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 37: 1963–1985.

    PubMed  Google Scholar 

  • Kaneda T, Kitamura Y, Nomura Y. 1993. Presence of m3 subtype muscarinic acetylcholine receptors and receptor-mediated increase in the cytoplasmic concentration of Ca2+ in Jurkat, a human leukemic helper T lymphocyte line. Mol Pharmacol 43: 356–364.

    PubMed  Google Scholar 

  • Kanfer JN. 1972. Base exchange reactions of the phospholipids in rat brain particles. J Lipid Res 13: 468–476.

    PubMed  Google Scholar 

  • Kanfer JN, McCartney D, Hattori H. 1988. Regulation of the choline, ethanolamine and serine base exchange enzyme activities of rat brain microsomes by phosphorylation and dephosphorylation. FEBS Lett 240: 101–104.

    PubMed  Google Scholar 

  • Kanfer JN, McCartney DG. 1991. Sphingosine and unsaturated fatty acids modulate the base exchange enzyme activities of rat brain membranes. FEBS Lett 291: 63–66.

    PubMed  Google Scholar 

  • Kanfer JN, McCartney DG. 1993. Modulation of the serine base exchange enzyme activity of rat brain membranes by amphiphilic cations and amphiphilic anions. J Neurochem 60: 1228–1235.

    PubMed  Google Scholar 

  • Kim HY, Akbar M, Lau A, Edsall L. 2000. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J Biol Chem 275: 35215–35223.

    PubMed  Google Scholar 

  • Kim HY, Hamilton J. 2000. Accumulation of docosahexaenoic acid in phosphatidylserine is selectively inhibited by chronic ethanol exposure in C-6 glioma cells. Lipids 35: 187–195.

    PubMed  Google Scholar 

  • Kiss Z, Deli E, Kuo JF. 1987. Phorbol ester inhibits phosphatidylserine synthesis in human promyelocytic leukaemia HL60 cells. Possible involvement of free radicals and correlation with phosphorylation of nuclear protein 1b. Biochem J 248: 649–656.

    PubMed  Google Scholar 

  • Kobayashi M, McCartney DG, Kanfer JN. 1988. Developmental changes and regional distribution of phospholipase D and base exchange enzyme activities in rat brain. Neurochem Res 13: 771–776.

    PubMed  Google Scholar 

  • Kuge O, Hasegawa K, Ohsawa T, Saito K, Nishijima M. 2003. Purification and characterization of Chinese hamster phosphatidylserine synthase 2. J Biol Chem 278: 42692–42698.

    PubMed  Google Scholar 

  • Kuge O, Hasegawa K, Saito K, Nishijima M. 1998. Control of phosphatidylserine biosynthesis through phosphatidylserine-mediated inhibition of phosphatidylserine synthase I in Chinese hamster ovary cells. Proc Natl Acad Sci USA 95: 4199–4203.

    PubMed  Google Scholar 

  • Kuge O, Nishijima M. 1997. Phosphatidylserine synthase I and II of mammalian cells. Biochim Biophys Acta 1348: 151–156.

    PubMed  Google Scholar 

  • Kuge O, Nishijima M. 2003. Biosynthetic regulation and intracellular transport of phosphatidylserine in mammalian cells. J Biochem 133: 397–403.

    PubMed  Google Scholar 

  • Kuge O, Nishijima M, Akamatsu Y. 1986. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs. J Biol Chem 261: 5790–5794.

    PubMed  Google Scholar 

  • Kuge O, Saito K, Nishijima M. 1999. Control of phosphatidylserine synthase II activity in Chinese hamster ovary cells. J Biol Chem 274: 23844–23849.

    PubMed  Google Scholar 

  • Kuge O, Yamakawa Y, Nishijima M. 2001. Enhancement of transport-dependent decarboxylation of phosphatidylserine by S100B protein in permeabilized Chinese hamster ovary cells. J Biol Chem 276: 23700–23706.

    PubMed  Google Scholar 

  • Levi DS, Medina JH, De Robertis E. 1989. In vivo and in vitro modulation of central type benzodiazepine receptors by phosphatidylserine. Brain Res Mol Brain Res 5: 9–15.

    Google Scholar 

  • Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, et al. 1995. Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 146: 1045–1051.

    PubMed  Google Scholar 

  • Li W, Xia J, Sun GY. 1999. Cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC): Response to genistein and pyrrolidine dithiocarbamate. J Interferon Cytokine Res 19: 121–127.

    PubMed  Google Scholar 

  • Ligeti E, Dagher MC, Hernandez SE, Koleske AJ, Settleman J. 2004. Phospholipids can switch the GTPase substrate preference of a GTPase-activating protein. J Biol Chem 279: 5055–5058.

    PubMed  Google Scholar 

  • Lin TN, Wang Q, Simonyi A, Chen JJ, Cheung WM, et al. 2004. Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J Neurochem 90: 637–645.

    PubMed  Google Scholar 

  • Lourenssen S, Blennerhassett MG. 1998. Lysophosphatidylserine potentiates nerve growth factor-induced differentiation of PC12 cells. Neurosci Lett 248: 77–80.

    PubMed  Google Scholar 

  • Macchioni L, Corazzi L, Nardicchi V, Mannucci R, Arcuri C, et al. 2004. Rat brain cortex mitochondria release group II secretory phospholipase A(2) under reduced membrane potential. J Biol Chem 279: 37860–37869.

    PubMed  Google Scholar 

  • Manna D, Bhardwaj N, Vora MS, Stahelin RV, Lu H, et al. 2008. Differential roles of phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains. Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCalpha C2 domain. J Biol Chem 283: 26047–26058.

    PubMed  Google Scholar 

  • Martin RE, Elliott MH, Brush RS, Anderson RE. 2005. Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Invest Ophthalm Vis Sci 46: 1147–1154.

    Google Scholar 

  • Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, et al. 1995. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182: 1545–1556.

    PubMed  Google Scholar 

  • Martin TW, Lagunoff D. 1979. Interactions of lysophospholipids and mast cells. Nature 279: 250–252.

    PubMed  Google Scholar 

  • McDaniel MA, Maier SF, Einstein GO. 2003. “Brain-specific” nutrients: A memory cure? Nutrition 19: 957–975.

    PubMed  Google Scholar 

  • Mikhaevitch IS, Singh IN, Sorrentino G, Massarelli R, Kanfer JN. 1994. Modulation of phosphatidylserine synthesis by a muscarinic receptor occupancy in human neuroblastoma cell line LA-N-1. Biochem J 299(Pt 2): 375–380.

    PubMed  Google Scholar 

  • Mirnikjoo B, Balasubramanian K, Schroit AJ. 2009. Mobilization of lysosomal calcium regulates the externalization of phosphatidylserine during apoptosis. J Biol Chem. 284: 6918-6923.

    PubMed  Google Scholar 

  • Miura T, Taki T, Kanfer JN. 1981. Separation of base exchange enzymes from brain with special reference to l-serine exchange. Methods Enzymol 71(Pt C): 588–596.

    PubMed  Google Scholar 

  • Molloy GY, Rattray M, Williams RJ. 1998. Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci Lett 258: 139–142.

    PubMed  Google Scholar 

  • Mozzi R, Andreoli V, Buratta S, Iorio A. 1997. Different mechanisms regulate phosphatidylserine synthesis in rat cerebral cortex. Mol Cell Biochem 168: 41–49.

    PubMed  Google Scholar 

  • Mozzi R, Andreoli V, Horrocks LA. 1993. Phosphatidylserine synthesis in rat cerebral cortex: Effects of hypoxia, hypocapnia and development. Mol Cell Biochem 126: 101–107.

    PubMed  Google Scholar 

  • Mozzi R, Porcellati G. 1979. Conversion of phosphatidylethanolamine to phosphatidylcholine in rat brain by the methylation pathway. FEBS Lett 100: 363–366.

    PubMed  Google Scholar 

  • Murakami M, Nakatani Y, Kuwata H, Kudo I. 2000. Cellular components that functionally interact with signaling phospholipase A(2)s. Biochim Biophys Acta 1488: 159–166.

    PubMed  Google Scholar 

  • Murphy EJ, Horrocks LA. 1993. Effects of differentiation on the phospholipid and phospholipid fatty acid composition of N1E-115 neuroblastoma cells. Biochim Biophys Acta 1167: 131–136.

    PubMed  Google Scholar 

  • Nagai Y, Aoki J, Sato T, Amano R, Matsuda Y, et al. 1999. An alternative splicing form of phosphatidylserine-specific phospholipase A(1) that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J Biol Chem 274: 11053–11059.

    PubMed  Google Scholar 

  • Newton AC. 1995. Protein kinase C: Structure, function and regulation. J Biol Chem 270: 28495–28498.

    PubMed  Google Scholar 

  • Newton AC, Koshland DE Jr. 1990. Phosphatidylserine affects specificity of protein kinase C substrate phosphorylation and autophosphorylation. Biochem 29: 6656–6661.

    Google Scholar 

  • Nicotera P, Leist M, Ferrando-May E. 1999. Apoptosis and necrosis: Different execution of the same death. Biochem Soc Symp 66: 69–73.

    PubMed  Google Scholar 

  • Nishizuka Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9: 484–496.

    PubMed  Google Scholar 

  • Norton WT, Abe T, Poduslo SE, Devries GH. 1975. The lipid composition of isolated brain cells and axons. J Neurosci Res 1: 57–75.

    PubMed  Google Scholar 

  • Norton WT, Poduslo SE. 1970. Neuronal soma and whole neuroglia of rat brain: A new isolation technique. Science 167: 1144–1145.

    PubMed  Google Scholar 

  • Oppenheim RW. 1991. Cell death during development of nervous system. Annu Rev Sci 14: 453–501.

    Google Scholar 

  • Palatini P, Dabbeni-Sala F, Pitotti A, Bruni A, Mandersloot JC. 1977. Activation of (Na+-K+)-dependent ATPase by lipid vesicles of negative phospholipids. Biochim Biophys Acta 466: 1–9.

    PubMed  Google Scholar 

  • Pelassy C, Breittmayer JP, Aussel C. 2000. Regulation of phosphatidylserine exposure at the cell surface by the serine-base exchange enzyme system during CD95-induced apoptosis. Biochem Pharmacol 59: 855–863.

    PubMed  Google Scholar 

  • Percy AK, Moore JF, Carson MA, Waechter CJ. 1983. Characterization of brain phosphatidylserine decarboxylase: Localization in the mitochondrial inner membrane. Arch Biochem Biophys 223: 484–494.

    PubMed  Google Scholar 

  • Pereira J, Palomo I, Ocqueteau M, Soto M, Aranda E, et al. 1999. Platelet aging in vivo is associated with loss of membrane phospholipid asymmetry. Thromb Haemost 82: 1318–1321.

    PubMed  Google Scholar 

  • Porcellati G, Arienti G, Pirotta M, Giorgini D. 1971. Base-exchange reactions for the synthesis of phospholipids in nervous tissue: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J Neurochem 18: 1395–1417.

    PubMed  Google Scholar 

  • Porcellati G, Goracci G. 1976. Phospholipid composition and turnover in neuronal and glial membranes. Lipids, vol. 1: Biochemistry. Paoletti R, et al. editor. New York: Raven Press, pp. 203–214.

    Google Scholar 

  • Poulsen LR, Lopez-Marques RL, Palmgren MG. 2008. Flippases: Still more questions than answers. Cell Mol Life Sci 65: 3119–3125.

    PubMed  Google Scholar 

  • Pullarkat RK, Sbaschnig-Agler M, Reha H. 1981. Biosynthesis of phosphatidylserine in rat brain microsomes. Biochim Biophys Acta 664: 117–123.

    PubMed  Google Scholar 

  • Putney JW Jr. 1993. Excitement about calcium signaling in inexcitable cells. Science 262: 676–678.

    PubMed  Google Scholar 

  • Raghavan S, Rhoads D, Kanfer J. 1972. In vitro incorporation of (14C)serine, (14C)ethanolamine, and (14C)choline into phospholipids of neuronal and glial-enriched fractions from rat brain by base exchange. J Biol Chem 247: 7153–7156.

    PubMed  Google Scholar 

  • Rhodes PG, Hu ZY, Sun GY. 1993. Effects of chlorpromazine on phosphatidylserine biosynthesis in rat pup brain exposed to ethanol in utero. Neurochem Int 22: 75–80.

    PubMed  Google Scholar 

  • Rodriguez FD, Alling C, Gustavsson L. 1996. Ethanol potentiates the uptake of [14C]serine into phosphatidylserine by base-exchange reaction in NG 108-15 cells. Neurochem Res 21: 305–311.

    PubMed  Google Scholar 

  • Ross BM, Mamalias N, Moszczynska A, Rajput AH, Kish SJ. 2001. Elevated activity of phospholipid biosynthetic enzymes in substantia nigra of patients with Parkinson’s disease. Neuroscience 102: 899–904.

    PubMed  Google Scholar 

  • Rossi M, Corazzi L, Fratto G, Arienti G. 1990. The effect of membrane lipid molecular species on rat brain base-exchange reactions: An appraisal of phosphatidylserine and of polyunsaturated phosphatidylcholine. Farmaco 45: 1067–1073.

    PubMed  Google Scholar 

  • Rouser G, Yamamoto A, Kritchevsky G. 1971. Cellular membranes. Structure and regulation of lipid class composition species differences, changes with age, and variations in some pathological states. Arch Intern Med 127: 1105–1121.

    PubMed  Google Scholar 

  • Ryu SB, Palta JP. 2000. Specific inhibition of rat brain phospholipase D by lysophospholipids. J Lipid Res 41: 940–944.

    PubMed  Google Scholar 

  • Sahu SK, Gummadi SN, Manoj N, Aradhyam GK. 2007. Phospholipid scramblases: An overview. Arch Biochem Biophys 462: 103–114.

    PubMed  Google Scholar 

  • Saito M, Bourque E, Kanfer J. 1975. Studies on base-exchange reactions of phospholipids in rat brain particles and a “solubilized” system. Arch Biochem Biophys 169: 304–317.

    PubMed  Google Scholar 

  • Sakane F, Yamada K, Imai S, Kanoh H. 1991. Porcine 80-kDa diacylglycerol kinase is a calcium-binding and calcium/phospholipid-dependent enzyme and undergoes calcium-dependent translocation. J Biol Chem 266: 7096–7100.

    PubMed  Google Scholar 

  • Salem N Jr, Litman B, Kim HY, Gawrisch K. 2001. Mechanism of action of docosahexaenoic acid in the nervous system. Lipids 36: 945–959.

    PubMed  Google Scholar 

  • Sato T, Aoki J, Nagai Y, Dohmae N, Takio K, et al. 1997. Serine phospholipid-specific phospholipase A that is secreted from activated platelets – a new member of the lipase family. J Biol Chem 272: 2192–2198.

    PubMed  Google Scholar 

  • Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, et al. 2003. BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science 300: 135–139.

    PubMed  Google Scholar 

  • Singh IN, McCartney DG, Sorrentino G, Massarelli R, Kanfer JN. 1992a. Phorbol esters modulate phospholipid metabolism in a human cholinergic cell line, LA-N-2: A possible role for the base exchange enzymes. J Neurosci Res 32: 583–592.

    PubMed  Google Scholar 

  • Singh IN, Sorrentino G, Massarelli R, Kanfer JN. 1992b. Oleoylamine and sphingosine stimulation of phosphatidylserine synthesis by LA-N-2 cells is protein kinase C independent. FEBS Lett 296: 166–168.

    PubMed  Google Scholar 

  • Smrz D, Lebduska P, Draberova L, Korb J, Draber P. 2008. Engagement of phospholipid scramblase 1 in activated cells; implication for phosphatidylserine externalization and exocytosis. J Biol Chem 283(16): 10904–10918.

    PubMed  Google Scholar 

  • Stone SJ, Cui Z, Vance JE. 1998. Cloning and expression of mouse liver phosphatidylserine synthase-1 cDNA. Overexpression in rat hepatoma cells inhibits the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis. J Biol Chem 273: 7293–7302.

    PubMed  Google Scholar 

  • Stone SJ, Vance JE. 1999. Cloning and expression of murine liver phosphatidylserine synthase (PSS)-2: Differential regulation of phospholipid metabolism by PSS1 and PSS2. Biochem J 342(Pt 1): 57–64.

    PubMed  Google Scholar 

  • Stone SJ, Vance JE. 2000. Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275: 34534–34540.

    PubMed  Google Scholar 

  • Sun GY, Foudin LL. 1985. Phospholipid composition and metabolism in the developing and aging nervous system. Eichberg J, editor. New York: Wiley.

    Google Scholar 

  • Sun GY, Huang HM, Lee DZ, Sun AY. 1984. Increased acidic phospholipids in rat brain membranes after chronic ethanol administration. Life Sci 35: 2127–2133.

    PubMed  Google Scholar 

  • Sun GY, Samorajski T. 1972. Age changes in the lipid composition of whole homogenates and isolated myelin fractions of mouse brain. J Gerontol 27: 10–17.

    PubMed  Google Scholar 

  • Sun GY, Sun AY. 1983. Chronic ethanol administration induced an increase in phosphatidylserine in guinea pig synaptic plasma membranes. Biochem Biophys Res Commun 113: 262–268.

    PubMed  Google Scholar 

  • Sun GY, Sun AY. 1985. Ethanol and membrane lipids. Alcohol Clin Exp Res 9: 164–180.

    PubMed  Google Scholar 

  • Suzuki TT, Kanfer JN. 1985. Purification and properties of an ethanolamine-serine base exchange enzyme of rat brain microsomes. J Biol Chem 260: 1394–1399.

    PubMed  Google Scholar 

  • Szalai G, Krishnamurthy R, Hajnoczky G. 1999. Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J 18: 6349–6361.

    PubMed  Google Scholar 

  • Tait JF. 2008. Imaging of apoptosis. J Nucl Med 49: 1573–1576.

    PubMed  Google Scholar 

  • Tijburg LB, Geelen MJ, Van Golde LM. 1989. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes. Biochem Biophys Res Commun 160: 1275–1280.

    PubMed  Google Scholar 

  • Tomohiro S, Kawaguti A, Kawabe Y, Kitada S, Kuge O. 2009. Purification and characterization of human phosphatidylserine synthases 1 and 2. Biochem J 418: 421–429.

    PubMed  Google Scholar 

  • Tong W, Shah D, Xu J, Diehl JA, Hans A, et al. 1999. Involvement of lipid mediators on cytokine signaling and induction of secretory phospholipase A2 in immortalized astrocytes (DITNC). J Mol Neurosci 12: 89–99.

    PubMed  Google Scholar 

  • Tsakiris S, Deliconstantinos G. 1985. Phosphatidylserine and calmodulin effects on Ca2+-stimulated ATPase activity of dog brain synaptosomal plasma membranes. Int J Biochem 17: 1117–1119.

    PubMed  Google Scholar 

  • Tyurin VA, Tyurina YY, Kochanek PM, Hamilton R, Dekosky ST, et al. 2008. Oxidative lipidomics of programmed cell death. Methods Enzymol 442: 375–393.

    PubMed  Google Scholar 

  • Tyurina YY, Shvedova AA, Kawai K, Tyurin VA, Kommineni C, et al. 2000. Phospholipid signaling in apoptosis: Peroxidation and externalization of phosphatidylserine. Toxicology 148: 93–101.

    PubMed  Google Scholar 

  • van Golde LM, Raben J, Batenburg JJ, Fleischer B, Zambrano F, et al. 1974. Biosynthesis of lipids in Golgi complex and other subcellular fractions from rat liver. Biochim Biophys Acta 360: 179–192.

    PubMed  Google Scholar 

  • Vance JE, Steenbergen R. 2005. Metabolism and function of phosphatidylserine. Prog Lip Res 44: 207–234.

    Google Scholar 

  • Voelker DR. 1984. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells. Proc Natl Acad Sci USA 81: 2669–2673.

    PubMed  Google Scholar 

  • Wen Z, Kim HY. 2004. Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J Neurochem 89: 1368–1377.

    PubMed  Google Scholar 

  • Wen Z, Kim HY. 2007. Inhibition of phosphatidylserine biosynthesis in developing rat brain by maternal exposure to ethanol. J Neurosci Res 85: 1568–1578.

    PubMed  Google Scholar 

  • Witter B, Debuch H. 1982. On the phospholipid metabolism of glial cell primary cultures: Cell characterization and their utilization of 1-alkyl-glycerophosphoethanolamine. J Neurochem 38: 1029–1037.

    PubMed  Google Scholar 

  • Witting A, Muller P, Herrmann A, Kettenmann H, Nolte C. 2000. Phagocytic clearance of apoptotic neurons by Microglia/Brain macrophages in vitro: Involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition. J Neurochem 75: 1060–1070.

    PubMed  Google Scholar 

  • Woelk H, Goracci G, Gaiti A, Porcellati G. 1973. Phospholipase A1 and A2 activities of neuronal and glial cells of the rabbit brain. Hoppe Seylers Z Physiol Chem 354: 729–736.

    PubMed  Google Scholar 

  • Woelk H, Peiler-Ichikawa K, Binaglia L, Goracci G, Porcellati G. 1974. Distribution and properties of phospholipases A1 and A2 in synaptosomes and subsynaptosomal fractions of rat brain. Hoppe-Seylers Z Physiol Chem 355: 1535–1542.

    PubMed  Google Scholar 

  • Woelk H, Porcellati G. 1973. Subcellular distribution and kinetic properties of rat brain phospholipases A1 and A2. Hoppe Seylers Z Physiol Chem 354: 90–100.

    PubMed  Google Scholar 

  • Wojcik M, Dygas A, Bobeszko M, Czajkowski R, Baranska J. 2000. Effect of ethanol on ATP-induced phospholipases C and D and serine base exchange in glioma C6 cells. Neurochem Int 36: 127–136.

    PubMed  Google Scholar 

  • Woronczak JP, Siucinska E, Kossut M, Baranska J. 1995. Temporal dynamics and regional distribution of [14C]serine uptake into mouse brain. Acta Neurobiol Exp (Wars) 55: 233–241.

    Google Scholar 

  • Wu Y, Tibrewal N, Birge RB. 2006. Phosphatidylserine recognition by phagocytes: A view to a kill. Trends Cell Biol 16: 189–197.

    PubMed  Google Scholar 

  • Xu Z, Byers DM, Palmer FB, Cook HW. 1994. Serine and ethanolamine incorporation into different plasmalogen pools: Subcellular analyses of phosphoglyceride synthesis in cultured glioma cells. Neurochem Res 19: 769–775.

    PubMed  Google Scholar 

  • Xu Z, Byers DM, Palmer FB, Spence MW, Cook HW. 1993. Limited metabolic interaction of serine with ethanolamine and choline in the turnover of phosphatidylserine, phosphatidylethanolamine and plasmalogens in cultured glioma cells. Biochim Biophys Acta 1168: 167–174.

    PubMed  Google Scholar 

  • Yavin E, Zeigler BP. 1977. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. Serine incorporation into serine phosphoglycerides: Base exchange and decarboxylation patterns. J Biol Chem 252: 260–267.

    PubMed  Google Scholar 

  • Zabelinskii SA, Chebotareva MA, Kostkin VB, Krivchenko AI. 1999. Phospholipids and their fatty acids in mitochondria, synaptosomes and myelin from the liver and brain of trout and rat: A new view on the role of fatty acids in membranes. Comp Biochem Physiol B Biochem Mol Biol 124: 187–193.

    PubMed  Google Scholar 

  • Zanassi P, Paolillo M, Schinelli S. 1998. Coexpression of phospholipase A2 isoforms in rat striatal astrocytes. Neurosci Lett 247: 83–86.

    PubMed  Google Scholar 

  • Zborowski J, Dygas A, Wojtczak L. 1983. Phosphatidylserine decarboxylase is located on the external side of the inner mitochondrial membrane. FEBS Lett 157: 179–182.

    PubMed  Google Scholar 

  • Zelinski TA, Choy PC. 1982. Phosphatidylethanolamine biosynthesis in isolated hamster heart. Can J Biochem 60: 817–823.

    PubMed  Google Scholar 

  • Zwaal RF, Comfurius P, Bevers EM. 2005. Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62: 971–988.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Mozzi, R., Buratta, S. (2009). Brain Phosphatidylserine: Metabolism and Functions. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_3

Download citation

Publish with us

Policies and ethics