Skip to main content

Lipids in Multiple Sclerosis

  • Reference work entry

Abstract:

Increasing evidence suggests that lipids antigens may be target of autoimmune attacks in inflammatory diseases of the central nervous system. Preliminary observations in multiple sclerosis and in experimental autoimmune encephalomyelitis indicate that both T cell and antibody reactivity to structural lipids of myelin may play a role in determining autoimmune-mediated demyelination. Molecular mimicry between bacterial and myelin glycolipids has been observed, and a subset of NKT cells specific for glycolipid antigens has been identified. Increased sulfatide-reactive T-cells and antibodies were demonstrated in multiple sclerosis patients. The possibility that myelin lipids may be targets for autoimmune reactions in central nervous system diseases opens new research and therapeutic perspectives for multiple sclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

(APC):

antigen presenting cells

(EAE):

experimental autoimmune encephalomyelitis

(IFN):

interferon

(LPA):

lysophosphatidic acid

(MHC-I):

major histocompatibility complex class I

[MBP]:

myelin basic protein

[MOG]:

myelin oligodendrocyte protein

(NOD):

non-obese diabetic

(OPC):

oligodendrocyte progenitor cell

[PLP]:

proteolipid protein

(TCR):

T cell receptor

(TNF):

tumor necrosis factor

References

  • Alling C, Vanier MT, Svennerholm L 1971. Lipid alterations in apparently normal white matter in multiple sclerosis. Brain Res 35(2): 325–336.

    Article  PubMed  Google Scholar 

  • Anliker B and Chun J 2004a. Cell surface receptors in lysophospholipid signaling. Semin Cell Dev Biol 15: 457–465.

    Article  PubMed  Google Scholar 

  • Anliker B and Chun J 2004b. Lysophospholipid G protein-coupled receptors. J Biol Chem 279: 20555–20558.

    Article  PubMed  Google Scholar 

  • Bansal AS, Abdul-Karim B, Malik RA, Goulding P, Pumphrey RS, et al. 1994. Igm ganglioside GM1 antibodies in patients with autoimmune disease or neuropathy, and controls. J Clin Pathol 47: 300–302.

    Article  PubMed  Google Scholar 

  • Battistini L, Fischer FR, Raine CS, Brosnan CF 1996. CD1b is expressed in multiple sclerosis lesions. J Neuroimmunol 67: 145–151.

    PubMed  Google Scholar 

  • Bendelac A, Bonneville M, Kearney JF 2001. Autoreactivity by design: Innate B and T lymphocytes. Nat Rev Immunol 1: 177–186.

    Article  PubMed  Google Scholar 

  • Bendelac A, Rivera MN, Park SH, Roark JH 1997. Mouse CD1-specific NK1 T cells: Development, specificity, and function. Annu Rev Immunol 15: 535–562.

    Article  PubMed  Google Scholar 

  • Bendelac A, Savage PB, Luc T 2007. The biology of NKT cells. Annu Rev Immunol 25: 297–336.

    Article  PubMed  Google Scholar 

  • Ben-Menacem G, Kubler-Kielb J, Coxon B, Yergev A, Schneerson R 2003. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci USA 100(13): 7913–7918.

    Article  Google Scholar 

  • Benvenga S, Guarneri F, Vaccaio M, Santarpia L, Trimarchi F 2004. Homologies between proteins of Borrelia burgdorferi and thyroid autoantigens. Thyroid 14(11): 964–976.

    Article  PubMed  Google Scholar 

  • Boggs JM, Moscarello MA 1978. Structural organization of the human myelin membrane. Biochim Biophys Acta 515: 1–21.

    PubMed  Google Scholar 

  • Brorson O, Brorson SH, Henriksen TH, Skogen PR, Schoven R 2001. Association between multiple sclerosis and cystic structures in cerebrospinal fluid. Infection 29(6): 315–319.

    Article  PubMed  Google Scholar 

  • Brown JS 1996. Geographic correlation of multiple sclerosis with tick-borne diseases. Mult Scler 1: 257–261.

    PubMed  Google Scholar 

  • Chmielewska-Badora J, Cisak E, Dutkiewicz J 2002. Lyme borreliosis and multiple sclerosis: Any connection? A seroepidemic study. Ann Agric Environ Med 7(2): 141–153.

    Google Scholar 

  • Contini C, Cultrera R, Saraceni S, Castellazzi M, Granieri E, et al. 2004. Cerebrospinal fluid molecular demonstration of Chlamydia pneumoniae DNA is associated to clinical and brain magnetic resonance imaging activity in a subset of patients with relapse-remitting multiple sclerosis. Mult Scler 10(4): 360–369.

    Article  PubMed  Google Scholar 

  • Cumings JN 1955. Lipid chemistry of the brain in demyelinating diseases. Brain 78: 554–563.

    Article  PubMed  Google Scholar 

  • De Libero G, Donda A, Gober HJ 2002. A new aspect in glycolipid biology: Glycosphingolipids as antigens recognized by T lymphocytes. Neurochem Res 27: 675–685.

    Article  PubMed  Google Scholar 

  • De Libero G, Mori L 2003. Self glycosphingolipids: New antigens recognized by autoreactive T lymphocytes. News Physiol Sci 18: 71–76.

    PubMed  Google Scholar 

  • De Libero G, Moran AP, Gober HJ 2005. Bacterial infections promote T cell recognition of self-glycolipids. Immunity 22(6): 763–772.

    Article  PubMed  Google Scholar 

  • de Rosbo NK, Ben-Nun A 1998. T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. J Autoimmun 11: 287–299.

    Article  PubMed  Google Scholar 

  • Dev KK, Mullershausen F, Mattes H, Kuhn RR, BilbeG, et al. 2008. Brain sphingosine-1-phosphate receptors: Implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Therap 117: 77–93.

    Article  Google Scholar 

  • Dhib-Jalbut S 2007. Pathogenesis of myelin/oligodendrocyte damage in multiple sclerosis. Neurology 68(S3): S13–21.

    Article  PubMed  Google Scholar 

  • Dong-Si T, Weber J, Liu YB, Buhmann C, BauerH, et al. 2004. Increased prevalence of and gene transcription by Chlamydia pneumoniae in cerebrospinal fluid of patients with relapsing–remitting multiple sclerosis. J Neurol 251(5): 542–547.

    Article  PubMed  Google Scholar 

  • Egg R, Reindl M, Deisenhammer F, Linington C, Berger T 2001. Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis. Mult Scler 7(5): 285–289.

    PubMed  Google Scholar 

  • Endo T, Scott DD, Stewart SS, Kundu SK, Marcus DM 1984. Antibodies to glycosphingolipids in patients with multiple sclerosis and SLE. J Immunol 132: 1793–1797.

    PubMed  Google Scholar 

  • Franklin GM, Nelson L 2003. Environmental risk factors in multiple sclerosis: Causes, triggers, and patient autonomy. Neurology 61(8): 1032–1034.

    PubMed  Google Scholar 

  • Fredman P 1998. The role of antiglycolipid antibodies in neurological disorders. Ann NY Acad Sci 845: 341–352.

    Article  PubMed  Google Scholar 

  • Fritzsche M 2005. Chronic Lyme borreliosis at the root of multiple sclerosis – is a cure with antibiotics attainable? Med. Hypotheses 64(3): 438–448.

    Article  Google Scholar 

  • Fry JM, Weissbarth S, Lehrer GM, Bornstein MB 1974. Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelinates in cord tissue cultures. Science 183(124): 540–542.

    Article  PubMed  Google Scholar 

  • Gerstl B, Kahnke MJ, Smith JK, Tavaststjerna MG, Hayman RB 1961. Brain lipids in multiple sclerosis and other diseases. Brain 84: 310–319.

    Article  PubMed  Google Scholar 

  • Giovannoni G, Morris PR, Keir G 2000. Circulating antiganglioside antibodies are not associated with the development of progressive disease or cerebral atrophy in patients with multiple sclerosis. Ann Neurol 47: 684–685.

    Article  PubMed  Google Scholar 

  • Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG 2000. NKT cells: Facts, functions and fallacies. Immunol Today 21: 573–583.

    Article  PubMed  Google Scholar 

  • Goetzl EJ, Rosen H 2004. Regulation of immunity by lysosphingolipids and their G protein-coupled receptors. J Clin Invest 114: 1531–1537.

    PubMed  Google Scholar 

  • Gross DM, Forsthuber T, Tary-Lehmann M, Etling C, ItoK, et al. 1998. Identification of LFA-1 as a candidate autoantigen in treatment resistant Lyme arthritis. Science 281(5377): 703–706.

    Article  PubMed  Google Scholar 

  • Hammond KJ, Godfrey DI 2002. NKT cells: Potential targets for autoimmune disease therapy?. Tissue Antigens 59: 353–363.

    Article  PubMed  Google Scholar 

  • Kanter JL, Narayana S, Ho PP, Catz I, WarrenKG, et al. 2006. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med 12(1): 138–143.

    Article  PubMed  Google Scholar 

  • Kasai N, Pachner AR, Yu RK 1986. Anti-glycolipid antibodies and their immune complexes in multiple sclerosis. J Neurol Sci 75(1): 33–42.

    Article  PubMed  Google Scholar 

  • Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, et al. 2006. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol. 7(9): 978–985.

    Article  PubMed  Google Scholar 

  • Kinjo Y, Wu D, Kim G, Xing GW, PolesMA, et al. 2005. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434(7032): 520–525.

    Article  PubMed  Google Scholar 

  • Kronenberg M, Kinjo Y 2005. Infection, autoimmunity, and glycolipids: T cells detect microbes through self-recognition. Immunity 22(6): 657–659.

    Article  PubMed  Google Scholar 

  • Kurtzke JF 2006. Multiple sclerosis in time and space – geographic clues to cause. J Neurovirol 6(S2): S134–140.

    Google Scholar 

  • Ilvas AA, Chen ZW, Cook SD 2003. Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. J Neuroimmunol 139: 76–80.

    Article  Google Scholar 

  • Ishii I, Fukushima N, Ye X and Chun J 2004. Lysophospholipid receptors: Signaling and biology. Annu Rev Biochem 73: 321–354.

    Article  PubMed  Google Scholar 

  • Joyce S 2001. CD1d and natural T cells: How their properties jump-start the immune system. Cell Mol Life Sci 58: 442–469.

    Article  PubMed  Google Scholar 

  • Lalive PH, Menge T, Delarasse C, Della Gaspera B, Pham-DinhD, et al. 2006. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci USA 103: 2280–2285.

    Article  PubMed  Google Scholar 

  • Laloux V, Beaudoin L, Jeske D, Carnaud C, Lehuen A 2001. NK T cell-induced protection against diabetes in Vα14-Jα281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J Immunol 166: 3749–3756.

    PubMed  Google Scholar 

  • Lana-Peixoto MA 1994. Multiple sclerosis and positive Lyme serology. Arq Neuropsiquiatr 52(4): 566–571.

    PubMed  Google Scholar 

  • Libbey JE, McCoy LL, Fujinami RS 2007. Molecular mimicry in multiple sclerosis. Int Rev Neurobiol 79: 127–147.

    Article  PubMed  Google Scholar 

  • Linsen L, Somers V, Stinissen P 2005. Immunoregulation of autoimmunity by natural killer T cells. Hum Immunol 66(12): 1193–1202.

    Article  PubMed  Google Scholar 

  • Maida E 1983. Immunological reactions against Mycoplasma pneumoniae in multiple sclerosis: Preliminary findings. J Neurol 229(2): 103–111.

    Article  PubMed  Google Scholar 

  • Mandala S, Hajdu R, Bergstrom J, Quackenbush E, XieJ, et al. 2002. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296: 346–349.

    Article  PubMed  Google Scholar 

  • Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, et al. 2005. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434(7032): 525–529.

    Article  PubMed  Google Scholar 

  • Menon KK, Piddlesden SJ, Bernard CC 1997. Demyelinating antibodies to myelin oligodendrocyte glycoprotein and galactocerebroside induce degradation of myelin basic protein in isolated human myelin. J Neurochem 69(1): 214–222.

    Article  PubMed  Google Scholar 

  • Merril AH 2002. De novo sphingolipid biosynthesis: A necessary but dangerous pathway. J Biol Chem 277: 25843–25846.

    Article  Google Scholar 

  • Miron VE, Jung CG, Kim HJ, Kennedy TE, SolivenB, et al. 2008. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol 63: 61–71.

    Article  PubMed  Google Scholar 

  • Morell P, and Norton WT 1980. Myelin. Sci Am 242: 88–90.

    Article  PubMed  Google Scholar 

  • Moses H, Sriram S 2001. An infectious basis for multiple sclerosis: Perspectives on the role of Chlamydia pneumoniae and other agents. Bio Drugs 15(3): 199–206.

    Google Scholar 

  • Pfeiffer SE, Warrington AE, Bansal R 1993. The oligodendrocyte and its many cellular processes. Trends Cell Biol 3(6): 191–197.

    Article  PubMed  Google Scholar 

  • Porubsky S, Speak AO, Luckow B, Cerundolo V, PlattFM, et al. 2007. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (igb3) deficiency. Proc Natl Acad Sci USA 104: 5977–5982.

    Article  PubMed  Google Scholar 

  • Raine CS, Johnson AB, Marcus DM, Suzuki A, Bornstein MB 1981. Demyelination in vitro: Absorption studies demonstrate that galactocerebroside is a major target. J Neurol Sci 52(1): 117–131.

    Article  PubMed  Google Scholar 

  • Reindl M, Linington C, Brehm U 1999. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: A comparative study. Brain 122: 2047–2056.

    Article  PubMed  Google Scholar 

  • Sadatipour BT, Greer JM, Pender MP 2000. Increased circulating antiganglioside antibodies in primary and secondary progressive multiple sclerosis. Ann Neurol 47(5): 684–685.

    Google Scholar 

  • Sanchez T, Hla T 2004. Structural and functional characteristics of S1P receptors. J Cell Biochem 92: 913–922.

    Article  PubMed  Google Scholar 

  • Sawicka E, Dubois G, Jarai G, Edwards M, ThomasM, et al. 2005. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4_/CD25_ T-regulatory cells and enhances their functional activity. J Immunol 175: 7973–7980.

    PubMed  Google Scholar 

  • Schwid SR, Goodman AD, Mattson DH 1997. Autoimmune hyperthyroidism in patients with multiple sclerosis treated with interferon beta-1b. Arch Neurol 54(9): 1169–1190.

    PubMed  Google Scholar 

  • Shamshiev A, Donda A, Carena I, Mori L, KapposL, et al. 1999. Self glycolipids as T-cell autoantigens. Eur J Immunol 29(5): 1667–1675.

    Article  PubMed  Google Scholar 

  • Shamshiev A, Donda A, Prigozy TI, Mori L, ChigornoV, et al. 2000. The alphabeta T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13: 255–264.

    Article  PubMed  Google Scholar 

  • Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K, et al. 2001. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci USA 98: 6777–6782.

    Article  PubMed  Google Scholar 

  • Speak AO, Salio M, Neville DC, Fontaine J, Priestman DA, et al. 2007. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc Natl Acad Sci USA 104(14): 5971–5976.

    Article  PubMed  Google Scholar 

  • Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR 2005. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1dspecific ligands for NKT cells. Eur J Immunol. 35(6): 1692–1701.

    Article  PubMed  Google Scholar 

  • Steere AC, Gross D, Meyer AL, Huber BT 2001. Autoimmune mechanisms in antibiotic treatment-resistant Lyme arthritis. J Autoimmun 16(3): 263–268.

    Article  PubMed  Google Scholar 

  • Stevens A, Weller M, Wietholter H 1992. CSF and serum ganglioside antibody patterns in MS. Acta Neurol Scand 86: 485–489.

    Article  PubMed  Google Scholar 

  • Stinissen P, Raus J, Zhang J 1997. Autoimmune pathogenesis of multiple sclerosis: Role of autoreactive T lymphocytes and new immunotherapeutic strategies. Crit Rev Immunol 17(1): 33–75.

    PubMed  Google Scholar 

  • Tupin E, Kinjo Y, Kronenberg M 2007. The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5(6): 405–417.

    Article  PubMed  Google Scholar 

  • Uhlig H, Dernick R 1989. Monoclonal autoantibodies derived from multiple sclerosis patients and control persons and their reactivities with antigens of the central nervous system. Autoimmunity 5: 87–99.

    Article  PubMed  Google Scholar 

  • Wang B, Geng YB, Wang CR 2001. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 194: 313–320.

    Article  PubMed  Google Scholar 

  • Williams KC, Ulvestad E, Hickey WF 1994. Immunology of multiple sclerosis. Clin Neurosci 2: 229–245.

    PubMed  Google Scholar 

  • Wolfson C, Talbot P 2002. Bacterial infection as a cause of multiple sclerosis. Lancet 360: 352–3.

    Article  PubMed  Google Scholar 

  • Wu D, Zajonc DM, Fujio M, Sullivan BA, KinjoY, et al. 2006. Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci USA 103(11): 3972–3977.

    Article  PubMed  Google Scholar 

  • Zajonc DM, Maricic I, Wu D, Halder R, Roy K, et al. 2005. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202: 1517–1526.

    Article  PubMed  Google Scholar 

  • Zhou D, Mattner J, Cantu C 3rd, Schrantz N, YinN, et al. 2004. Lysosomal glycosphingolipid recognition by NKT cells. Science 306(5702): 1786–1789.

    Article  PubMed  Google Scholar 

  • Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ 1996. Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178(9): 2676–2687.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Rinaldi, L., Grassivaro, F., Gallo, P. (2009). Lipids in Multiple Sclerosis. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_24

Download citation

Publish with us

Policies and ethics