Skip to main content

Roles of Cytosolic and Secretory Phospholipases A2 in Oxidative and Inflammatory Signaling Pathways in the CNS

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 1624 Accesses

Abstract:

Oxidative stress is implicated in the pathophysiology of a number of neurodegenerative diseases. There is evolving evidence for a metabolic link between reactive oxygen species (ROS) and phospholipases A2 (PLA2), enzymes that hydrolyze fatty acyl groups from the sn-2 position of membrane glycerophospholipids. Increased production of ROS and upregulation of PLA2 are important factors underlying the progression of stroke and Alzheimer’s disease. The major goal of this review is to provide recent information on the oxidative and inflammatory pathways associated with PLA2 activation in neurons and glial cells, particularly, the group IV cytosolic PLA2 and the group II secretory PLA2. Special emphasis is placed on signaling pathways and NADPH oxidase, an enzyme producing superoxide anions. Understanding the involvement of these PLA2 in the oxidative and inflammatory environment in central nervous system is an important step for developing novel therapeutic strategy for the treatment and prevention of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

2-amino-3-hydroxy-5-methyl-4-isoxazole propionate

CDR:

clinical dementia ratings

CNS:

central nervous system

DHA:

docosahexaenoic acid

FFA:

free fatty acids

HNE:

hydroxynonenal

LTP:

Long-term potentiation

M-CSF:

macrophage colony stimulating factor

MDA:

malondiadehyde

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PCR (qPCR):

quantitative real-time

PKC:

protein kinase C

PLA2 :

phospholipases A2

PLC:

phospholipase C

PUFA:

polyunsaturated fatty acids

ROS:

reactive oxygen species

SPAN:

snake presynaptic PLA2 neurotoxin

TR-FIA:

time-resolved fluoroimmunoassay

References

  • Adibhatla RM, Hatcher JF. 2007. Secretory phospholipase A2 IIA is up-regulated by TNF-alpha and IL-1alpha/beta after transient focal cerebral ischemia in rat. Brain Res 1134: 199–205.

    PubMed  Google Scholar 

  • Adibhatla RM, Hatcher JF, Dempsey RJ. 2003. Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 5: 647–654.

    PubMed  Google Scholar 

  • Adibhatla RM, Hatcher JF, Dempsey RJ. 2006. Lipids and lipidomics in brain injury and diseases. Aaps J 8: E314–321.

    PubMed  Google Scholar 

  • Akiyama H, Barger S, Barnum S. et al. 2000. Inflammation and Alzheimer’s disease. Neurobiology of aging 21: 383–421.

    PubMed  Google Scholar 

  • Aktas O, Ullrich O, Infante-Duarte C, Nitsch R, Zipp F. 2007. Neuronal damage in brain inflammation. Arch Neurol 64: 185–189.

    PubMed  Google Scholar 

  • Bailey RW, Olson ED, Vu MP, Brueseke TJ, Robertson L, et al. 2007. Relationship Between Membrane Physical Properties and Secretory Phospholipase A2 Hydrolysis Kinetics in S49 Cells During Ionophore-Induced Apoptosis. Biophys J 93: 2350-2362.

    Google Scholar 

  • Bate C, Williams A. 2007. Squalestatin protects neurons and reduces the activation of cytoplasmic phospholipase A(2) by Abeta(1–42). Neuropharmacology.

    Google Scholar 

  • Bazan NG. 2003. Synaptic lipid signaling: Significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 44: 2221–2233.

    PubMed  Google Scholar 

  • Bazan NG. 2005. Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol neurobiol 32: 89–103.

    PubMed  Google Scholar 

  • Bazan NG. 2006. Cell survival matters: Docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29: 263–271.

    PubMed  Google Scholar 

  • Bazan NG. 2007. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 10: 136–141.

    PubMed  Google Scholar 

  • Bazan NG, Aveldano de Caldironi MI, Rodriguez de Turco EB. 1981. Rapid release of free arachidonic acid in the central nervous system due to stimulation. Prog Lipid Res 20: 523–529.

    PubMed  Google Scholar 

  • Bedard K, Krause KH. 2007. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev 87: 245–313.

    PubMed  Google Scholar 

  • Berridge MJ. 1987. Inositol trisphosphate and diacylglycerol: Two interacting second messengers. Annu Rev Biochem 56: 159–193.

    PubMed  Google Scholar 

  • Bezzine S, Bollinger JG, Singer AG, Veatch SL, Keller SL, et al. 2002. On the binding preference of human groups IIA and X phospholipases A2 for membranes with anionic phospholipids. J Biol Chem 277: 48523–48534.

    PubMed  Google Scholar 

  • Boilard E, Rouault M, Surrel F, Le Calvez C, Bezzine S, et al. 2006. Secreted phospholipase A2 inhibitors are also potent blockers of binding to the M-type receptor. Biochemistry 45: 13203–13218.

    PubMed  Google Scholar 

  • Bonventre JV, Sapirstein A. 2002. Group IV cytosolic phospholipase A2 (PLA2) function: Insights from the knockout mouse. Adv Exp Med Biol 507: 25–31.

    PubMed  Google Scholar 

  • Bosetti F, Weerasinghe GR. 2003. The expression of brain cyclooxygenase-2 is down-regulated in the cytosolic phospholipase A2 knockout mouse. J Neurochem 87: 1471–1477.

    PubMed  Google Scholar 

  • Brady KM, Texel SJ, Kishimoto K, Koehler RC, Sapirstein A. 2006. Cytosolic phospholipase A alpha modulates NMDA neurotoxicity in mouse hippocampal cultures. Eur J Neurosci 24: 3381–3386.

    PubMed  Google Scholar 

  • Butterfield DA, Yatin SM, Varadarajan S, Koppal T. 1999. Amyloid beta-peptide-associated free radical oxidative stress, neurotoxicity, and Alzheimer’s disease. Meth Enzymol 309: 746–768.

    PubMed  Google Scholar 

  • Casadesus G, Smith MA, Basu S, Hua J, Capobianco DE, et al. 2007. Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Mol Neurodegener 2: 2.

    PubMed  Google Scholar 

  • Choi SH, Langenbach R, Bosetti F. 2006. Cyclooxygenase-1 and -2 enzymes differentially regulate the brain upstream NF-kappa B pathway and downstream enzymes involved in prostaglandin biosynthesis. J Neurochem 98: 801–811.

    PubMed  Google Scholar 

  • Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, et al. 2002. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70: 462–473.

    PubMed  Google Scholar 

  • Cunningham TJ, Souayah N, Jameson B, Mitchell J, Yao L. 2004. Systemic treatment of cerebral cortex lesions in rats with a new secreted phospholipase A2 inhibitor. J Neurotrauma 21: 1683–1691.

    PubMed  Google Scholar 

  • Cupillard L, Mulherkar R, Gomez N, Kadam S, Valentin E, et al. 1999. Both group IB and group IIA secreted phospholipases A2 are natural ligands of the mouse 180-kDa M-type receptor. J Biol Chem 274: 7043–7051.

    PubMed  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, et al. 2007. Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282: 11590–11601.

    PubMed  Google Scholar 

  • DeGeorge JJ, Noronha JG, Bell J, Robinson P, Rapoport SI. 1989. Intravenous injection of [1–14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J Neurosci Res 24: 413–423.

    PubMed  Google Scholar 

  • Dieter P, Kolada A, Kamionka S, Schadow A, Kaszkin M. 2002. Lipopolysaccharide-induced release of arachidonic acid and prostaglandins in liver macrophages: Regulation by Group IV cytosolic phospholipase A2, but not by Group V and Group IIA secretory phospholipase A2. Cell Signal 14: 199–204.

    PubMed  Google Scholar 

  • Eerola LI, Surrel F, Nevalainen TJ, Gelb MH, Lambeau G, et al. 2006. Analysis of expression of secreted phospholipases A2 in mouse tissues at protein and mRNA levels. Biochim Biophys Acta 1761: 745–756.

    PubMed  Google Scholar 

  • Evans JH, Gerber SH, Murray D, Leslie CC. 2004. The calcium binding loops of the cytosolic phospholipase A2 C2 domain specify targeting to Golgi and ER in live cells. Mol Biol Cell 15: 371–383.

    PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA. 2006. Phospholipase A2-generated lipid mediators in the brain:The good, the bad, and the ugly. Neuroscientist 12: 245–260.

    PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T. 2000. Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 14: 123–135.

    PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T. 2007. Modulation of inflammation in brain: A matter of fat. J Neurochem 101(3): 577–579.

    PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA. 2006. Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58: 591–620.

    PubMed  Google Scholar 

  • Fatima S, Yaghini FA, Pavicevic Z, Kalyankrishna S, Jafari N, et al. 2005. Intact actin filaments are required for cytosolic phospholipase A2 translocation but not for its activation by norepinephrine in vascular smooth muscle cells. J Pharmacol Exp Ther 313: 1017–1026.

    PubMed  Google Scholar 

  • Ferroni S, Valente P, Caprini M, Nobile M, Schubert P, et al. 2003. Arachidonic acid activates an open rectifier potassium channel in cultured rat cortical astrocytes. J Neurosci Res 72: 363–372.

    PubMed  Google Scholar 

  • Forlenza OV, Mendes CT, Marie SK, Gattaz WF. 2007a. Inhibition of phospholipase A2 reduces neurite outgrowth and neuronal viability. Prostaglandins, leukotrienes, and essential fatty acids 76: 47–55.

    PubMed  Google Scholar 

  • Forlenza OV, Schaeffer EL, Gattaz WF. 2007b. The role of phospholipase A2 in neuronal homeostasis and memory formation: Implications for the pathogenesis of Alzheimer’s disease. J Neural Transm 114: 231–238.

    PubMed  Google Scholar 

  • Fourcade O, Le Balle F, Fauvel J, Simon MF, Chap H. 1998. Regulation of secretory type-II phospholipase A2 and of lysophosphatidic acid synthesis. Adv Enzyme Regul 38: 99–107.

    PubMed  Google Scholar 

  • Gaudreault SB, Chabot C, Gratton JP, Poirier J. 2004. The caveolin scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor binding properties by inhibiting phospholipase A2 activity. J Biol Chem 279: 356–362.

    PubMed  Google Scholar 

  • Ghesquiere SA, Gijbels MJ, Anthonsen M, Gorp van PJ, Made van der I, et al. 2005. Macrophage-specific overexpression of group IIa sPLA2 increases atherosclerosis and enhances collagen deposition. J Lipid Res 46: 201–210.

    PubMed  Google Scholar 

  • Ghomashchi F, Stewart A, Hefner Y, Ramanadham S, Turk J, et al. 2001. A pyrrolidine-based specific inhibitor of cytosolic phospholipase A(2)alpha blocks arachidonic acid release in a variety of mammalian cells. Biochim Biophys Acta 1513: 160–166.

    PubMed  Google Scholar 

  • Ghosh M, Loper R, Gelb MH, Leslie CC. 2006. Identification of the expressed form of human cytosolic phospholipase A2beta (cPLA2beta): cPLA2beta3 is a novel variant localized to mitochondria and early endosomes. J Biol Chem 281: 16615–16624.

    PubMed  Google Scholar 

  • Ghosh M, Loper R, Ghomashchi F, Tucker DE, Bonventre JV, et al. 2007. Function, activity and membrane targeting of cytosolic phospholipase A2zeta in mouse lung fibroblasts. J Biol Chem 282: 11676-11686.

    PubMed  Google Scholar 

  • Graziani A, Bricko V, Carmignani M, Graier WF, Groschner K. 2004. Cholesterol- and caveolin-rich membrane domains are essential for phospholipase A2-dependent EDHF formation. Cardiovasc Res 64: 234–242.

    PubMed  Google Scholar 

  • Greco A, Minghetti L. 2004. Isoprostanes as biomarkers and mediators of oxidative injury in infant and adult central nervous system diseases. Curr Neurovasc Res 1: 341–354.

    PubMed  Google Scholar 

  • Grewal S, Herbert SP, Ponnambalam S, Walker JH. 2005. Cytosolic phospholipase A2-alpha and cyclooxygenase-2 localize to intracellular membranes of EA.hy.926 endothelial cells that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS J 272: 1278–1290.

    PubMed  Google Scholar 

  • Han X. 2007. Neurolipidomics: Challenges and developments. Front Biosci 12: 2601–2615.

    PubMed  Google Scholar 

  • Han X, Holtzman DM, McKeel DW, Jr. 2001. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: Molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77: 1168–1180.

    PubMed  Google Scholar 

  • Han WK, Sapirstein A, Hung CC, Alessandrini A, Bonventre JV. 2003. Cross-talk between cytosolic phospholipase A2 alpha (cPLA2 alpha) and secretory phospholipase A2 (sPLA2) in hydrogen peroxide-induced arachidonic acid release in murine mesangial cells: sPLA2 regulates cPLA2 alpha activity that is responsible for arachidonic acid release. J Biol Chem 278: 24153–24163.

    PubMed  Google Scholar 

  • Hazan-Halevy I, Levy T, Wolak T, Lubarsky I, Levy R, et al. 2005. Stimulation of NADPH oxidase by angiotensin II in human neutrophils is mediated by ERK, p38 MAP-kinase and cytosolic phospholipase A2. J Hypertens 23: 1183–1190.

    PubMed  Google Scholar 

  • Hirabayashi T, Murayama T, Shimizu T. 2004. Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol Pharm Bull 27: 1168–1173.

    PubMed  Google Scholar 

  • Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, et al. 2003. Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer’s disease. J Neurol, Neurosurg Psychiatr 74: 788–789.

    Google Scholar 

  • Hurt-Camejo E, Camejo G, Peilot H, Oorni K, Kovanen P. 2001. Phospholipase A(2) in vascular disease. Circ Res 89: 298–304.

    PubMed  Google Scholar 

  • Huwiler A, Staudt G, Kramer RM, Pfeilschifter J. 1997. Cross-talk between secretory phospholipase A2 and cytosolic phospholipase A2 in rat renal mesangial cells. Biochim Biophys Acta 1348: 257–272.

    PubMed  Google Scholar 

  • Ikeno Y, Konno N, Cheon SH, Bolchi A, Ottonello S, et al. 2005. Secretory phospholipases A2 induce neurite outgrowth in PC12 cells through lysophosphatidylcholine generation and activation of G2A receptor. J Biol Chem 280: 28044–28052.

    PubMed  Google Scholar 

  • Infanger DW, Sharma RV, Davisson RL. 2006. NADPH oxidases of the brain: Distribution, regulation, and function. Antioxid Redox Signal 8: 1583–1596.

    PubMed  Google Scholar 

  • Kim HY. 2007. Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem 282: 18661-18665.

    PubMed  Google Scholar 

  • Kishida KT, Pao M, Holland SM, Klann E. 2005. NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem 94: 299–306.

    PubMed  Google Scholar 

  • Kolko M, de Turco EB, Diemer NH, Bazan NG. 2002. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors. Neuroreport 13: 1963–1966.

    PubMed  Google Scholar 

  • Kriem B, Sponne I, Fifre A, et al. 2005. Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J 19: 85–87.

    PubMed  Google Scholar 

  • Kuwata H, Fujimoto C, Yoda E, Shimbara S, Nakatani Y, et al. 2007. A Novel Role of Group VIB Calcium-independent Phospholipase A2 (iPLA2{gamma}) in the Inducible Expression of Group IIA Secretory PLA2 in Rat Fibroblastic Cells. J Biol Chem 282: 20124–20132.

    PubMed  Google Scholar 

  • Kuwata H, Nakatani Y, Murakami M, Kudo I. 1998. Cytosolic phospholipase A2 is required for cytokine-induced expression of type IIA secretory phospholipase A2 that mediates optimal cyclooxygenase-2-dependent delayed prostaglandin E2 generation in rat 3Y1 fibroblasts. J Biol Chem 273: 1733–1740.

    PubMed  Google Scholar 

  • Lambeth JD. 2007. Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radic Biol Med 43: 332–347.

    PubMed  Google Scholar 

  • Lee C, Park DW, Lee J, Lee TI, Kim YJ, et al. 2006. Secretory phospholipase A2 induces apoptosis through TNF-alpha and cytochrome c-mediated caspase cascade in murine macrophage RAW 264.7 cells. Eur J Pharmacol 536: 47–53.

    PubMed  Google Scholar 

  • Leslie CC. 1997. Properties and regulation of cytosolic phospholipase A2. J Biol Chem 272: 16709–16712.

    PubMed  Google Scholar 

  • Levy R. 2006. The role of cytosolic phospholipase A2-alfa in regulation of phagocytic functions. Biochim Biophys Acta 1761: 1323–1334.

    PubMed  Google Scholar 

  • Li W, Xia J, Sun GY. 1999. Cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC): Response to genistein and pyrrolidine dithiocarbamate. J Interferon Cytokine Res 19: 121–127.

    PubMed  Google Scholar 

  • Lin TN, Wang Q, Simonyi A, et al. 2004. Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J Neurochem 90: 637–645.

    PubMed  Google Scholar 

  • Lue LF, Rydel R, Brigham EF, et al. 2001a. Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35: 72–79.

    PubMed  Google Scholar 

  • Lue LF, Walker DG, Rogers J. 2001b. Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures. Neurobiol Aging 22: 945–956.

    PubMed  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, et al. 2005. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115: 2774–2783.

    PubMed  Google Scholar 

  • Macchioni L, Corazzi L, Nardicchi V, Mannucci R, Arcuri C, et al. 2004. Rat brain cortex mitochondria release group II secretory phospholipase A(2) under reduced membrane potential. J Biol Chem 279: 37860–37869.

    PubMed  Google Scholar 

  • Mathisen GH, Thorkildsen IH, Paulsen RE. 2007. Secretory PLA(2)-IIA and ROS generation in peripheral mitochondria are critical for neuronal death. Brain Res 1153: 43–51.

    PubMed  Google Scholar 

  • Mattson MP. 2007. Calcium and neurodegeneration. Aging cell 6: 337–350.

    PubMed  Google Scholar 

  • Megighian A, Rigoni M, Caccin P, Zordan MA, Montecucco C. 2007. A lysolecithin/fatty acid mixture promotes and then blocks neurotransmitter release at the Drosophila melanogaster larval neuromuscular junction. Neurosci Lett 416: 6–11.

    PubMed  Google Scholar 

  • Milne GL, Sanchez SC, Musiek ES, Morrow JD. 2007. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat Protoc 2: 221–226.

    PubMed  Google Scholar 

  • Montine KS, Quinn JF, Zhang J, Fessel JP, Roberts LJ, et al. 2004. Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids 128: 117–124.

    PubMed  Google Scholar 

  • Montine TJ, Montine KS, McMahan W, Markesbery WR, Quinn JF, et al. 2005. F2-isoprostanes in Alzheimer and other neurodegenerative diseases. Antioxid Redox Signal 7: 269–275.

    PubMed  Google Scholar 

  • Moses GS, Jensen MD, Lue LF, Walker DG, Sun AY, et al. 2006. Secretory PLA2-IIA: A new inflammatory factor for Alzheimer’s disease. J Neuroinflammation 3: 28.

    PubMed  Google Scholar 

  • Mosior M, Six DA, Dennis EA. 1998. Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J Biol Chem 273: 2184–2191.

    PubMed  Google Scholar 

  • Mrak RE, Griffin WS. 2005. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26: 349–354.

    PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. 2004. Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101: 8491–8496.

    PubMed  Google Scholar 

  • Murakami M, Koduri RS, Enomoto A, et al. 2001. Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. J Biol Chem 276: 10083–10096.

    PubMed  Google Scholar 

  • Murakami M, Kudo I. 2001. Diversity and regulatory functions of mammalian secretory phospholipase A2s. Adv Immunol 77: 163–194.

    PubMed  Google Scholar 

  • Murakami M, Kudo I. 2002. Phospholipase A2. J Biochem 131: 285–292.

    PubMed  Google Scholar 

  • Murakami M, Nakatani Y, Atsumi G, Inoue K, Kudo I. 1997. Regulatory functions of phospholipase A2. Crit Rev Immunol 17: 225–283.

    PubMed  Google Scholar 

  • Murakami M, Yoshihara K, Shimbara S, et al. 2002. Cellular arachidonate-releasing function and inflammation-associated expression of group IIF secretory phospholipase A2. J Biol Chem 277: 19145–19155.

    PubMed  Google Scholar 

  • Nakatani Y, Tanioka T, Sunaga S, Murakami M, Kudo I. 2000. Identification of a cellular protein that functionally interacts with the C2 domain of cytosolic phospholipase A(2)alpha. J Biol Chem 275: 1161–1168.

    PubMed  Google Scholar 

  • Nanda BL, Nataraju A, Rajesh R, Rangappa KS, Shekar MA, et al. 2007. PLA2 mediated arachidonate free radicals: PLA2 inhibition and neutralization of free radicals by anti-oxidants new role as anti-inflammatory molecule. Curr Top Med Chem 7: 765–777.

    PubMed  Google Scholar 

  • Narendra Sharath Chandra JN, Ponnappa KC, Sadashiva CT, Priya BS, Nanda BL, et al. 2007. Chemistry and structural evaluation of different phospholipase A2 inhibitors in arachidonic acid pathway mediated inflammation and snake venom toxicity. Curr Top Med Chem 7: 787–800.

    PubMed  Google Scholar 

  • Nevalainen TJ, Eerola LI, Rintala E, Laine VJ, Lambeau G, et al. 2005. Time-resolved fluoroimmunoassays of the complete set of secreted phospholipases A2 in human serum. Biochim Biophys Acta 1733: 210–223.

    PubMed  Google Scholar 

  • Ni Z, Okeley NM, Smart BP, Gelb MH. 2006. Intracellular actions of group IIA secreted phospholipase A2 and group IVA cytosolic phospholipase A2 contribute to arachidonic acid release and prostaglandin production in rat gastric mucosal cells and transfected human embryonic kidney cells. J Biol Chem 281: 16245–16255.

    PubMed  Google Scholar 

  • Nishizaki T, Nomura T, Matsuoka T, Enikolopov G, Sumikawa K. 1999. Arachidonic acid induces a long-lasting facilitation of hippocampal synaptic transmission by modulating PKC activity and nicotinic ACh receptors. Brain Res Mol Brain Res 69: 263–272.

    PubMed  Google Scholar 

  • Paris D, Town T, Parker T, Humphrey J, Mullan M. 2000. beta-Amyloid vasoactivity and proinflammation in microglia can be blocked by cGMP-elevating agents. Ann N Y Acad Sci 903: 446–450.

    PubMed  Google Scholar 

  • Petan T, Krizaj I, Gelb MH, Pungercar J. 2005. Ammodytoxins, potent presynaptic neurotoxins, are also highly efficient phospholipase A2 enzymes. Biochemistry 44: 12535–12545.

    PubMed  Google Scholar 

  • Pettus BJ, Bielawska A, Subramanian P, et al. 2004. Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 279: 11320–11326.

    PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA. 2006. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res Rev 52: 201–243.

    PubMed  Google Scholar 

  • Pinto F, Brenner T, Dan P, Krimsky M, Yedgar S. 2003. Extracellular phospholipase A2 inhibitors suppress central nervous system inflammation. Glia 44: 275–282.

    PubMed  Google Scholar 

  • Quadros A, Patel N, Crescentini R, Crawford F, Paris D, et al. 2003. Increased TNFalpha production and Cox-2 activity in organotypic brain slice cultures from APPsw transgenic mice. Neurosci Lett 353: 66–68.

    PubMed  Google Scholar 

  • Quinn MT, Ammons MC, Deleo FR. 2006. The expanding role of NADPH oxidases in health and disease: No longer just agents of death and destruction. Clin Sci (Lond) 111: 1–20.

    Google Scholar 

  • Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP. 2006. Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 6: 413–420.

    PubMed  Google Scholar 

  • Rao JS, Ertley RN, Rapoport SI, Bazinet RP, Lee HJ. 2007. Chronic NMDA administration to rats up-regulates frontal cortex cytosolic phospholipase A(2) and its transcription factor, activator protein-2. J Neurochem 102: 1918-1927.

    PubMed  Google Scholar 

  • Rapoport SI. 2001. In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci 16: 243–261; discussion 279-284.

    PubMed  Google Scholar 

  • Rapoport SI. 2005. In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat 77: 185–196.

    PubMed  Google Scholar 

  • Rapoport SI, Chang MC, Spector AA. 2001. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 42: 678–685.

    PubMed  Google Scholar 

  • Reid RC. 2005. Inhibitors of secretory phospholipase A2 group IIA. Curr Med Chem 12: 3011–3026.

    PubMed  Google Scholar 

  • Rigoni M, Pizzo P, Schiavo G, Weston AE, Zatti G, et al. 2007. Calcium influx and mitochondrial alterations at synapses exposed to snake neurotoxins or their phospholipid hydrolysis products. J Biol Chem 282: 11238–11245.

    PubMed  Google Scholar 

  • Rigoni M, Schiavo G, Weston AE, Caccin P, Allegrini F, et al. 2004. Snake presynaptic neurotoxins with phospholipase A2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles. J Cell Sci 117: 3561–3570.

    PubMed  Google Scholar 

  • Rizzo MT, Nguyen E, Aldo-Benson M, Lambeau G. 2000. Secreted phospholipase A(2) induces vascular endothelial cell migration. Blood 96: 3809–3815.

    PubMed  Google Scholar 

  • Rodriguez De Turco EB, Jackson FR, DeCoster MA, Kolko M, Bazan NG. 2002. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes. J Neurosci Res 68: 558–567.

    PubMed  Google Scholar 

  • Rogers J, Webster S, Lue LF, Brachova L, Civin WH, et al. 1996. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 17: 681–686.

    PubMed  Google Scholar 

  • Rosenberger TA, Oki J, Purdon AD, Rapoport SI, Murphy EJ. 2002. Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. J Lipid Res 43: 59–68.

    PubMed  Google Scholar 

  • Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, et al. 2004. Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 88: 1168–1178.

    PubMed  Google Scholar 

  • Rouault M, Le Calvez C, Boilard E, et al. 2007. Recombinant production and properties of binding of the full set of mouse secreted phospholipases A2 to the mouse M-type receptor. Biochemistry 46: 1647–1662.

    PubMed  Google Scholar 

  • Samuelsson M, Fisher L, Iverfeldt K. 2005. beta-Amyloid and interleukin-1beta induce persistent NF-kappaB activation in rat primary glial cells. Int J Mol Med 16: 449–453.

    PubMed  Google Scholar 

  • Sang N, Chen C. 2006. Lipid signaling and synaptic plasticity. Neuroscientist 12: 425–434.

    PubMed  Google Scholar 

  • Sapirstein A, Bonventre JV. 2000. Phospholipases A2 in ischemic and toxic brain injury. Neurochem Res 25: 745–753.

    PubMed  Google Scholar 

  • Schwemmer M, Aho H, Michel JB. 2001. Interleukin-1beta-induced type IIA secreted phospholipase A2 gene expression and extracellular activity in rat vascular endothelial cells. Tissue Cell 33: 233–240.

    PubMed  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, et al. 2007. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27: 2866–2875.

    PubMed  Google Scholar 

  • Shen Y, Kishimoto K, Linden DJ, Sapirstein A. 2007. Cytosolic phospholipase A(2) alpha mediates electrophysiologic responses of hippocampal pyramidal neurons to neurotoxic NMDA treatment. Proc Natl Acad Sci USA 104: 6078–6083.

    PubMed  Google Scholar 

  • Stahelin RV, Subramanian P, Vora M, Cho W, Chalfant CE. 2007. Ceramide-1-phosphate Binds Group IVA Cytosolic Phospholipase a2 via a Novel Site in the C2 Domain. J Biol Chem 282: 20467–20474.

    PubMed  Google Scholar 

  • Strokin M, Sergeeva M, Reiser G. 2003. Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 139: 1014–1022.

    PubMed  Google Scholar 

  • Subramanian P, Stahelin RV, Szulc Z, Bielawska A, Cho W, et al. 2005. Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2 alpha and enhances the interaction of the enzyme with phosphatidylcholine. J Biol Chem 280: 17601–17607.

    PubMed  Google Scholar 

  • Sun GY, Horrocks LA, Farooqui AA. 2007. The roles of NADPH oxidase and phospholipases A(2) in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103: 1-16.

    PubMed  Google Scholar 

  • Sun GY, MacQuarrie RA. 1989. Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids. Ann N Y Acad Sci 559: 37–55.

    PubMed  Google Scholar 

  • Sun GY, Xu J, Jensen MD, Simonyi A. 2004. Phospholipase A2 in the central nervous system: Implications for neurodegenerative diseases. J Lipid Res 45: 205–213.

    PubMed  Google Scholar 

  • Tabuchi S, Uozumi N, Ishii S, Shimizu Y, Watanabe T, Shimizu T. 2003. Mice deficient in cytosolic phospholipase A2 are less susceptible to cerebral ischemia/reperfusion injury. Acta Neurochir 86: 169–172.

    Google Scholar 

  • Taketo MM, Sonoshita M. 2002. Phospolipase A2 and apoptosis. Biochim Biophys Acta 1585: 72–76.

    PubMed  Google Scholar 

  • Tanaka K, Arita H. 1995. Secretory phospholipase A2 inhibitors. Possible new anti-inflammatory agents. Agents Actions 46: 51–64.

    Google Scholar 

  • Tietge UJ, Pratico D, Ding T, Funk CD, Hildebrand RB, et al. 2005. Macrophage-specific expression of group IIA sPLA2 results in accelerated atherogenesis by increasing oxidative stress. J Lipid Res 46: 1604–1614.

    PubMed  Google Scholar 

  • Toscano CD, Prabhu VV, Langenbach R, Becker KG, Bosetti F. 2007. Differential gene expression patterns in cyclooxygenase-1 and cyclooxygenase-2 deficient mouse brain. Genome Biol 8: R14.

    PubMed  Google Scholar 

  • Triggiani M, Granata F, Frattini A, Marone G. 2006. Activation of human inflammatory cells by secreted phospholipases A2. Biochim Biophys Acta 1761: 1289–1300.

    PubMed  Google Scholar 

  • Tucker DE, Stewart A, Nallan L, Bendale P, Ghomashchi F, et al. 2005. Group IVC cytosolic phospholipase A2gamma is farnesylated and palmitoylated in mammalian cells. J Lipid Res 46: 2122–2133.

    PubMed  Google Scholar 

  • Ueda K, Shinohara S, Yagami T, Asakura K, Kawasaki K. 1997. Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: A possible involvement of free radicals. J Neurochem 68: 265–271.

    PubMed  Google Scholar 

  • Varadarajan S, Yatin S, Aksenova M, Butterfield DA. 2000. Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130: 184–208.

    PubMed  Google Scholar 

  • Wang Q, Sun AY, Simonyi A, et al. 2005. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82: 138–148.

    PubMed  Google Scholar 

  • Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, et al. 2006. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090: 182–189.

    PubMed  Google Scholar 

  • Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, et al. 2002. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 958: 439–447.

    PubMed  Google Scholar 

  • Williams JH, Errington ML, Lynch MA, Bliss TV. 1989. Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341: 739–742.

    PubMed  Google Scholar 

  • Wilson HA, Waldrip JB, Nielson KH, Judd AM, Han SK, et al. 1999. Mechanisms by which elevated intracellular calcium induces S49 cell membranes to become susceptible to the action of secretory phospholipase A2. J Biol Chem 274: 11494–11504.

    PubMed  Google Scholar 

  • Xu J, Chalimoniuk M, Shu Y, Simonyi A, Sun AY, et al. 2003a. Prostaglandin E2 production in astrocytes: Regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins, Leukot Essent Fatty Acids 69: 437–448.

    Google Scholar 

  • Xu J, Weng YI, Simonyi A, Krugh BW, Liao Z, et al. 2002. Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. J Neurochem 83: 259–270.

    PubMed  Google Scholar 

  • Xu J, Yu S, Sun AY, Sun, GY. 2003b. Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radic Biol Med 34: 1531–1543.

    PubMed  Google Scholar 

  • Yagami T, Ueda K, Asakura K, et al. 2002. Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol Pharmacol 61: 114–126.

    PubMed  Google Scholar 

  • Yagami T, Ueda K, Asakura K, et al. 2003. Human group IIA secretory phospholipase A2 potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels in cultured rat cortical neurons. J Neurochem 85: 749–758.

    PubMed  Google Scholar 

  • Yagami T, Ueda K, Hata S, Kuroda T, Itoh N, et al. 2005. S-2474, a novel nonsteroidal anti-inflammatory drug, rescues cortical neurons from human group IIA secretory phospholipase A(2)-induced apoptosis. Neuropharmacology 49: 174–184.

    PubMed  Google Scholar 

  • Yedgar S, Cohen Y, Shoseyov D. 2006. Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim Biophys Acta 1761: 1373–1382.

    PubMed  Google Scholar 

  • Zarkovic K. 2003. 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24: 293–303.

    PubMed  Google Scholar 

  • Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, et al. 2006. Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 26: 11111–11119.

    PubMed  Google Scholar 

  • Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, et al. 2005. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118: 3695–3703.

    PubMed  Google Scholar 

  • Zipp F, Aktas O. 2006. The brain as a target of inflammation: Common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29: 518–527.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Sun, G.Y., Sun, A.Y., Horrocks, L.A., Simonyi, A. (2009). Roles of Cytosolic and Secretory Phospholipases A2 in Oxidative and Inflammatory Signaling Pathways in the CNS. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_20

Download citation

Publish with us

Policies and ethics