Skip to main content

Functional Dynamics of Myelin Lipids*

  • Reference work entry

Abstract:

Biological membranes of living organism are composed of two fundamental components: proteins and lipids. Lipids are defined as water-insoluble biomolecules, which have high solubility in nonpolar organic solvents. They account for more than half of the total mass of myelin, which is an extension of oligodendrocyte plasma membrane that spirally enwraps axons and is critical for efficient nerve conduction. Because of the high lipid content of myelin, in particular glycosphingolipids and cholesterol, it was thought to play a central role in myelin/oligodendrocyte physiology. This view has been strongly supported by multiple approaches, most prominently the gene knockout studies that have significantly enhanced our understanding and appreciation of lipids in the overall function and structure of the CNS myelin. This chapter discusses the role of lipids in the regulation of myelin/oligodendrocyte physiology including oligodendrocyte development, myelin biogenesis and maintenance, and sorting and transport of myelin components.

*This book chapter is dedicated to the memory of Prof. Steven E. Pfeiffer (1940–2007). May every reader of this chapter remember him as one of the scientists who largely contributed to the comprehension of the myelin physiology and oligodendrocyte development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

CNP:

2′,3′-cyclic nucleotide 3′-phosphodiesterase

CNS:

central nervous system

CST:

cerebroside sulfotransferase

DHAP:

dihydroxyacetone-phosphate

GalCer:

galactosylceramide

GD1a:

Neu5Acα3Galβ3GalNAcβ4-(Neu5Acα3)Galβ4GlcCer

GD1b:

Galβ3GalNAcβ4(Neu5Acα8Neu5Acα3)Galβ4-GlcCer

GD2:

GalNAcβ4-(Neu5Acα8Neu5Acα3)Galβ4GlcCer

GD3:

Neu5Acα8Neu5Acα3Galβ4GlcCer

GlcCer:

glucosylceramide

GM1a:

Galβ3GalNAcβ4(Neu5Acα3)Galβ4GlcCer

GM1b:

Neu5Acα3Galβ3GalNAcβ4Galβ4GlcCer

GM2:

GalNAcβ4(Neu5Acα3)Galβ4GlcCer

GM3:

Neu5Acα3Galβ4GlcCer

GM4:

N-acetylneuraminylgalactosylceramide

GQ1b:

Neu5Acα8Neu5Acα3Galβ3GalNAcβ4(Neu5Acα8Neu5Acα3)Galβ4GlcCer

Gro-3P:

glycerol-3-phosphate

GT1a:

Neu5Acα8Neu5Acα3Galβ3GalNAcβ4(Neu5Acα3)Galβ4GlcCer

GT1b:

Neu5Acα3-Galβ3GalNAcβ4(Neu5Acα8Neu5Acα3)Galβ4GlcCer

GT1c:

Galβ3GalNAcβ4(Neu5Acα8Neu5Acα8Neu5Acα3)Galβ4GlcCer

HMG-CoA:

3-hydroxy-3-methylglutaryl-CoA

MAG:

myelin-associated glycoprotein

MBP:

myelin basic protein

MDR:

multidrug resistant protein

MGDG:

monogalactosyl-diacylglycerol

MOG:

myelin oligodendrocyte glycoprotein

NeuAc:

N-acetylneuraminic acid

PLP:

proteolipid protein

PNS:

peripheral nervous system

SialT:

sialyltransferase

SPTLCB:

serine palmitoyltransferase long-chain base

References

  • Alderson NL, Rembiesa BM, Walla MD, Bielawska A, Bielawski J, et al. 2004. The human FA2H gene encodes a fatty acid 2-hydroxylase. J Biol Chem 279: 48562–48568.

    PubMed  CAS  Google Scholar 

  • Allende ML, Proia RL. 2002. Lubricating cell signaling pathways with gangliosides. Curr Opin Struct Biol 12: 587–592.

    PubMed  CAS  Google Scholar 

  • Andrieu-Abadie N, Levade T. 2002. Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta 1585: 126–134.

    PubMed  CAS  Google Scholar 

  • Anitei M, Pfeiffer SE. 2006. Myelin biogenesis: Sorting out protein trafficking. Curr Biol 16: 418–421.

    Google Scholar 

  • Arthur G, Page L. 1991. Synthesis of phosphatidylethanolamine and ethanolamine plasmalogen by CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver. Biochem J 273: 121–125.

    PubMed  CAS  Google Scholar 

  • Bakovic M, Fullerton MD, Michel V. 2007. Metabolic and molecular aspects of ethanolamine phospholipid biosynthesis: The role of CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Biochem Cell Biol 85: 283–300.

    PubMed  CAS  Google Scholar 

  • Bansal R, Pfeiffer SE. 1989. Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proc Natl Acad Sci USA 86: 6181–6185.

    PubMed  CAS  Google Scholar 

  • Bansal R, Pfeiffer SE. 1992. A novel stage in the oligodendrocyte lineage defined by reactivity of progenitors with R-mAb prior to O1 anti-galactocerebroside. J Neurosci Res 32: 309–316.

    PubMed  CAS  Google Scholar 

  • Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE. 1989. Multiple and novel specificity's of monoclonal antibodies O1, O4 and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24: 548–557.

    PubMed  CAS  Google Scholar 

  • Bansal R, Stefansson K, Pfeiffer SE. 1992. Proligodendroblast antigen (POA), a developmental antigen expressed by A007/O4-positive oligodendrocyte progenitors prior to the appearance of sulfatide and galactocerebroside. J Neurochem 58: 2221–2229.

    PubMed  CAS  Google Scholar 

  • Bansal R, Pfeiffer SE. 1994a. Inhibition of protein and lipid sulfation in oligodendrocytes blocks biological responses to FGF-2 and retards cytoarchitectural maturation, but not developmental lineage progression. Dev Biol 162: 511–524.

    PubMed  CAS  Google Scholar 

  • Bansal R, Pfeiffer SE. 1994b. Regulation of gene expression in mature oligodendrocytes by the specialized myelin-like membrane environment: Antibody perturbation in culture with the monoclonal antibody R-mAb. Glia 12: 173–179.

    PubMed  CAS  Google Scholar 

  • Bansal R, Winkler S, Bheddah S. 1999. Negative regulation of oligodendrocyte differentiation by galactosphingolipids. J Neurosci 19: 7913–7924.

    PubMed  CAS  Google Scholar 

  • Barres BA, Lazar MA, Raff MC. 1994. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120: 1097–1108.

    PubMed  CAS  Google Scholar 

  • Basu S, Kaufman B, Roseman S. 1973. Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J Biol Chem 248: 1388–1394.

    PubMed  CAS  Google Scholar 

  • Bizzorero OA, Good LK. 1991. Rapid metabolism of fatty acids covalently bound to myelin proteolipid protein. J Biol Chem 266: 17092–17098.

    Google Scholar 

  • Becker I, Wang-Eckhardt L, Yaghootfam A, Gieselmann V, Eckhardt M. 2007. Differential expression of (dihydro)ceramide synthases in mouse brain: Oligodendrocyte-specific expression of CerS2/Lass. Histochem Cell Biol Histochem Cell Biol. 129: 233-241.

    Google Scholar 

  • Bektas M, Spiegel S. 2004. Glycosphingolipids and cell death. Glycoconj J 20: 39–47.

    PubMed  CAS  Google Scholar 

  • Benjamins JA, Smith ME. 1984. Metabolism of myelin. P, editor. Myelin. Morell Plenum; New York: pp. 225–258.

    Google Scholar 

  • Borg C, Lim CT, Yeomans DC, Dieter JP, Komiotis D, et al. 1994. Purification of rat brain, rabbit aorta, and human platelet thromboxane A2/prostaglandin H2 receptors by immunoaffinity chromatography employing anti-peptide and anti-receptor antibodies. J Biol Chem 269: 6109–6116.

    PubMed  CAS  Google Scholar 

  • Borlak JT, Welch VA. 1994. Health implications of fatty acids. Arzneimittelforschung 44: 976–981.

    PubMed  CAS  Google Scholar 

  • Bosio A, Binczek E, Stoffel W. 1996. Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci USA 93: 13280–13285.

    PubMed  CAS  Google Scholar 

  • Bourre JM, Bornhofen JH, Araoz CA, Daudu O, Baumann NA. 1978a. Pelizaeus–Merzbacher disease: Brain lipid and fatty acid composition. J Neurochem 30: 719–727.

    PubMed  CAS  Google Scholar 

  • Bourre JM, Jacque C, Nguyen-Legros J, Bornhofen JH, Araoz CA, et al. 1978b. Pelizaeus-Merzbacher disease: Biochemical analysis of isolated myelin (electron-microscopy; protein, lipid and unsubstituted fatty acids analysis). Eur Neurol 17: 317–326.

    PubMed  CAS  Google Scholar 

  • Bourre JM, Baumann N. 1980. Elongation of fatty acids in the nervous system. Ann Nutr Aliment 34: 401–413.

    PubMed  CAS  Google Scholar 

  • Brault S, Martinez-Bermudez AK, Roberts J, Cui QL, Fragoso G, et al. 2004. Cytotoxicity of the E2-isoprostane 15-E2T-IsoP on oligodendrocyte progenitors. Free Radic Biol Med 37: 358–366.

    PubMed  CAS  Google Scholar 

  • Bremer EG, Schlessinger J, Hakomori SI. 1986. Ganglioside-mediated modulation of cell growth: Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261: 2434–2440.

    PubMed  CAS  Google Scholar 

  • Brose N, Rosenmund C. 2002. Move over protein kinase C, you've got company: Alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 115: 4399–4411.

    PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544.

    PubMed  CAS  Google Scholar 

  • Brown MC, Besio-Moreno M, Bongarzone ER, Cohen PD, Soto EF, et al. 1993. Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. J Neurosci Res 35: 402–408.

    PubMed  CAS  Google Scholar 

  • Burger KN, Bijl P, van der van Meer G. 1996. Topology of sphingolipid galactosyltransferases in ER and Golgi: Transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J Cell Biol 133: 15–28.

    PubMed  CAS  Google Scholar 

  • Burger K, Gimpl G, Fahrenholz F. 2000. Regulation of receptor function by cholesterol. Cell Mol Life Sci 57: 1577–1592.

    PubMed  CAS  Google Scholar 

  • Carre A, Graf C, Stora S, Mechtcheriakova D, Csonga R, et al. 2004. Ceramide kinase targeting and activity determined by its N-terminal pleckstrin homology domain. Biochem Biophys Res Commun 324: 1215–1219.

    PubMed  CAS  Google Scholar 

  • Chan KFJ. 1987. Ganglioside-modulated protein phosphorylation in myelin. J Biol Chem 262: 2415–2422.

    PubMed  CAS  Google Scholar 

  • Chang MC, Wisco D, Ewers H, Norden C, Winckler B. 2006. Inhibition of sphingolipid synthesis affects kinetics but not fidelity of L1/NgCAM transport along direct but not transcytotic axonal pathways. Mol Cell Neurosci 31: 525–538.

    PubMed  CAS  Google Scholar 

  • Chiavegatto S, Sun J, Nelson RJ, Schnaar RL. 2000. A functional role for complex gangliosides: Motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166: 227–234.

    PubMed  CAS  Google Scholar 

  • Chou KH, Nolan CE, Jungalwala FB. 1982. Composition and metabolism of gangliosides in rat peripheral nervous system during development. J Neurochem 39: 1547–1558.

    PubMed  CAS  Google Scholar 

  • Ccochran FB, Yu RK, Ando S, Ledeen RW. 1982. Myelin gangliosides in vertebrates. J Neurochem 39: 773–779.

    Google Scholar 

  • Coetzee T, Fujita N, Dupree J, Shi R, Blight A, et al. 1996. Myelination in the absence of galactocerebroside and sulfatide: Normal structure with abnormal function and regional instability. Cell 86: 209–219.

    PubMed  CAS  Google Scholar 

  • Coetzee T, Dupree JL, Popko B. 1998. Demyelination and altered expression of myelin-associated glycoprotein isoforms in the central nervous system of galactolipid-deficient mice. J Neurosci Res 54: 613–622.

    PubMed  CAS  Google Scholar 

  • Cooke FT. 2004. Phosphoinositides: Older than we first thought? Curr Biol 14: 762–764.

    Google Scholar 

  • D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, et al. 2007. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449: 62–67.

    PubMed  Google Scholar 

  • Daniotti JL, Zurita AR, Trindade VM, Maccioni HJ. 2002. GD3 expression in CHO-K1 cells increases growth rate, induces morphological changes, and affects cell-substrate interactions. Neurochem Res 27: 1421–1429.

    PubMed  CAS  Google Scholar 

  • Darios F, Davletov B. 2006. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 440: 813–817.

    PubMed  CAS  Google Scholar 

  • DeWille JW, Farmer SJ. 1992. Postnatal dietary fat influences mRNAS involved in myelination. Dev Neurosci 14: 61–68.

    PubMed  CAS  Google Scholar 

  • Dupree JL, Suzuki K, Popko B. 1998. Galactolipids in the formation and function of the myelin sheath. Microsc Res Tech 41: 431–440.

    PubMed  CAS  Google Scholar 

  • Dupree JL, Girault JA, Popko B. 1999. Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 147: 1145–1152.

    PubMed  CAS  Google Scholar 

  • Dupree JL, Mason JL, Marcus JR, Stull M, Levinson R, et al. 2005. Oligodendrocytes assist in the maintenance of sodium channel clusters independent of the myelin sheath. Neuron Glia Biol 1: 1–14.

    Google Scholar 

  • Dyer CA, Benjamins JA. 1988. Redistribution and internalization of antibodies to galactocerebroside by oligodendroglia. J Neurosci 8: 883–891.

    PubMed  CAS  Google Scholar 

  • Eckford PD, Sharom FJ. 2005. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem J 389: 517–526.

    PubMed  CAS  Google Scholar 

  • Eckhardt M, Yaghootfam A, Fewou SN, Zoller I, Gieselmann V. 2005. A mammalian fatty acid hydroxylase responsible for the formation of alpha-hydroxylated galactosylceramide in myelin. Biochem J 388: 245–254.

    PubMed  CAS  Google Scholar 

  • Furukawa K, Takamiya K. Okada M, Inoue M, Fukumoto S, 2001. Novel function of complex carbohydrates elucidated by the mutant of glycosyltransferase genes. Biochem Biophys Acta 1525: 1–12.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T. 2000. Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106: 1–29.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA. 2004. Biochemical aspects of neurodegeneration in human brain: Involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29: 1961–1977.

    PubMed  CAS  Google Scholar 

  • Farrer RG, Quarles RH. 1999. GT3 and its O-acetylated derivative are the principal A2B5-reactive gangliosides in cultured O2A lineage cells and are down-regulated along with O-acetyl GD3 during differentiation to oligodendrocytes. J Neurosci Res 57: 371–380.

    PubMed  CAS  Google Scholar 

  • Fishman PH, McFarland VW, Morat PT, Brady RO. 1972. Ganglioside biosynthesis in mouse cells. Glycosyltransferase activities in normal and virally-transformed lines. Biochem Biophys Res Commun48: 48–57.

    PubMed  CAS  Google Scholar 

  • Fujitani M, Kawai H, Proia RL, Atsunori Kashiwagi A, Yasuda H, et al. 2005. Binding of soluble myelin-associated glycoprotein to specific gangliosides induces the association of p75NTR to lipid rafts and signal transduction. J Neurochem 94: 15–21.

    PubMed  CAS  Google Scholar 

  • Fullekrug J, Simons K. 2004. Lipid rafts and apical membrane traffic. Ann N Y Acad Sci 1014: 164–169.

    PubMed  Google Scholar 

  • Funato K, Riezman H. 2001. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J Cell Biol 155: 949–959.

    PubMed  CAS  Google Scholar 

  • Futerman AH, Hannun YA. 2004. The complex life of simple sphingolipids. EMBO 5: 777–782.

    CAS  Google Scholar 

  • Futerman AH, Pagano RE. 1991. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 280: 295–302.

    PubMed  CAS  Google Scholar 

  • Futerman AH, Stieger B, Hubbard AL, Pagano RE. 1990. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 265: 8650–8657.

    PubMed  CAS  Google Scholar 

  • Giraudo CG, Marcioni HJ. 2003. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 Cells. J Biol Chem. 278: 40262–40271.

    PubMed  CAS  Google Scholar 

  • Gard AL, Pfeiffer SE. 1990. Two proliferative stages of the oligodendrocyte lineage (A2B5 + O4- and O4 + GalC-) under different mitogenic control. Neuron 5: 615–625.

    PubMed  CAS  Google Scholar 

  • Giraudo CG, Rosales Fritz VM, Maccioni HJ. 1999. GA2/GM2/GD2 synthase localizes to the trans-golgi network of CHO-K1 cells. Biochem J 342: 633–640.

    PubMed  CAS  Google Scholar 

  • Giraudo CG, Daniotti JL, Maccioni HJ. 2001. Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc Natl Acad Sci USA 98: 1625–1630.

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425–430.

    PubMed  CAS  Google Scholar 

  • Gomez-Munoz A. 2004. Ceramide-1-phosphate: A novel regulator of cell activation. FEBS Lett 562: 5–10.

    PubMed  CAS  Google Scholar 

  • Gomez-Munoz A, Duffy PA, Martin A, O'Brien L, Byun HS, et al. 1995. Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: Antagonism by cell-permeable ceramides. Mol Pharmacol 47: 833–839.

    PubMed  CAS  Google Scholar 

  • Gomez-Munoz A, Kong JY, Parhar K, Wang SW, Gangoiti P, et al. 2005. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett 579: 3744–3750.

    PubMed  CAS  Google Scholar 

  • Haines TH. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40: 299–324.

    PubMed  CAS  Google Scholar 

  • Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, et al. 2007. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179: 101–115.

    PubMed  CAS  Google Scholar 

  • Horinouchi H, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, Sandhoff K, Desnick RJ, Stewart CL, Schuchman EH. 1995. Acid sphingomyelinase deficient mice: A model of types A and B Niemand-Pick disease. Nat Genet 10: 288–293.

    PubMed  CAS  Google Scholar 

  • Hanada K, Hara T, Nishijima M. 2000. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J Biol Chem 275: 8409–8415.

    PubMed  CAS  Google Scholar 

  • Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M, et al. 1998. Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem 273: 33787–33794.

    PubMed  CAS  Google Scholar 

  • Hanada K, Hara T, Nishijima M, Kuge O, Dickson RC, et al. 1997. A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. J Biol Chem 272: 32108–32114.

    PubMed  CAS  Google Scholar 

  • Hanada K, Kumagai K, Tomishige N, Kawano M. 2007. CERT and intracellular trafficking of ceramide. Biochim Biophys Acta 1771: 644–653.

    PubMed  CAS  Google Scholar 

  • Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426: 803–809.

    PubMed  CAS  Google Scholar 

  • Hannan LA, Edidin M. 1996. Traffic, polarity, and detergent solubility of a glycosylphosphatidylinositol-anchored protein after LDL-deprivation of MDCK cells. J Cell Biol 133: 1265–1276.

    PubMed  CAS  Google Scholar 

  • Harbige LS, Layward L, Morris-Downes MM, Dumonde DC, Amor S. 2000. The protective effects of omega-6 fatty acids in experimental autoimmune encephalomyelitis (EAE) in relation to transforming growth factor-beta 1 (TGF-beta1) up-regulation and increased prostaglandin E2 (PGE2) production. Clin Exp Immunol 122: 445–452.

    PubMed  CAS  Google Scholar 

  • Hirahara Y, Bansal R, Honke K, Ikenaka K, Wada Y. 2004. Sulfatide is a negative regulator of oligodendrocyte differentiation: Development in sulfatide-null mice. Glia 45: 269–277.

    PubMed  Google Scholar 

  • Hoekstra D, Maier O, Wouden JM, van der Slimane TA, van IJzendoorn SC. 2003. Membrane dynamics and cell polarity: The role of sphingolipids. J Lipid Res 44: 869–877.

    PubMed  CAS  Google Scholar 

  • Holthuis JCM, Pomosrski T, Raggers RJ, Sprong H, van Meer G. 2001. The organizing potential sphingolipids in intracellular membrane transport. Physiol Rev 81: 1689–1723.

    PubMed  CAS  Google Scholar 

  • Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, et al. 2002. Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci USA 99: 4227–4232.

    PubMed  CAS  Google Scholar 

  • Honke K, Tsuda M, Hirahara Y, Ishii A, Makita A, et al. 1997. Molecular cloning and expression of cDNA encoding human 3′-phosphoadenylylsulfate: Galactosylceramide 3′-sulfotransferase. J Biol Chem 272: 4864–4868.

    PubMed  CAS  Google Scholar 

  • Honke K, Yamane M, Ishii A, Kobayashi T, Makita A. 1996. Puri®cation and characterization of 3′-phosphoadenosine-5′-phosphosulfate: GalCer sulfotransferase from human renal cancer cells. J Biochem (Tokyo) 119: 421–427.

    CAS  Google Scholar 

  • Hoshi T, Suzuki A, Hayashi S, Tohyama K, Hayashi A, et al. 2007. Nodal protrusions, increased Schmidt-Lanterman incisures, and paranodal disorganization are characteristic features of sulfatide-deficient peripheral nerves. Glia 55: 584–594.

    PubMed  Google Scholar 

  • Huitema K, van den Dikkenberg J, Brouwers JFHM, Holthuis JCM. 2004. Identification of a family of animal sphingomyelin synthases. EMBO J 23: 33–44.

    PubMed  CAS  Google Scholar 

  • Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y. 1996. Ecpression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first step of glycosphingolipid synthesis. Proc Natl Acad Sci USA 93: 4638–4643.

    PubMed  CAS  Google Scholar 

  • Ikonen E, Vainio S. 2005. Lipid microdomains and insulin resistance: Is there a connection? Sci STKE 268: 3.

    Google Scholar 

  • Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, et al. 2002. A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22: 6507–6514.

    PubMed  CAS  Google Scholar 

  • Istvan ES, Palnitkar M, Buchanan SK, Deisenhofer J. 2000. Crystal structure of the catalytic portion of human HMG-CoA reductase: Insights into regulation of activity and catalysis. EMBO J 19: 819–830.

    PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Birk R, Schmidt RR, Wieland F. 1990. Sphingomyelin is synthesized in the cis Golgi. FEBS Lett 261: 155–157.

    PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Burger KN, van Meer G, Wieland F. 1992. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117: 259–267.

    PubMed  CAS  Google Scholar 

  • Kaufman B, Basu S, Roseman S. 1968. Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem 243: 5804–5807.

    PubMed  CAS  Google Scholar 

  • Kaufman B, Basu S, Roseman S. 1966. Aronson SM, Volk BW, editors. Studies on the biosynthesis of gamgliosides. Inborn Disorders of Sphingolipid Metabolism. Pergamon; New York: pp. 193–213.

    Google Scholar 

  • Kawano M, Kumagai K, Nishijima M, Hanada K. 2006. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 281: 30279–30288.

    PubMed  CAS  Google Scholar 

  • Keenan TW, Morre DJ, Basu S. 1974. Ganglioside biosynthesis. Concentration of glycosphingolipid glycosyltransferases in Golgi apparatus from rat liver. J Biol Chem 249: 310–315.

    PubMed  CAS  Google Scholar 

  • Kent C. 1995. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem 64: 315–343.

    PubMed  CAS  Google Scholar 

  • Kihara A, Igarashi Y. 2004. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem 279: 49243–49250.

    PubMed  CAS  Google Scholar 

  • Kim T, Pfeiffer SE. 1999. Myelin glycosphingolipid/cholesterol-enriched microdomains selectively sequester the non-compact myelin proteins CNP MOG. J Neurocytol 28: 281–293.

    PubMed  Google Scholar 

  • Knapp PE. 1991. Studies of glial lineage and proliferation in vitro using an early marker for committed oligodendrocytes. J Neurosci Res 30: 336–345.

    PubMed  CAS  Google Scholar 

  • Kolesnick R. 2002. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110: 3–8.

    PubMed  CAS  Google Scholar 

  • Kolter T, Proia RL, Sandhoff K. 2002. Combinatorial ganglioside biosynthesis. J Biol Chem 277: 25859–25862.

    PubMed  CAS  Google Scholar 

  • Kovacs WJ, Faust PL, Keller GA, Krisans SK. 2001. Purification of brain peroxisomes and localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Eur J Biochem 268: 4850–4859.

    PubMed  CAS  Google Scholar 

  • Krämer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA. 2006. Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: Implications for dysmyelination in spastic paraplegia. J Neurosci 26: 11743–11752.

    PubMed  Google Scholar 

  • Kuge O, Nishijima M. 1997. Phosphatidylserine synthase I and II of mammalian cells. Biochim Biophys Acta 1348: 151–156.

    PubMed  CAS  Google Scholar 

  • Kuge O, Saito K, Nishijima M. 1997. Cloning of a Chinese hamster ovary (CHO) cDNA encoding phosphatidylserine synthase (PSS) II, overexpression of which suppresses the phosphatidylserine biosynthetic defect of a PSS I-lacking mutant of CHO-K1 cells. J Biol Chem 272: 19133–19139.

    PubMed  CAS  Google Scholar 

  • Kumagai K, Yasuda S, Okemoto K, Nishijima M, Kobayashi S, et al. 2005. CERT mediates intermembrane transfer of various molecular species of ceramides. J Biol Chem 280: 6488–6495.

    PubMed  CAS  Google Scholar 

  • Kumagai K, Kawano M, Shinkai-Ouchi F, Nishijima M, Hanada K. 2007. Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START Domains of CERT. J Biol Chem 282: 17758–17766.

    PubMed  CAS  Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA. 1999. Golgi structure in three dimensions: Functional insights from the normal rat kidney cell. J Cell Biol 144: 1135–1149.

    PubMed  CAS  Google Scholar 

  • Lala P, Ito S, Lingwood CA. 2000. Retroviral transfection of Madin-Darby canine kidney cells with human MDR1 results in a major increase in globotriaosylceramide and 10(5)- to 10(6)-fold increased cell sensitivity to verocytotoxin. Role of p-glycoprotein in glycolipid synthesis. J Biol Chem 275: 6246–6251.

    PubMed  CAS  Google Scholar 

  • Ledeen RW, Cochran FB, Yu RK, Samuels FG. 1980. Gangliosides of the CNS myelin membrane. Adv Exp Med Biol 125: 167–176.

    PubMed  CAS  Google Scholar 

  • Ledesma MD, Simons K, Dotti CG. 1998. Neuronal polarity: Essential role of protein-lipid complexes in axonal sorting. Proc Natl Acad Sci USA 95: 3966–3971.

    PubMed  CAS  Google Scholar 

  • Lee JT, Xu J, Lee JM, Ku G, Han X, et al. 2004. Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 164: 123–131.

    PubMed  CAS  Google Scholar 

  • Lin X, Ramamurthy SK, Le Breton GC. 2005. Thromboxane A receptor-mediated cell proliferation, survival and gene expression in oligodendrocytes. J Neurochem 93: 257–268.

    PubMed  CAS  Google Scholar 

  • Lisanti MP, Rodriguez-Boulan E. 1990. Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. TIBS 15: 113–118.

    PubMed  CAS  Google Scholar 

  • Liu Y, Li R, Ladisch S. 2004. Exogenous ganglioside GD1a enhances epidermal growth factor receptor binding and dimerization. J Biol Chem 279: 36481–36489.

    PubMed  CAS  Google Scholar 

  • Lloyd KO, Furukawa K. 1998. Biosynthesis and functions of gangliosides: Recent advances. Glycoconj J 15: 627–636.

    PubMed  CAS  Google Scholar 

  • Maccioni HJ, Daniotti JL, Martina JA. 1999. Organization of ganglioside synthesis in the Golgi apparatus. Biochim Biophys Acta 1437: 101–118.

    PubMed  CAS  Google Scholar 

  • Marconi S, De Toni L, Lovato L, Tedeschi L, Gaetti L, et al. 2005. Expression of gangliosides on glial and neuronal cells in normal and pathological adult human brain. J Neuroimmunol 170: 115–121.

    PubMed  CAS  Google Scholar 

  • Marcus J, Dupree JL, Popko B. 2000. Effects of galactlipid elimination on oligodendrocyte development and myelination. Glia 30:319–328.

    PubMed  CAS  Google Scholar 

  • Marcus J, Popko B. 2002. Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta 1573: 406–413.

    PubMed  CAS  Google Scholar 

  • Marcus J, Dupree JL, Popko B. 2002. Myelin-associated glycoprotein and myelin galactolipids stabilize developing axo-glial interactions. J Cell Biol 156: 567–577.

    PubMed  CAS  Google Scholar 

  • Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, et al. 2006. Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53: 372–381.

    PubMed  CAS  Google Scholar 

  • Matlin KS, Simons K. 1984. Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells. J Cell Biol 99: 2131–2139.

    PubMed  CAS  Google Scholar 

  • Mayer M. 1999. Essential fatty acids and related molecular and cellular mechanisms in multiple sclerosis: New looks at old concepts. Folia Biol (Praha) 45: 133–141.

    CAS  Google Scholar 

  • Merrill AH Jr, Jones DD. 1990. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta 1044: 1–12.

    PubMed  CAS  Google Scholar 

  • Millar AA, Kunst L. 1997. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12: 121–131.

    PubMed  CAS  Google Scholar 

  • Miller MA, Kent C. 1986. Characterization of the pathway for phosphatidylethanolamine biosynthesis in Chinese hamster ovary mutant and parental cell lines. J Biol Chem 261: 9753–9761.

    PubMed  CAS  Google Scholar 

  • Misek DE, Bard E, Rodriguez-Boulan E. 1984. Biogenesis of epithelial cell polarity: Intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein. Cell 39: 537–546.

    PubMed  CAS  Google Scholar 

  • Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, et al. 2002. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 277: 11239–11246.

    PubMed  CAS  Google Scholar 

  • Mizutani Y, Kihara A, Igarashi Y. 2005. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390: 263–271.

    PubMed  CAS  Google Scholar 

  • Mizutani Y, Kihara A, Igarashi Y. 2006. LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem J 398: 531–538.

    PubMed  CAS  Google Scholar 

  • Morell P, Ousley AH. 1994. Metabolic turnover of myelin glycerophospholipids. Neurochem Res 19: 967–974.

    PubMed  CAS  Google Scholar 

  • Morell P, Jurevics H. 1996. Origin of cholesterol in myelin. Neurochem Res 21: 4634–4670.

    Google Scholar 

  • Morell P, Quarles R, Norton WT. 1994. Siegel GJ, Agranoff BW, Albers RW, Molinoff PB, editors. Myelin formation, structure, and biochemistry. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. Raven; New York: pp. 117–143.

    Google Scholar 

  • Morell P. 1984. A correlative synopsis of the leukodystrophies. Neuropediatrics 15 Suppl: 62–65.

    PubMed  Google Scholar 

  • Mumby S, Margarson M, Quinlan GJ, Evans TW, Gutteridge JM. 1997. Is bleomycin-detectable iron present in the plasma of patients with septic shock? Intensive Care Med 23: 635–639.

    PubMed  CAS  Google Scholar 

  • Muñiz M, Riezman H. 2000. Intracellular transport of GPI-anchored proteins. EMBO J 19: 10–15.

    PubMed  Google Scholar 

  • Munro S. 2003. Cell biology: Earthworms and lipid couriers. Nature 426: 775–776.

    PubMed  CAS  Google Scholar 

  • Nagai K, Tadano-Aritomi K, Iida-Tanaka N, Yoshizawa H, Ishizuka I. 2005. Metabolism of sulfolipids in isolated renal tubules from rat. Comp Biochem Physiol B Biochem Mol Biol 140: 487–495.

    PubMed  Google Scholar 

  • Nakanishi M, Goldstein JL, Brown MS. 1988. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J Biol Chem 263: 8929–8937.

    PubMed  CAS  Google Scholar 

  • Nakayama J, Fukuda MN, Hirabayashi Y, Kanamori A, Sasaki K, et al. 1996. Expression cloning of a human GT3 synthase. GD3 and GT3 are synthesized by a single enzyme. J Biol Chem 271: 3684–3691.

    PubMed  CAS  Google Scholar 

  • Nicholson KM, Quinn DM, Kellett GL, Warr JR. 1999. Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase. Br J Cancer 81: 423–430.

    PubMed  CAS  Google Scholar 

  • Nilsson OS, Dallner G. 1977. Enzyme and phospholipid asymmetry in liver microsomal membranes. J Cell Biol 72: 568–583.

    PubMed  CAS  Google Scholar 

  • Nishijima M, Kuge O, Akamatsu Y. 1986. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation. J Biol Chem 261: 5784–5789.

    PubMed  CAS  Google Scholar 

  • Nishio M, Tajima O, Furukawa K, Urano T, Furukawa K. 2005. Over-expression of GM1 enhances cell proliferation with epidermal growth factor without affecting the receptor localization in the microdomain in PC12 cells. Int J Oncol 26: 191–199.

    PubMed  CAS  Google Scholar 

  • Norton W, Cammer W. 1984. Isolation and characterization of myelin. Myelin, 2nd edition. Morell P, editor. New York: Plenum; 147–195.

    Google Scholar 

  • Nyasae LK, Hubbard AL, Tuma PL. 2003. Transcytotic efflux from early endosomes is dependent on cholesterol and glycosphingolipids in polarized hepatic cells. Mol Biol Cell 14: 2689–2705.

    PubMed  CAS  Google Scholar 

  • Ogawa-Goto K, Abe T. 1998. Gangliosides and glycosphingolipids of peripheral nervous system myelins – a minireview. Neurochem Res 23: 305–310.

    PubMed  CAS  Google Scholar 

  • Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP. 2002. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41: 66–97.

    PubMed  CAS  Google Scholar 

  • Okada M, Itoh M, Haraguchi M, Okajima T, Inoue M, et al. 2002. b-Series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277: 1633–1636.

    PubMed  CAS  Google Scholar 

  • Omkumar RV, Darnay BG, Rodwell VW. 1994. Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase activity by phosphorylation. Role of serine 871. J Biol Chem 269: 6810–6814.

    PubMed  CAS  Google Scholar 

  • Ong RL, Yu RK. 1984. Interaction of ganglioside GM1 and myelin basic protein studied by carbon-13 and proton nuclear magnetic resonance spectroscopy. J Neurosci Res 12: 377–393.

    PubMed  CAS  Google Scholar 

  • Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL. 2005. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: Neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195: 208–217.

    PubMed  CAS  Google Scholar 

  • Paterson LJ, Weselake RJ, Mir PS, Mir Z. 2002. Positional distribution of CLA in TAG of lamb tissues. Lipids 37: 605–611.

    PubMed  CAS  Google Scholar 

  • Paul P, Kamisaka Y, Marks DL, Pagano RE. 1996. Purification and characterization of UDP-glucose: Ceramide glucosyltransferase from rat liver Golgi membranes. J Biol Chem 271: 2287–2293.

    PubMed  CAS  Google Scholar 

  • Percy AK, Moore JF, Carson MA, Waechter CJ. 1983. Characterization of brain phosphatidylserine decarboxylase: Localization in the mitochondrial inner membrane. Arch Biochem Biophys 223: 484–494.

    PubMed  CAS  Google Scholar 

  • Peterson AC, Bray GM. 1984. Hypomyelination in the peripheral nervous system of shiverer mice and in shiverer in equilibrium normal chimaera. J Comp Neurol 227: 348–356.

    PubMed  CAS  Google Scholar 

  • Pewzner-Jung Y, Ben-Dor S, Futerman AH. 2006. When do Lasses (longevity assurance genes) become CerS (ceramide synthases): Insights into the regulation of ceramide synthesis. J Biol Chem 281: 25001–25005.

    PubMed  CAS  Google Scholar 

  • Pfeiffer SE, Fuller SD, Simons K. 1985. Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin-Darby canine kidney cells. J Cell Biol 101: 470–476.

    PubMed  CAS  Google Scholar 

  • Pfeiffer SE, Warrington AE, Bansal R. 1993. The oligodendrocyte and its many cellular processes. Trends Cell Biol 3: 191–197.

    PubMed  CAS  Google Scholar 

  • Pike LJ. 2003. Lipid rafts: Bringing order to chaos. J Lipid Res 44: 655–667.

    PubMed  CAS  Google Scholar 

  • Polishchuk R, Di Pentima A, Lippincott-Schwartz J. 2004. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat Cell Biol 6: 297–307.

    PubMed  CAS  Google Scholar 

  • Poulos A. 1995. Very long chain fatty acids in higher animal. Lipids 30: 1–14.

    PubMed  CAS  Google Scholar 

  • Quarles RH, Macklin WB, Morell P. 2006. Myelin formation, structure, and biochemistry. Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 7th edition. Siegel GJ, Albers RW, Brady ST, Price D, editors. Academic Press Elsevier; New York: pp. 51–71.

    Google Scholar 

  • Quan G, Xie C, Dietschy JM, Turley SD. 2003. Ontogenesis and regulation of Cholesterol metabolism in the central nervous system of mouse. Brain Res Dev Brain Res 146: 87–98.

    PubMed  CAS  Google Scholar 

  • Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD. 1988. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333: 562–565.

    PubMed  CAS  Google Scholar 

  • Ramamurthy S, Mir F, Gould RM, Le Breton GC. 2006. Characterization of thromboxane A2 receptor signaling in developing rat oligodendrocytes: Nuclear receptor localization and stimulation of myelin basic protein expression. J Neurosci Res 84: 1402–1414.

    PubMed  CAS  Google Scholar 

  • Ranscht B, Clapshaw PA, Price J, Noble M, Seifert W. 1982. Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci USA 79: 2709–2713.

    PubMed  CAS  Google Scholar 

  • Rasband MN, Taylor CM, Bansal R. 2003. Paranodal transverse bands are required for maintenance but not initiation of Nav1.6 sodium channel clustering in CNS optic nerve axons. Glia 44: 173–182.

    PubMed  Google Scholar 

  • Reinhart MP, Billheimer JT, Faust JR, Gaylor JL. 1987. Subcellular localization of the enzymes of cholesterol biosynthesis and metabolism in rat liver. J Biol Chem 262: 9649–9655.

    PubMed  CAS  Google Scholar 

  • Roseman S. 1970. Synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 5: 270–297.

    PubMed  CAS  Google Scholar 

  • Rosenbluth J, Moon D. 2003. Dysmyelination induced in vitro by IgM antisulfatide and antigalactocerebroside monoclonal antibodies. J Neurosci Res 71: 104–109.

    PubMed  CAS  Google Scholar 

  • Rosenbluth J, Schiff R, Liang WL, Dou W. 2003. Antibody-mediated CNS demyelination II. Focal spinal cord lesions induced by implantation of an IgM antisulfatide-secreting hybridoma. J Neurocytol 32: 265–276.

    PubMed  CAS  Google Scholar 

  • Ross BM, Moszczynska A, Blusztajn JK, Sherwin A, Lozano A, Kish SJ. 1997. Phospholipid biosynthetic enzymes in human brain. Lipids 32: 351–358.

    PubMed  CAS  Google Scholar 

  • Sadeghlar F, Sandhoff K, van Echten-Deckert G. 2000. Cell type specific localization of sphingomyelin biosynthesis. FEBS Lett 478: 9–12.

    PubMed  CAS  Google Scholar 

  • Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R, et al. 2005. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8: 468–475.

    PubMed  CAS  Google Scholar 

  • Saito K, Kuge O, Akamatsu Y, Nishijima M. 1996. Immunochemical identification of the pssA gene product as phosphatidylserine synthase I of Chinese hamster ovary cells. FEBS Lett 395: 262–266.

    PubMed  CAS  Google Scholar 

  • Sandhoff K, van Echten G. 1993. Ganglioside metabolism–topology and regulation. Adv Lipid Res 26: 119–142.

    PubMed  CAS  Google Scholar 

  • Saravanan K, Schaeren-Wiemers N, Klein D, Sandhoff R, Schwarz A, et al. 2004. Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiol Dis 16: 396–406.

    PubMed  CAS  Google Scholar 

  • Sasaki T. 1990. Glycolipid transfer protein and intracellular traffic of glucosylceramide. Experientia 46: 611–616.

    PubMed  CAS  Google Scholar 

  • Sasaki T, Demel RA. 1985. Net mass transfer of galactosylceramide facilitated by glycolipid transfer protein from pig brain: A monolayer study. Biochemistry 24: 1079–1083.

    PubMed  CAS  Google Scholar 

  • Schaeren-Wiemers N, P, van der Bijl Schwab ME. 1995. The UDP-galactose: Ceramide galactosyltransferase: Expression pattern in oligodendrocytes and Schwann cells during myelination and substrate preference for hydroxyceramide. J Neurochem 65: 2267–2278.

    PubMed  CAS  Google Scholar 

  • Schneider A, Laender H, Schulz G, Wolburg H, Nave KA, et al. 2005. Palmitoylation is a sorting determinant for transport to the myelin membrane. J Cell Sci 118: 2415–2423.

    PubMed  CAS  Google Scholar 

  • Scurlock B, Dawson G. 1999. Differential responses of oligodendrocytes to tumor necrosis factor and other pro-apoptotic agents: Role of ceramide in apoptosis. J Neurosci Res 55: 514–522.

    PubMed  CAS  Google Scholar 

  • Sheikh KA, Sun J, Lui Y, Kawai H, Crawford TO, et al. 1999. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96: 7532–7537.

    PubMed  CAS  Google Scholar 

  • Simons K, van Meer G. 1988. Lipid sorting in epithelial cells. Biochemistry 27: 6197–6202.

    PubMed  CAS  Google Scholar 

  • Simons K, Wandinger-Ness A. 1990. Polarized sorting in epithelia. Cell 62: 207–210.

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387: 569–572.

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E. 2000. How cells handle cholesterol. Science 290: 1721–1726.

    PubMed  CAS  Google Scholar 

  • Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31–39.

    PubMed  CAS  Google Scholar 

  • Simons M, Krämer EM, Thiele C, Stoffel W, Trotter J. 2000. Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151: 143–154.

    PubMed  CAS  Google Scholar 

  • Smotrys JE, Linder ME 2004. Palmitoylation of intracellular signaling proteins: Regulation and function. Annu Rev Biochem 73: 559–587.

    PubMed  CAS  Google Scholar 

  • Sprong H, Degroote S, Claessens T, van Drunen J, Oorschot V, et al. 2001. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol 155: 369–380.

    PubMed  CAS  Google Scholar 

  • Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, et al. 1998. UDP-galactose: Ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 273: 25880–25888.

    PubMed  CAS  Google Scholar 

  • Stegemeyer HR, Stegemeyer H. 2004. Finally, I propose the medullary substance to be named myelin. Dtsch Med Wochenschr 129: 2784–2787.

    PubMed  Google Scholar 

  • Stoffel W, Bosio A. 1997. Myelin glycolipids and their functions. Curr Opin Neurobiol 7: 654–661.

    PubMed  CAS  Google Scholar 

  • Stone SJ, Cui Z, Vance JE. 1998. Cloning and expression of mouse liver phosphatidylserine synthase-1 cDNA. Overexpression in rat hepatoma cells inhibits the CDP-ethanolamine pathway for phosphatidylethanolamine biosynthesis. J Biol Chem 273: 7293–7302.

    PubMed  CAS  Google Scholar 

  • Stone SJ, Vance JE. 2000. Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275: 34534–34540.

    PubMed  CAS  Google Scholar 

  • Susuki K, Baba H, Tohyama K, Kanai K, Kuwabara S, et al. 2007a. Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia 55: 746–757.

    PubMed  Google Scholar 

  • Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, et al. 2007b. Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci 27: 3956–3967.

    PubMed  CAS  Google Scholar 

  • Suzuki K, Poduslo SE, Norton WT. 1967. Gangliosides in the myelin fraction of developing rats. Biochim Biophys Acta 144: 375–381.

    PubMed  CAS  Google Scholar 

  • Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, et al. 1996. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93: 10662–10667.

    PubMed  CAS  Google Scholar 

  • Taylor CM, Marta CB, Bansal R, Pfeiffer ES. 2004. The transport, assembly, and function of myelin lipids. Myelin Biology and Disorders, 1st edition. Lazzarini RA, Griffin JW, Lassman H, Nave KA, Miller RH, et al., editors. New York: Lazzarini; pp. 55–88.

    Google Scholar 

  • Temple S, Raff MC. 1986. Clonal analysis of oligodendrocyte development in culture: Evidence for a developmental clock that counts cell divisions. Cell 44: 773–779.

    PubMed  CAS  Google Scholar 

  • Thelen KM, Falkai P, Bayer TA, Lutjohann D. 2006. Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci Lett 403: 15–19.

    PubMed  CAS  Google Scholar 

  • Uliana AS, Crespo PM, Martina JA, Daniotti JL, Maccioni HJ. 2006a. Modulation of GalT1 and SialT1 sub-Golgi localization by SialT2 expression reveals an organellar level of glycolipid synthesis control. J Biol Chem 281: 32852–32860.

    PubMed  CAS  Google Scholar 

  • Uliana AS, Giraudo CG, Maccioni HJ. 2006b. Cytoplasmic tails of SialT2 and GalNAcT impose their respective proximal and distal Golgi localization. Traffic 7: 604–612.

    PubMed  CAS  Google Scholar 

  • Ullman MD, Radin NS. 1974. The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J Biol Chem 249: 1506–1512.

    PubMed  CAS  Google Scholar 

  • van Echten G, Sandhoff K. 1993. Ganglioside metabolism. Enzymology, topology, and regulation. J Biol Chem 268: 5341–5344.

    PubMed  CAS  Google Scholar 

  • van Golde LM, Raben J, Batenburg JJ, Fleischer B, Zambrano F, et al. 1974. Biosynthesis of lipids in Golgi complex and other subcellular fractions from rat liver. Biochim Biophys Acta 360: 179–192.

    PubMed  CAS  Google Scholar 

  • van Helvoort A, van't Hof W, Ritsema T, Sandra A, van Meer G. 1994. Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J Biol Chem 269: 1763–1769.

    PubMed  CAS  Google Scholar 

  • van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, et al. 1996. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87: 507–517.

    PubMed  CAS  Google Scholar 

  • van Meer G. 1989. Lipid traffic in animal cells. Annu Rev Cell Biol 5: 247–275.

    PubMed  CAS  Google Scholar 

  • van Meer G, Holthuis JC. 2000. Sphingolipid transport in eukaryotic cells. Biochim Biophys Acta 1486: 145–170.

    PubMed  CAS  Google Scholar 

  • van Meer G, Lisman Q. 2002. Sphingolipid transport: Rafts and translocators. J Biol Chem 277: 25855–25858.

    PubMed  CAS  Google Scholar 

  • van Meer G, Vaz WL. 2005. Membrane curvature sorts lipids. Stabilized lipid rafts in membrane transport. EMBO Rep 6: 418–419.

    PubMed  CAS  Google Scholar 

  • van Meeteren ME, Baron W, Beermann C, Dijkstra CD, van Tol EA. 2006. Polyunsaturated fatty acid supplementation stimulates differentiation of oligodendroglia cells. Dev Neurosci 28: 196–208.

    PubMed  CAS  Google Scholar 

  • Van Overloop H, Gijsbers S, Van Veldhoven PP. 2006. Further characterization of mammalian ceramide kinase: Substrate delivery and (stereo) specificity, tissue distribution, and subcellular localization studies. J Lipid Res 47: 268–283.

    PubMed  CAS  Google Scholar 

  • Vance DE. 1990. Boehringer Mannheim Award lecture. Phosphatidylcholine metabolism: Masochistic enzymology, metabolic regulation, and lipoprotein assembly. Biochem Cell Biol 68: 1151–1165.

    PubMed  CAS  Google Scholar 

  • Vance DE. 1996. Glycerolipid biosynthesis in eukaryotes. Biochemistry of Lipids, Lipoproteins, and Membranes. Vance DE, Vance J, editors. Amsterdam: Elsevier; pp. 153–181.

    Google Scholar 

  • Veldman RJ, Klappe K, Hinrichs J, Hummel I, Schaaf G, van der et al. 2002. Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus. FASEB J 16: 1111–1113.

    PubMed  CAS  Google Scholar 

  • Verkade P, Simons K. 1997. Robert Feulgen Lecture 1997. Lipid microdomains and membrane trafficking in mammalian cells. Histochem Cell Biol 108: 211–220.

    PubMed  CAS  Google Scholar 

  • Vermeulen PS, Geelen MJH, Tijburg LBM, van Golde LMG. 1997. The CDP-ethanolamine pathway in mammalian cells. Advances in Lipobiology. Gross RW, editor. J.A.I. Press; Greenwich, USA: pp. 287–322.

    Google Scholar 

  • Virchow R. 1854. Über das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den tierischen Geweben. Virchows Arch Pathol Anat 6: 562–572.

    Google Scholar 

  • Voelker DR, Kennedy EP. 1982. Cellular and enzymic synthesis of sphingomyelin. Biochemistry 21: 2753–2759.

    PubMed  CAS  Google Scholar 

  • Voelker DR. 1985. Disruption of phosphatidylserine translocation to the mitochondria in baby hamster kidney cells. J Biol Chem 260: 14671–14676.

    PubMed  CAS  Google Scholar 

  • Voelker DR, Frazier JL. 1986. Isolation and characterization of a Chinese hamster ovary cell line requiring ethanolamine or phosphatidylserine for growth and exhibiting defective phosphatidylserine synthase activity. J Biol Chem 261: 1002–1008.

    PubMed  CAS  Google Scholar 

  • Vos JP, de Haas CGM, van Golde LMG, Lopes-Cardozo M. 1997. Relationships between phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin metabolism in cultured oligodendrocytes. J Neurochem 68: 1252–1260.

    PubMed  CAS  Google Scholar 

  • Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, et al. 2002. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99: 8412–8417.

    PubMed  CAS  Google Scholar 

  • Weiss B, Stoffel W. 1997. Human and murine serine-palmitoyl-CoA transferase–cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem 249: 239–247.

    PubMed  CAS  Google Scholar 

  • Yamashiro S, Haraguchi M, Furukawa K, Takamiya K, Yamamoto A, et al. 1995. Substrate specificity of beta 1,4-N-acetylgalactosaminyltransferase in vitro and in cDNA-transfected cells. GM2/GD2 synthase efficiently generates asialo-GM2 in certain cells. J Biol Chem 270: 6149–6155.

    PubMed  CAS  Google Scholar 

  • Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T. 2004. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem 279: 18688–18693.

    PubMed  CAS  Google Scholar 

  • Yamashita T, Wu YP, Sandhoff R, Werth N, Mizukami H, et al. 2005. Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci USA 102: 2725–2730.

    PubMed  CAS  Google Scholar 

  • Yasuda S, Nishijima M, Hanada K. 2003. Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J Biol Chem 278: 4176–4183.

    PubMed  CAS  Google Scholar 

  • Yavin E, Zeigler BP. 1977. Regulation of phospholipids metabolism in differentiating cells from rat brain cerebral hemispheres in culture. J Biol Chem 252: 260–267.

    PubMed  CAS  Google Scholar 

  • Yehuda S, Rabinovitz S, Mostofsky DI, Huberman M, Sredni B. 1997. Essential fatty acid preparation improves biochemical and cognitive functions in experimental allergic encephalomyelitis rats. Eur J Pharmacol 328: 23–29.

    PubMed  CAS  Google Scholar 

  • Yim SH, Farrer RG, Hammer JA, Yavin E, Quarles RH. 1994. Differentiation of oligodendrocytes cultured from developing rat brain is enhanced by exogenous GM3 gangliosides. J Neurosci Res 38: 268–281.

    PubMed  CAS  Google Scholar 

  • Yohe HC, Jacobson RI, Yu RK. 1983. Ganglioside-basic protein interaction: Protection of gangliosides against neuraminidase action. J Neurosci Res 9: 401–412.

    PubMed  CAS  Google Scholar 

  • Yu RK, Macala LJ, Farooq M, Sbaschnig-Agler M, Norton WT, et al. 1989. Ganglioside and lipid composition of bulk-isolated rat and bovine oligodendroglia. J Neurosci Res 23: 136–141.

    PubMed  CAS  Google Scholar 

  • Zacchetti D, Peranen J, Murata M, Fiedler K, Simons K. 1995. VIP17/MAL, a proteolipid in apical transport vesicles. FEBS Lett 377: 465–469.

    PubMed  CAS  Google Scholar 

  • Zborowski J, Dygas A, Wojtczak L. 1983. Phosphatidylserine decarboxylase is located on the external side of the inner mitochondrial membrane. FEBS Lett 157: 179–182.

    PubMed  CAS  Google Scholar 

  • Zegers MM, Hoekstra D. 1997. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: A correlation with cell polarity in HepG2 cells. J Cell Biol 138: 307–321.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Martin R. Schiller (UConn Health Center) for useful suggestions during the writing and correction of this chapter. We also acknowledge the support of the National Institutes of Health through the grant NS10861.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Fewou, S.N., Jackman, N., Meer, G.v., Bansal, R., Pfeiffer, S.E. (2009). Functional Dynamics of Myelin Lipids*. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_10

Download citation

Publish with us

Policies and ethics