Skip to main content

Multiple Sclerosis and Autoimmune Encephalomyelitis

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, which leads to the formation of disseminated demyelinated plaques in the central nervous system. The disease manifests in an early relapsing form, which is followed by a stage of progressive neurological deterioration. In the early stages of the disease focal demyelinated white matter lesions are formed by the influx of new waves of inflammatory cells from the circulation. In this phase peripheral immunosuppression or modulation of the immune response reduces the appearance of new lesions and ameliorates disease. In contrast, in the progressive stage, inflammation becomes trapped within the brain and spinal cord and gives rise to diffuse (mainly axonal) damage in the global white matter and profound demyelination in the cerebral cortex. The mechanisms, involved in the formation of MS lesions, are complex and heterogeneous, involving cytotoxic T‐lymphocytes, specific autoantibodies and toxic products of activated macrophages and microglia cells. The mechanisms of tissue injury, involved in the formation of MS lesions are in part reflected in different models of autoimmune encephalomyelitis. However, many features of MS pathology and pathogenesis are not covered by this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apo‐E:

apolipoprotein E

CNS:

central nervous system

CNTF:

ciliary neurotrophic factor

EAE:

experimental autoimmune encephalomyelitis

GFAP:

glia fibrillary acidic protein

HLA‐D:

human leukocyte antigen‐D

MAG:

myelin associated glycoprotein

MBP:

myelin basic protein

MHC:

major histocompatibility complex

MOG:

myelin oligodendrocyte glycoprotein

MRI:

magnetic resonance imaging

MS:

multiple sclerosis

NAA:

N‐acetylaspartate

PLP:

proteolipid protein

PPMS:

primary progressive MS

RRMS:

relapsing/remitting MS

SPMS:

secondary progressive MS

TNF:

tumour necrosis factor

References

  • Aboul-Enein F, Lassmann H. 2004. Mitochondrial damage and histotoxic hypoxia: A pathway of tissue injury in inflammatory brain disease? Acta Neuropathol, submitted.

    Google Scholar 

  • Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, et al. 2003. Preferential loss of myelin associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62: 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Allen IV, McKeown SR. 1979. A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41: 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Allen IV, McQuid S, Miradkhur M, Nevin G. 2001. Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol Sci 22: 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Anderson DW, Ellenberg JH, Leventhal CM, Reingold SC, Rodriguez M, et al. 1992. Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol 31: 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Anthony DC, Miller KM, Fearn S, Townsend MJ, Opdenakker G, et al. 1998. Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS. J Neuroimmunol 87: 62–72.

    Article  CAS  PubMed  Google Scholar 

  • Arnold DL, Matthews PM, Francis GS, O'Connor J, Antel JP. 1992. Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31: 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, et al. 2000. Clonal expansion of CD8+T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192: 393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett MH, Prineas JW. 2004. Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Ann Neurol 55: 458–468.

    Article  PubMed  Google Scholar 

  • Battistini L, Fischer FR, Raine CS, Brosnan CF. 1996. CD1b is expressed in multiple sclerosis lesions. J Neuroimmunol 67: 145–151.

    CAS  PubMed  Google Scholar 

  • Bauer J, Bradl M, Hickey WF, Forss-Petter S, Breitschopf H, et al. 1998. T cell apoptosis in inflammatory brain lesions. Destruction of T cells does not depend on antigen recognition. Am J Pathol 153: 715–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtold DA, Kapoor R, Smith K. 2004. Axonal protection using lecainide in experimental autoimmune encephalomyelitis. Ann Neurol 55: 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S. 2000. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc Natl Acad Sci USA 97: 14602–14607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Nun A, Wekele H, Cohen IR. 1981. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11: 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, et al. 2003. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after the first demyelinating event. New Engl J Med 349: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Berger T, Weerth S, Kojima K, Linington C, Wekerle H, et al. 1997. Experimental autoimmune encephalomyelitis: The antigen specificity of T-lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab Invest 76: 355–364.

    CAS  PubMed  Google Scholar 

  • Bitsch A, Kuhlmann T, Stadelmann C, Lassmann H, Lucchinetti C, et al. 2001. A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann Neurol 49: 793–796.

    Article  CAS  PubMed  Google Scholar 

  • Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W. 2000. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123: 1174–1183.

    PubMed  Google Scholar 

  • Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. 2000. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48: 893–901.

    Article  CAS  PubMed  Google Scholar 

  • Blakemore WF, Keirstead HS. 1999. The origin of remyelinating cells in the central nervous system. J Neuroimmunol 98: 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ. 2003b. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 9: 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ. 2003a. Subpial demyelination in the cerebral cortex of multiple sclerosis. J Neuropathol Exp Neurol 62: 723–732.

    Article  PubMed  Google Scholar 

  • Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, et al. 1997. Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J Neurochem 68: 2227–2240.

    Article  CAS  PubMed  Google Scholar 

  • Bonetti B, Raine CS. 1997. Multiple sclerosis: Oligodendrocytes display cell death-related molecules in situ but do not undergo apoptosis. Ann Neurol 42: 74–84.

    Article  CAS  PubMed  Google Scholar 

  • Bonetti B, Stegagno C, Cannella B, Rizzuto N, Moretto G, et al. 1999. Activation of NF-kappaB and c-jun transcription factors in multiple sclerosis lesions. Implications for oligodendrocyte pathology. Am J Pathol 155: 1433–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourquin C, Schubart A, Tobollik S, Mather I, Ogg S, et al. 2003. Selective unresponsiveness to conformational B cell epitopes of the myelin oligodendrocyte glycoprotein in H-2b mice. J Immunol 171: 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan CF, Cammer W, Norton WT, Bloom BR. 1980. Proteinase inhibitors suppress the development of experimental allergic encephalomyelitis. Nature 285: 235–237.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan CF, Stoner GL, Bloom BR, Wisniewski HM. 1977. Studies on demyelination by activated lymphocytes in the rabbit eye. II. Antibody dependent cell mediated demyelination. J Immunol 118: 2103–2111.

    CAS  PubMed  Google Scholar 

  • Brownell B, Hughes JT. 1962. The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry 25: 315–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brück W, Bitsch A, Kolenda H, Brück Y, Stiefel M, et al. 1997. Inflammatory central nervous system demyelination: Correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42: 783–793.

    Article  PubMed  Google Scholar 

  • Brück W, Porada P, Poser S, Riechmann P, Hanefeld F, et al. 1995. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38: 788–796.

    Article  PubMed  Google Scholar 

  • Brück W, Schmied M, Suchanek G, Brück Y, Breitschopf H, et al. 1994. Oligodendrocytes in the early course of multiple sclerosis. Ann Neurol 35: 65–73.

    Article  PubMed  Google Scholar 

  • Cabarrocas J, Bauer J, Piaggio E, Liblau R, Lassmann H. 2003. Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes. Eur J Immunol 33: 1174–1182.

    Article  CAS  PubMed  Google Scholar 

  • Cannella B, Raine CS. 1995. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37: 424–435.

    Article  CAS  PubMed  Google Scholar 

  • Chang A, Tourtellotte WW, Rudick R, Trapp BD. 2002. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. New Engl J Med 346: 165–173.

    Article  PubMed  Google Scholar 

  • Charcot JM. 1868. Histologie de la sclerose en plaque. Gaz Hopital (Paris) 41: 554–566.

    Google Scholar 

  • Chard DT, Griffin CM, Parker GJ, Kapoor R, Thompson AJ, et al. 2002. Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 125: 327–337.

    Article  CAS  PubMed  Google Scholar 

  • Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, et al. 2002. Re-expression of PSA-NCAM by demyelinated axons: An inhibitor or remyelination in multiple sclerosis? Brain 125: 1972–1979.

    Article  PubMed  Google Scholar 

  • Clements JM, Cossins JA, Wells GM, Corkill DJ, Helfrich K, et al. 1997. Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J Neuroimmunol 74: 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Compston A, Coles A. 2002. Multiple sclerosis. Lancet 359: 1221–1231.

    Article  PubMed  Google Scholar 

  • Compston DA, Morgan BP, Campbell AK, Wilkins P, Cole G, et al. 1989. Immunocytochemical localization of the terminal complement complex in multiple sclerosis. Neuropathol Appl Neurobiol 15: 307–316.

    Article  CAS  PubMed  Google Scholar 

  • Compston DAS. 1998. Distribution of multiple sclerosis. Mc Alpine's Multiple Sclerosis, 3rd edn. Compston DAS, editor. London: Churchill Livingstone; pp. 63–100.

    Google Scholar 

  • Compston DAS. 2004. Genetic susceptibility and epidemiology. Myelin Biology and Disorders, Vol. 2. Lazzarini RA, editor. Amsterdam: Elsevier; pp. 701–731.

    Google Scholar 

  • Confavreux C, Vukusic S, Moreau T, Adeleine P. 2000. Relapses and progression of disability in multiple sclerosis. New Engl J Med 343: 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  • Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, et al. 1996. The expression of tissue-type plasminogen-activator, matrix metalloproteinases and endogenous inhibitors in the central nervous system in multiple sclerosis: Comparison of stages of lesion evolution. J Neuropathol Exp Neurol 55: 1194–1204.

    Article  CAS  PubMed  Google Scholar 

  • Cuzner ML, Opdenakker G. 1999. Plasminogen activators and matrix metalloproteinases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J Neuroimmunol 94: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • D'Souza SD, Bonetti B, Balasingam V, Cashman NR, Barker BA, et al. 1996. Multiple sclerosis: Fas signaling in oligodendrocyte death. J Exp Med 184: 2361–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson JW. 1916. The histology of disseminated sclerosis. Trans R Soc 50: 517–540.

    Google Scholar 

  • De Groot CJ, Bergers E, Kamphorst W, Ravid R, Polman CH, et al. 2001. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: Increased yield of active demyelinating and (p)reactive lesions. Brain 124: 1635–1645.

    Article  CAS  PubMed  Google Scholar 

  • De Groot CJ, Ruuls SR, Theeuwes JW, Dijkstra CD, van der Valk P. 1997. Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 56: 10–20.

    Article  CAS  PubMed  Google Scholar 

  • De Stefano N, Narayanan S, Matthews PM, Francis GS, Antel JP, et al. 1999. In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122: 1933–1999.

    Article  PubMed  Google Scholar 

  • Dean G. 1967. Annual incidence, prevalence and mortality of MS in white South African-born and in white immigrants to South Africa. Br Med J 2: 724–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diemel LT, Copelman CA, Cuzner ML. 1998. Macrophages in CNS remyelination: Friend or foe? Neurochem Res 23: 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Dore-Duffy P, Washington R, Dragovic L. 1993. Expression of endothelial cell activation antigens in microvessels from patients with multiple sclerosis. Adv Exp Med Biol 331: 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Dowling P, Shang G, Raval S, Menona J, Cook S, et al. 1996. Involvement of the CD95 (APO1/Fas) receptor/ligand system in multiple sclerosis brain. J Exp Med 184: 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  • Dubois-Dalcq M, Niedieck B, Buyse M. 1970. Action of anti-cerebroside sera on myelinated nervous tissue cultures. Pathol Europea 5: 331–347.

    CAS  Google Scholar 

  • Ebers GC, Kukay K, Bulman DE, Sadovnik AD, Rice G, et al. 1996. A full genome search in multiple sclerosis. Nat Genet 13: 472–476.

    Article  CAS  PubMed  Google Scholar 

  • Eikelenboom M, Petzold A, Lazeron RH, Silber E, Sharief M, et al. 2003. Multiple sclerosis: Neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology 60: 219–223.

    Article  CAS  PubMed  Google Scholar 

  • Elian M, Nightingale S, Dean G. 1990. Multiple sclerosis among United Kingdom born children of immigrants from the West Indies. J Neurol Neurosurg Psychiatry 53: 906–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Encinas JA, Weiner HL, Kuchroo VK. 1996. Inheritance of susceptibility to experimental autoimmune encephalomyelitis. J Neurosci Res 45: 655–669.

    Article  CAS  PubMed  Google Scholar 

  • Esiri MM. 1977. Immunoglobulin-containing cells in multiple sclerosis plaques. Lancet 2: 478–480.

    Article  CAS  PubMed  Google Scholar 

  • Esiri MM. 1980. Multiple sclerosis: A quantitative and qualitative study of immunoglobulin-containing cells in the central nervous system. Neuropathol Appl Neurobiol 6: 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Eugster HP, Frei K, Bachmann R, Bluethmann H, Lassmann H, et al. 1999. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur J Immunol 29: 626–632.

    Article  CAS  PubMed  Google Scholar 

  • Evangelou N, Konz D, Esiri MM, Smith S, Palace J, et al. 2000. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123: 1845–1849.

    Article  PubMed  Google Scholar 

  • Evangelou N, Konz D, Esiri MM, Smith S, Palace J, et al. 2001. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 124: 1813–1820.

    Article  CAS  PubMed  Google Scholar 

  • Evans CF, Horwitz MS, Hobbs MV, Oldstone MB. 1996. Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J Exp Med 184: 2371–2384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazekas F, Strasser Fuchs S, Schmidt H, Enzinger C, Ropele S, et al. 2000. Apolipoprotein E genotype related differences in brain lesions of multiple sclerosis. J Neurol Neurosurg Psychiatry 69: 25–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM, Perry VH. 1997. Axonal damage in acute multiple sclerosis lesions. Brain 120: 393–399.

    Article  PubMed  Google Scholar 

  • Fern R, Moller T. 2000. Rapid ischemic cell death in immature oligodendrocytes: A fatal glutamate release feedback loop. J Neurosci 20: 34–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, et al. 2003. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 126: 433–437.

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G. 1998. Magnetization transfer changes in the normal appearing white matter prcede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43: 809–814.

    Article  CAS  PubMed  Google Scholar 

  • Flugel A, Berkowicz T, Ritter T, Labeur M, Jenne DE, et al. 2001. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14: 547–560.

    Article  CAS  PubMed  Google Scholar 

  • Fog T. 1950. Topographic distribution of plaques in the spinal cord of multiple sclerosis. Arch Neurol 63: 382–414.

    Article  Google Scholar 

  • Franklin RJ. 2002. Why does remyelination fail in multiple sclerosis ? Nat Rev Neurosci 3: 705–714.

    Article  CAS  PubMed  Google Scholar 

  • Furlan R, Brambilla E, Sanvito F, Roccatagliata C, Olivieri S, et al. 2003. Vaccination with amyloid-beta peptide indices autoimmune encephalomyelitis in C57/Bl6 mice. Brain 126: 285–291.

    Article  PubMed  Google Scholar 

  • GAMES and The Transatlantic Multiple Sclerosis Genetics Cooperative. 2003. A meta-analysis of genome screens in multiple sclerosis. J Neuro immunol 143: 39-46.

    Google Scholar 

  • Ganter P, Prince C, Esiri MM. 1999. Spinal cord axonal loss in multiple sclerosis: A post-mortem study. Neuropathol Appl Neurobiol 25: 459–467.

    Article  CAS  PubMed  Google Scholar 

  • Gay FW, Drye GW, Dick GWA, Esiri MM. 1997. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis: Identification and characterization of the primary demyelinating lesion. Brain 120: 1461–1483.

    Article  PubMed  Google Scholar 

  • Genain CP, Cannella B, Hauser SL, Raine CS. 1999. Autoantibodies to MOG mediate myelin damage in MS. Nat Med 5: 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, et al. 1996. CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 93: 2499–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giess R, Maurer M, Linker R, Gold R, Warmuth-Metz M, et al. 2002. Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. Arch Neurol 59: 407–409.

    Article  PubMed  Google Scholar 

  • Gijbels K, Galardy RE, Steinman L. 1994. Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J Clin Invest 94: 2177–2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold R, Hartung HP, Lassmann H. 1997. T-cell apoptosis in autoimmune diseases: Termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci 20: 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N. 2003. Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13: 554–573.

    Article  CAS  PubMed  Google Scholar 

  • Haase CG, Guggenmos J, Brehm U, Andersson M, Olsson T, et al. 2001. The fine specificity of the myelin oligodendrocyte glycoprotein autoantibody response in patients with multiple sclerosis and normal healthy controls. J Neuroimmunol 114: 220–225.

    Article  CAS  PubMed  Google Scholar 

  • Haines JL and The Multiple Sclerosis Genetics Group. 1996. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. Nat Genet 13: 469–471.

    Article  CAS  PubMed  Google Scholar 

  • Herrera BM, Ebers GC. 2003. Progress in deciphering the genetics of multiple sclerosis. Curr Opin Neurol 16: 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H. 1991. T lymphocyte entry into the central nervous system. J Neurosci Res 28: 254–260.

    Article  CAS  PubMed  Google Scholar 

  • Hofman FM, Hinton DR, Johnson K, Merrill JE. 1989. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170: 607–612.

    Article  CAS  PubMed  Google Scholar 

  • Hoftberger R, Aboul-Enein F, Brueck W, Lucchinetti C, Rodriguez M, et al. 2004. Expression of major histocompatibiltiy complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol 14: 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Hohlfeld R. 1997. Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and persectives. Brain 120: 865–916.

    Article  PubMed  Google Scholar 

  • Huang D, Han Y, Rani MR, Glabinski A, Trebst C, et al. 2000. Chemokines and chemokine receptors in inflammation of the nervous system: Manifold roles and exquisite regulation. Immunol Rev 177: 52–67.

    Article  CAS  PubMed  Google Scholar 

  • Huitinga I, Rooijen N, deGroot CJA, Uitdehaag BMJ, Dijkstra CD. 1990. Suppression of experiemntal allergic encephalomyelitis after elimination of macrophages. J Exp Med 172: 1025–1033.

    Article  CAS  PubMed  Google Scholar 

  • Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, et al. 2001. A pathogenic role for myelin-specific CD8 (+) T-cells in a model for multiple sclerosis. J Exp Med 194: 669–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, et al. 2002. Multiple sclerosis: Re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8: 1115–1121.

    Article  CAS  PubMed  Google Scholar 

  • Johns TG, Bernard CC. 1997. Binding of complement C1q to myelin oligodendrocyte glycoprotein: A novel mechanism for regulating CNS inflammation. Mol Immunol 34: 33–38.

    Article  CAS  PubMed  Google Scholar 

  • Kahana E, Zilber N, Abramson JH, Biton Y, Leibowitz Y, et al. 1994. Multiple sclerosis: Genetic versus environmental aetiology: Epidemiology in Israel updated. J Neurol 241: 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Kalman B, Leist TP. 2003. A mitochondrial component of neurodegeneration in multiple sclerosis. Neuromolecular Med 3: 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Kalman B, Lublin FD. 1999. The genetics of multiple sclerosis. A review. Biomed Pharmacother 53: 358–370.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Davies M, Smith KJ. 1999. Temporary axonal conduction block and axonal loss in inflammatory neurological disease. A potential role for nitric oxide? Ann N Y Acad Sci 893: 304–308.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami N, Lassmann S, Li Z, Odoardi F, Ritter T, et al. 2004. The activation status of neuroantigen specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J Exp Med 199: 185–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keirstead HS, Blakemore WF. 1999. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Adv Exp Med Biol 468: 183–197.

    Article  CAS  PubMed  Google Scholar 

  • Kellar-Wood H, Robertson N, Govan GG, Harding AE, Compston DAS. 1994. Leber's hereditary optic neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann Neurol 36: 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Kerlero de Rosbo N, Milo R, Lees MB, et al., 1993. Reactivity to myelin antigens in multiple sclerosis. J Clin invest 92: 2602-2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, et al. 1999. Activated human T cells B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? J Exp Med 189: 865–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd T, Barkhof F, McConnell R, Algra PR, Allen IV, et al. 1999. Cortical lesions in multiple sclerosis. Brain 122: 17–26.

    Article  PubMed  Google Scholar 

  • Kivisäkk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, et al. 2004. Intrathecal expression of CCR7 in multiple sclerosis. Implications for central nervous system immunity. Ann Neurol 55: 627–638.

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Berger Th, Lassmann H, Hinze-Selch D, Zhang Y, et al. 1994. Experimental autoimmune panencephalitis and uveoretinitis transfered to the Lewis rat by T-lymphocytes specific for the S100β molecule, a calcium binding protein of astroglia. J Exp Med 180: 817–829.

    Article  CAS  PubMed  Google Scholar 

  • Kornek B, Lassmann H. 1999. Axonal pathology in multiple sclerosis: A historical note. Brain Pathol 9: 651–656.

    Article  CAS  PubMed  Google Scholar 

  • Kornek B, Storch M, Weissert R, Wallstroem E, Stefferl A, et al. 2000. Multiple sclerosis and chronic autoimmune encephalomyelitis: A comparative quantitative study of axonal injury in active, inactive and remyelinated lesions. Am J Pathol 157: 267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornek B, Storch MK, Bauer J, Djamshidian A, Weissert R, et al. 2001. Distribution of calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 124: 1114–1124.

    Article  CAS  PubMed  Google Scholar 

  • Korner H, Lemckert FA, Chaudhri G, Etteldorf S, Sedgwick JD. 1997. Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system. Eur J Immunol 27: 1973–1981.

    Article  CAS  PubMed  Google Scholar 

  • Kotter MR, Setzu A, Sim FJ, Van-Rooijen N, Franklin RJ. 2001. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35: 204–212.

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard M, Wucherpfennig KW, Cannella B, Hansen BE, Svejgaard A, et al. 2000. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J Exp Med 191: 1395–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassmann H. 1983. Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. Springer Schriftenr Neurol 25: 1–135.

    CAS  Google Scholar 

  • Lassmann H, Brück W, Lucchinetti C. 2001. Heterogeneity of multiple sclerosis pathogenesis: Implications for diagnosis and therapy. Trends Mol Med 7: 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, Raine CS, Antel J, Prineas JW. 1998. Immunopathology of multiple sclerosis: Report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 86: 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, Ransohoff RM. 2004. The CD4-Th1 model for multiple sclerosis: A crucial re-appraisal. Trends Immunol 25: 132–137.

    Article  CAS  PubMed  Google Scholar 

  • Leary SM, Thompson AJ. 2003. Treatment for patients with primary progressive multiple sclerosis. Multiple Sclerosis Therapeutics. Cohen JA, Rudick RA, editors. London: Martin Dunitz; pp. 589–598.

    Google Scholar 

  • Ligers A, Xu C, Saarinen S, Hillert J, Olerup O. 1999. The CTLA-4 gene is associated with multiple sclerosis. J Neuroimmunol 97: 182–190.

    Article  CAS  PubMed  Google Scholar 

  • Linington C, Bradl M, Lassmann H, Brunner C, Vass K. 1988. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating antibodies against a myelin oligodendrocyte glycoprotein. Am J Pathol 130: 443–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linington C, Lassmann H. 1987. Antibody responses in chronic relapsing experimental allergic encephalomyelitis: Correlation of serum demyelinating activity with the antibody titre to the myelin/oligodendrocyte glycoprotein (MOG). J Neuroimmunol 17: 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Linker RA, Maurer M, Gaupp S, Martini R, Holtmann B, et al. 2002. CNTF is a major protective factor in demyelinating CNS disease: A neurotrophic cytokine as modulator in neuroinflammation. Nat Med 8: 620–624.

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA. 1998. Neuronal injury associated with HIV-1: approaches and treatment. Annu Rev Pharmacol Toxicol 38: 159–177.

    Article  CAS  PubMed  Google Scholar 

  • Liu JS, Zhao ML, Brosnan CF, Lee SC. 2001. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 158: 2057–2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losseff NA, Wang L, Lai HM, Yoo DS, Gawne-Cain ML, et al. 1996. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119: 2009–2019.

    Article  PubMed  Google Scholar 

  • Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S. 2000. Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123: 308–317.

    Article  PubMed  Google Scholar 

  • Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, et al. 2000. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177: 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Lu ZH, Chakraborty G, Ledden RW, Yahya D, Wu G. 2004. N-acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain. Brain Res Mol Brain Res 122: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Lublin FD, Reingold SC. 1996. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology 46: 907–911.

    Article  CAS  PubMed  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, et al. 1999. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 117 cases. Brain 122: 2279–2295.

    Article  PubMed  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, et al. 2000. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann Neurol 47: 707–717.

    Article  CAS  PubMed  Google Scholar 

  • Lucchinetti CF, Mandler R, McGavern D, Brück W, Gleich G, et al. 2002. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125: 1450–1461.

    Article  PubMed  Google Scholar 

  • Ludwin SK. 1980. Chronic demyelination inhibits remyelination in the central nervous system. An analysis of contributing factors. Lab Invest 43: 382–387.

    CAS  PubMed  Google Scholar 

  • Lumsden CE. 1970. The neuropathology of multiple sclerosis. Handbook of Clinical Neurology, Vol. 9. Vinken PI, Bruyn GW, editors. New York: Elsevier; pp. 217–309.

    Google Scholar 

  • Luster AD. 1998. Chemokines: Chemotactic cytokines that mediate inflammation. N Engl J Med 338: 436–445.

    Article  CAS  PubMed  Google Scholar 

  • Maeda A, Sobel RA. 1996. Matrix metalloproteinases in the normal human central nervous system, microglia nodules and multiple sclerosis lesions. J Neuropathol Exp Neurol 55: 300–309.

    Article  CAS  PubMed  Google Scholar 

  • Mahad DJ, Trebst C, Kivisäkk P, Staugaitis SM, Tucky B, et al. 2004. Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and III multiple sclerosis lesions. J Neuropathol Exp Neurol 63: 262–273.

    Article  CAS  PubMed  Google Scholar 

  • Marburg O. 1906. Die sogenannte “akute Multiple Sklerose.” Jahrb Psychiatrie 27: 211–312.

    Google Scholar 

  • Marrosu MG, Muntoni F, Murru MR, Costa G, Oischedda MP, et al. 1992. HLA-DQB1 genotype in Sardinian multiple sclerosis: Evidence for a key role of DQB1 *0201 and *0302 alleles. Neurology 42: 883–886.

    Article  CAS  PubMed  Google Scholar 

  • McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, et al. 2001. Recommended diagnostic criteria for multiple sclerosis. Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • McDonald WI, Miller DH. 1996. Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46: 373–378.

    Article  PubMed  Google Scholar 

  • McDonough J, Dutta R, Gudz T, et al. 2003. Decreases in GABA and mitochondrial genes are implicated in MS cortical pathology through microarray analysis of postmortem MS cortex. Soc Neurosci Abstr 213.212.

    Google Scholar 

  • Menard A, Pierig R, Pelletier J, Bensa P, Belliveau J, et al. 1998. Detection of a gliotoxic activity in the cerebrospinal fluid from multiple sclerosis patients. Neurosci Lett 245: 49–52.

    Article  CAS  PubMed  Google Scholar 

  • Merrill JE. 1992. Proinflammatory and antiinflammatory cytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome. J Immunother 12: 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Miller DH, Kesselring J, McDonald WI, Paty DW, Thompson AJ. 1997. Magnetic resonance in multiple sclerosis. Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, et al. 1999. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5: 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Mojon D, Fujihara K, Hirano M, Miller C, Lincoff N, et al. 1999. Leber's hereditary optic neuropathy mitochondrial DNA mutations in familial multiple sclerosis. Graefes Arch Clin Exp Ophtalmol 237: 348–350.

    Article  CAS  Google Scholar 

  • Mussini JM, Hauw JJ, Escourolle R. 1977. Immunofluorescence studies of intra cytoplasmatic immunoglobulin binding lymphoid cells in the central nervous system. Report of 32 cases including 19 multiple sclerosis. Acta Neuropathol (Berl) 40: 227–232.

    CAS  Google Scholar 

  • Narayanan D, De Stefano N, Francis GS, Arnoutelis R, Caramanos Z, et al. 2001. Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 248: 979–986.

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Medana I, Bauer J, Lassmann H. 2002. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 25: 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Niehaus A, Shi J, Grzenkowski M, Diers-Fenger M, Hartung HP, et al. 2000. Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: Implications for remyelination. Ann Neurol 48: 362–371.

    Article  CAS  PubMed  Google Scholar 

  • Oksenberg JR, Panzara MA, Begovich AB, Mitchell D, Erlich HA, et al. 1993. Selection for T-cell receptor V beta-D beta-J beta gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362: 68–70.

    Article  CAS  PubMed  Google Scholar 

  • Oldstone MB, Southern PJ. 1993. Trafficking of activated cytotoxic T lymphocytes into the central nervous system: Use of a transgenic model. J Neuroimmunol 46: 25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olerup O, Hillert J. 1991. HLA class II-associated susceptibility in multiple sclerosis. A critical evaluation. Tissue Antigens 38: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Olsson T, Dahlman I, Wallstrom E, Weissert R, Piehl F. 2000. Genetics of rat neuroinflammation. J Neuroimmunol 107: 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Olsson T, Zhi WW, Höjeberg B, Kostulas V, Yu-Ping J, et al. 1990. Autoreactive T lymphocytes in multiple sclerosis determined by secretion of interferon-γ. J Clin Invest 86: 981–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens T. 2003. The enigma of multiple sclerosis: Inflammation and neurodegeneration causes heterogenous dysfunction and damage. Curr Opin Neurol 16: 259–265.

    Article  PubMed  Google Scholar 

  • Owens T, Wekerle H, Antel J. 2001. Genetic models for CNS inflammation. Nat Med 7: 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Panitch HS, Hirsch RL, Haley AS, Johnson KP. 1987. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1: 893–895.

    Article  CAS  PubMed  Google Scholar 

  • Pender MP. 1998. Genetically determined failure of activation-induced apoptosis of autoreactive T cells as a cause of multiple sclerosis. Lancet 351: 978–981.

    Article  CAS  PubMed  Google Scholar 

  • Pender MP, Nguyen KB, McCombe PA, Kerr JF. 1991. Apoptosis in the nervous system in experimental allergic encephalomyelitis. J Neurol Sci 104: 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Peterson JW, Bo L, Mork S, Chang A, Trapp BD. 2001. Transected neurites, apoptotic neurons and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50: 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Petty MA, Wettstein JG. 1999. White matter ischemia. Brain Res Rev 31: 58–64.

    Article  CAS  PubMed  Google Scholar 

  • Piddlesden SJ, Storch M, Hibbs M, Freeman AM, Lassmann H, et al. 1994. Soluble recombinant complement receptor 1 inhibits inflammation and demyelination in antibody-mediated demyelinating experimental allergic encephalomyelitis. J Immunol 152: 5477–5484.

    CAS  PubMed  Google Scholar 

  • Pitt D, Werner P, Raine CS. 2000. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6: 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Poser CM, Paty DW, Schinberg L, McDonald WI, Davis FA, et al. 1983. New diagnostic criteria for multiple sclerosis: Guidelines for research protocols. Ann Neurol 13: 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Prineas JW, Graham JS. 1981. Multiple sclerosis: Capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 10: 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES. 1993b. Multiple sclerosis: Remyelination of nascent lesions. Ann Neurol 33: 137–151.

    Article  CAS  PubMed  Google Scholar 

  • Prineas JW, Barnard RO, Revesz T, Kwon EE, Sharer L, et al. 1993a. Multiple sclerosis. Pathology of recurrent lesions. Brain 116: 681–693.

    Article  PubMed  Google Scholar 

  • Prineas JW, Kwon EE, Cho ES, Sharer LR. 1984. Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. Ann N Y Acad Sci 436: 11–32.

    Article  CAS  PubMed  Google Scholar 

  • Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, et al. 2001. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50: 646–657.

    Article  CAS  PubMed  Google Scholar 

  • Prineas JW, Kwon EE, Goldenberg PZ, Ilyas AA, Quarles RH, et al. 1989. Multiple sclerosis. Oligodendrocyte proliferation and differentiation in fresh lesions. Lab Invest 61: 489–503.

    CAS  PubMed  Google Scholar 

  • Probert L, Eugster HP, Akassoglou K, Bauer J, Frei K, et al. 2000. TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain 123: 2005–2019.

    Article  PubMed  Google Scholar 

  • Raine CS, Scheinberg L, Waltz JM. 1981. Multiple sclerosis: Oligodendrocyte survival and proliferation in an active established lesion. Lab Invest 45: 534–546.

    CAS  PubMed  Google Scholar 

  • Ransohoff RM. 1999. Mechanisms of inflammation in MS tissue: Adhesion molecules and chemokines. J Neuroimmunol 98: 57–68.

    Article  CAS  PubMed  Google Scholar 

  • Redford EJ, Kapoor R, Smith KJ. 1997. Nitric oxide donors reversibly block axonal conduction: Demyelinated axons are especially susceptible. Brain 120: 2149–2157.

    Article  PubMed  Google Scholar 

  • Remlinger P. 1928. Les paralysies due traitment antirebique. Ann Insitute Pasteur 55 (Suppl.): 35–68.

    Google Scholar 

  • Rindfleisch E. 1863. Histologisches Detail zur grauen Degeneration von Gehirn und Rückenmark. Arch Pathol Anat Physiol Klin Med (Virchow) 26: 474–483.

    Article  Google Scholar 

  • Rivers TM, Sprunt DH, Berry GP. 1933. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58: 39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rovaris M, Filippi M. 2000. Contrast enhancement and the acute lesion in multiple sclerosis. Neuroimaging Clin N Am 10: 705–716.

    CAS  PubMed  Google Scholar 

  • Sander M. 1898. Hirnrindenbefunde bei multipler Sklerose. Monatsschr. F Psych u Neurol 4: 429–436.

    Google Scholar 

  • Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, et al. 1996. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 13: 464–468.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger H. 1909. Zur Frage der akuten multiplen Sklerose und der encephalomyelitis disseminata im Kindesalter. Arb Neurol Inst (Wien) 17: 410–432.

    Google Scholar 

  • Schmied M, Breitschopf H, Gold R, Zischler H, Rothe G, et al. 1993. Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis: Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am J Pathol 143: 446–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selmaj K, Raine CS, Cannella B, Brosnan CF. 1991. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87: 949–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. 2004. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14: 164–174.

    Article  PubMed  Google Scholar 

  • Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, et al. 2000a. Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J Neuroimmunol 108: 192–200.

    Article  CAS  PubMed  Google Scholar 

  • Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. 2000b. Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 26: 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, Kapoor R, Felts PA. 1999. Demyelination: The role of reactive oxygen and nitrogen species. Brain Pathol 9: 69–92.

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, Kapoor R, Hall SM, Davies M. 2001. Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 49: 470–476.

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, Lassmann H. 2002. The role of nitric oxide in multiple sclerosis. Lancet Neurol 1: 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Smith T, Groom A, Zhu B, Turski L. 2000. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6: 62–66.

    Article  CAS  PubMed  Google Scholar 

  • Sobel RA, Mitchell ME, Fondren G. 1990. Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol 136: 1309–1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, et al. 1999. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103: 807–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer TA. 1994. Traffic signals for lymphocyte recirculation and leucocyte emigration: The multistep paradigm. Cell 76: 301–314.

    Article  CAS  PubMed  Google Scholar 

  • Storch MK, Piddlesden S, Haltia M, Iivanainen M, Morgan P, et al. 1998a. Multiple sclerosis: In situ evidence for antibody and complement mediated demyelination. Ann Neurol 43: 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Storch MK, Stefferl A, Brehm U, Weissert R, Wallström E, et al. 1998b. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8: 681–694.

    Article  CAS  PubMed  Google Scholar 

  • Storch MK, Weissert R, Stefferl A, Birnbacher R, Wallstrom E, et al. 2002. MHC gene related effects on microglia and macrophages in experiemntal autoimmune encephalomyelitis determine the extent of axonal injury. Brain Pathol 12: 287–299.

    Article  CAS  PubMed  Google Scholar 

  • Stys PK. 1998. Anoxic and ischemic injury of myelinated axons in CNS white matter: From mechanistic concepts to therapies. J Cereb Blood Flow Metab 18: 2–25.

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Wekerle H. 1986. Ia-restricted encephalitogenic T lymphocytes mediating EAE lyse autoantigen-presenting astrocytes. Nature 320: 70–72.

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, et al. 2001. Myelin antigen specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166: 7579–7587.

    Article  CAS  PubMed  Google Scholar 

  • Sundvall M, Jirholt J, Yang HT, Jansson L, Engsröm A, et al. 1995. Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nat Genet 10: 313–317.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Andrews JM, Waltz JM, Terry RD. 1969. Ultrastructura studies of multiple sclerosis. Lab Invest 20: 444–454.

    CAS  PubMed  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S. et al. 1998. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Trebst C, Sorensen TL, Kivisakk P, Cathcart MK, Hesselgesser J, et al. 2001. CCR1+/CCR5+mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 159: 1701–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trebst C, Staugaitis SM, Kivisäkk P, Mahad D, Cathcart MK, et al. 2003. CC chemokine receptor 8 in the central nervous system is associated with phagocytic macrophages. Am J Pathol 162: 427–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tubridy N, Behan PO, Capildeo R, Chaudhuri A, Forbes R, et al. 1999. The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology 53: 466–472.

    Article  CAS  PubMed  Google Scholar 

  • Ulvestad E, Williams K, Vedeler C, Antel J, Nyland H, et al. 1994. Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG. J Neurol Sci 121: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Van Walderveen MA, Kamphorst W, Scheltens P, van Wasberge JH, Ravid R, et al. 1998. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50: 1282–1288.

    Article  CAS  PubMed  Google Scholar 

  • Washington R, Burton J, Todd RF 3rd, Newman W, Dragovic L, et al. 1994. Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis. Ann Neurol 35: 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, et al. 1998. MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 102: 1265–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R. 1986. Cellular immune reactivity within the CNS. Trends Neurosci 9: 271–277.

    Article  Google Scholar 

  • Werner P, Pitt P, Raine CS. 2001. Multiple sclerosis: Altered glutamate homeostasis in lesions orrelates with oligodendrocyte and axonal damage. Ann Neurol 50: 169–180.

    Article  CAS  PubMed  Google Scholar 

  • White CA, Nguyen KB, Pender MP. 2000. B cell apoptosis in the central nervous system in experimental autoimmune encephalomyelitis: Roles of B cell CD95, CD95L and Bcl-2 expression. J Autoimmun 14: 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Whetten-Goldstein K, Sloan EA, Goldstein LB, Kulas ED (1998). A comprehensive assessment of the cost of multiple sclerosis in the United States. Multiple sclerosis 4: 419-425.

    Article  CAS  PubMed  Google Scholar 

  • Willenborg DO, Staykova MA, Cowden WB. 1999. Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: A review. J Neuroimmunol 100: 21–35.

    Article  CAS  PubMed  Google Scholar 

  • Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, et al. 1995. Expression of costimulatory molecules B7–1 (CD80), B7–2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 182: 1985–1996.

    Article  CAS  PubMed  Google Scholar 

  • Wolswijk G. 2000. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 123: 105–115.

    Article  PubMed  Google Scholar 

  • Wolswijk G. 2002. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125: 338–349.

    Article  PubMed  Google Scholar 

  • Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L. 1992. Prevention of experimental autoimmune encephalomyelitis by antibodies against a4β1 integrin. Nature 356: 63–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lassmann, H. (2007). Multiple Sclerosis and Autoimmune Encephalomyelitis. In: Lajtha, A., Youdim, M.B.H., Riederer, P., Mandel, S.A., Battistin, L. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30377-2_18

Download citation

Publish with us

Policies and ethics