Skip to main content

Abstract

Certain patterns of neuronal activities induce changes in the efficacy of synaptic transmission. These phenomena are called synaptic plasticity, and assumed as a physiological basis for learning and memory. The cerebellum provides a powerful experimental paradigm for studying synaptic plasticity. The synaptic circuits of the cerebellum consist of the cerebellar cortex and deep cerebellar nuclei. The cerebellar cortex is a stack of stereotyped circuitry containing only a few types of neurons. Besides, the pattern of projections between the cerebellar cortex, deep cerebellar nuclei, and related brain regions is relatively simple. This allows an analysis of synapses between definitely identified neuronal types. The cerebellum is shown to be important for some sorts of motor learning. Thus, one can pursue the physiological significance of cerebellar synaptic plasticity at the behavioral level, using motor learning tasks. To date, various forms of synaptic plasticity have been demonstrated at distinct cerebellar synapses. In this chapter, we review some representative forms of cerebellar synaptic plasticity and discuss their possible mechanisms and physiological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPAR:

(RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptor

BC:

basket cell

CB1R:

cannabinoid receptor

CF:

climbing fiber

CRF:

corticotrophin-releasing factor

DAG:

diacylglycerol

DCN:

deep cerebellar nuclei

DCNN:

deep cerebellar nuclear neuron

DSE:

depolarization-induced suppression of excitation

DSI:

depolarization-induced suppression of inhibition

EPSPs:

excitatory postsynaptic potentials

ERK1/2:

extracellular signal-regulated kinase

GC:

granule cell

GRIP:

glutamate receptor-interacting protein

IN:

interneuron

IP3R:

IP3 receptor

IP3 :

inositol trisphosphate

IPSPs:

inhibitory postsynaptic potentials

LTD:

long-term depression

LTP:

long-term potentiation

MEK1/2:

mitogen-activated protein kinase

MF:

mossy fiber

mGluR1:

type-1 metabotropic glutamate receptor

NMDAR:

N-methyl-D-aspartate-type ionotropic glutamate receptor

OKR:

optokinetic reflex

PC:

Purkinje cell

PF:

parallel fiber

PKA:

protein kinase A

PKC:

protein kinase C

PPD:

paired-pulse depression

PPF:

paired-pulse facilitation

RP:

rebound potentiation

SC:

stellate cell

sGC:

guanylyl cyclase

STD:

short-term depression

STP:

short-term potentiation

VGCCs:

voltage-gated Ca2+ channels

VOR:

vestibulo-ocular reflex

References

  • Aiba A, Kano M, Chen C, Stanton ME, Fox GD, et al. 1994. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79: 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Aizenman CD, Manis PB, Linden DJ. 1998. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21: 827–835.

    Article  CAS  PubMed  Google Scholar 

  • Atluri PP, Regehr WG. 1996. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 16: 5661–5671.

    CAS  PubMed  Google Scholar 

  • Beierlein M, Regehr WG. 2006. Local interneurons regulate synaptic strength by retrograde release of endocannabinoids. J Neurosci 26: 9935–9943.

    Article  CAS  PubMed  Google Scholar 

  • Boxall AR, Lancaster B, Garthwaite J. 1996. Tyrosine kinase is required for long-term depression in the cerebellum. Neuron 16: 805–813.

    Article  CAS  PubMed  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC. 2002. RIM1alpha is required for presynaptic long-term potentiation. Nature 415: 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Chadderton P, Margrie TW, Hausser M. 2004. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428: 856–860.

    Article  CAS  PubMed  Google Scholar 

  • Chevaleyre V, Takahashi KA, Castillo PE. 2006. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29: 37–76.

    Article  CAS  PubMed  Google Scholar 

  • Chung HJ, Steinberg JP, Huganir RL, Linden DJ. 2003. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300: 1751–1755.

    Article  CAS  PubMed  Google Scholar 

  • Coesmans M, Weber JT, De Zeeuw CI, Hansel C. 2004. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44: 691–700.

    Article  CAS  PubMed  Google Scholar 

  • Crepel F. 1998. Nitric oxide and long-term depression in the cerebellum. Trends Neurosci 21: 63–64.

    CAS  PubMed  Google Scholar 

  • DeZeeuw CI, Yeo CH. 2005. Time and tide in cerebellar memory formation. Curr Opin Neurobiol 15: 667–674.

    Article  CAS  Google Scholar 

  • Duguid IC, Smart TG. 2004. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nat Neurosci 7: 525–533.

    Article  CAS  PubMed  Google Scholar 

  • Endo S, Launey T. 2003a. ERKs regulate PKC-dependent synaptic depression and declustering of glutamate receptors in cerebellar Purkinje cells. Neuropharmacology 45: 863–872.

    Article  CAS  PubMed  Google Scholar 

  • Endo S, Launey T. 2003b. Nitric oxide activates extracellular signal-regulated kinase 1/2 and enhances declustering of ionotropic glutamate receptor subunit 2/3 in rat cerebellar Purkinje cells. Neurosci Lett 350: 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Gittis AH, DuLac S. 2006. Intrinsic and synaptic plasticity in the vestibular system. Curr Opin Neurobiol 16: 385–390.

    Article  CAS  PubMed  Google Scholar 

  • Goto J, Inoue T, Kuruma A, Mikoshiba K. 2006. Short-term potentiation at the parallel fiber-Purkinje cell synapse. Neurosci Res 55: 28–33.

    Article  PubMed  Google Scholar 

  • Hanley JG, Khatri L, Hanson PI, Ziff EB. 2002. NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 34: 53–67.

    Article  CAS  PubMed  Google Scholar 

  • Hansel C, Linden DJ. 2000. Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron 26: 473–482.

    Article  CAS  PubMed  Google Scholar 

  • Hansel C, DeJeu M, Belmeguenai A, Houtman SH, Buitendijk GH, et al. 2006. Alpha-CaMKII is essential for cerebellar LTD and motor learning. Neuron 51: 835–843.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Kano M. 1998. Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum. J Physiol 506 (Pt 2): 391–405.

    Article  CAS  PubMed  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Kano M. 2007. Endocannabinoids and synaptic function in the CNS. Neuroscientist 13: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Launey T, Mikawa S, Torashima T, Yanagihara D, et al. 2003. New role of delta2-glutamate receptors in AMPA receptor trafficking and cerebellar function. Nat Neurosci 6: 869–876.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Miyazaki T, Kakegawa W, Matsuda S, Mishina M, et al. 2005a. Rescue of abnormal phenotypes of the delta2 glutamate receptor-null mice by mutant delta2 transgenes. EMBO Reports 6: 90–95.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Pang Z, Bao D, Miyazaki T, Li L, et al. 2005b. Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8: 1534–1541.

    Article  CAS  PubMed  Google Scholar 

  • Hirono M, Yoshioka T, Konishi S. 2001. GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci 4: 1207–1216.

    Article  CAS  PubMed  Google Scholar 

  • Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, et al. 2000. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288: 1832–1835.

    Article  CAS  PubMed  Google Scholar 

  • Iino M. 1990. Calcium release mechanisms in smooth muscle. Jpn J Pharmacol 54: 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Kato K, Kohda K, Mikoshiba K. 1998. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18: 5366–5373.

    CAS  PubMed  Google Scholar 

  • Ito M. 2001. Cerebellar long-term depression: Characterization, signal transduction, and functional roles. Physiol Rev 81: 1143–1195.

    CAS  PubMed  Google Scholar 

  • Ito M. 2002. The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 3: 896–902.

    Article  CAS  PubMed  Google Scholar 

  • Ito M. 2006. Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78: 272–303.

    Article  PubMed  Google Scholar 

  • Kakegawa W, Kohda K, Yuzaki M. 2007. The delta2 “ionotropic” glutamate receptor functions as a non-ionotropic receptor to control cerebellar synaptic plasticity. J Physiol (in press).

    Google Scholar 

  • Kakegawa W, Yuzaki M. 2005. A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proc Natl Acad Sci USA 102: 17846–17851.

    Article  CAS  PubMed  Google Scholar 

  • Kano M, Hashimoto K, Tabata T. 2007. Type-1 metabotropic glutamate receptor in cerebellar Purkinje cells: A key molecule responsible for long-term depression, endocannabinoid signaling and synapse formation. Phil Trans R Soc B (in press).

    Google Scholar 

  • Kano M, Rexhausen U, Dreessen J, Konnerth A. 1992. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356: 601–604.

    Article  CAS  PubMed  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, et al. 1995. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81: 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi S, Hirano T. 2000. Suppression of inhibitory synaptic potentiation by presynaptic activity through postsynaptic GABA(B) receptors in a Purkinje neuron. Neuron 27: 339–347.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi SY, Hirano T. 2002. Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons. J Neurosci 22: 3969–3976.

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Fujii H, Gotoh Y, Morooka T, Shimohama S, et al. 1999. Requirement for mitogen-activated protein kinase in cerebellar long term depression. J Biol Chem 274: 13498–13502.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto Y, Fujimichi R, Araishi K, Kawahara S, Kano M, et al. 2002. mGluR1 in cerebellar Purkinje cells is required for normal association of temporally contiguous stimuli in classical conditioning. Eur J Neurosci 16: 2416–2424.

    Article  PubMed  Google Scholar 

  • Kishimoto Y, Kano M. 2006. Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning. J Neurosci 26: 8829–8837.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto Y, Kawahara S, Fujimichi R, Mori H, Mishina M, et al. 2001. Impairment of eyeblink conditioning in GluRdelta2-mutant mice depends on the temporal overlap between conditioned and unconditioned stimuli. Eur J Neurosci 14: 1515–1521.

    Article  CAS  PubMed  Google Scholar 

  • Koekkoek SK, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, et al. 2003. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301: 1736–1739.

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Kakegawa W, Yuzaki M. 2005. Induction of long-term depression and phosphorylation of the delta2 glutamate receptor by protein kinase C in cerebellar slices. Eur J Neurosci 22: 1817–1820.

    Article  PubMed  Google Scholar 

  • Kreitzer AC, Regehr WG. 2001. Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 21: RC174.

    CAS  PubMed  Google Scholar 

  • Kulik A, Nakadate K, Nyiri G, Notomi T, Malitschek B, et al. 2002. Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 15: 291–307.

    Article  PubMed  Google Scholar 

  • Launey T, Endo S, Sakai R, Harano J, Ito M. 2004. Protein phosphatase 2A inhibition induces cerebellar long-term depression and declustering of synaptic AMPA receptor. Proc Natl Acad Sci USA 101: 676–681.

    Article  CAS  PubMed  Google Scholar 

  • Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY. 2003. Reversing cerebellar long-term depression. Proc Natl Acad Sci USA 100: 15989–15993.

    Article  CAS  PubMed  Google Scholar 

  • Lev-Ram V, Wong ST, Storm DR, Tsien RY. 2002. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA 99: 8389–8393.

    Article  CAS  PubMed  Google Scholar 

  • Linden DJ. 2001. The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity, or unitary conductance. Proc Natl Acad Sci USA 98: 14066–14071.

    Article  CAS  PubMed  Google Scholar 

  • Linden DJ. 2003. Neuroscience. From molecules to memory in the cerebellum. Science 301: 1682–1685.

    Article  CAS  PubMed  Google Scholar 

  • Liu SQ, Cull-Candy SG. 2000. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405: 454–458.

    Article  CAS  PubMed  Google Scholar 

  • Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, et al. 2005. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase C beta4 signaling cascade in the cerebellum. J Neurosci 25: 6826–6835.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Launey T, Mikawa S, Hirai H. 2000. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J 19: 2765–2774.

    Article  CAS  PubMed  Google Scholar 

  • Miyata M, Okada D, Hashimoto K, Kano M, Ito M. 1999. Corticotropin-releasing factor plays a permissive role in cerebellar long-term depression. Neuron 22: 763–775.

    Article  CAS  PubMed  Google Scholar 

  • Ohno-Shosaku T, Hashimotodani Y, Maejima T, Kano M. 2005. Calcium signaling and synaptic modulation: Regulation of endocannabinoid-mediated synaptic modulation by calcium. Cell Calcium 38: 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Pugh JR, Raman IM. 2006. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron 51: 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Qiu DL, Knopfel T. 2007. An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber-Purkinje neuron long-term potentiation. J Neurosci 27: 3408–3415.

    Article  CAS  PubMed  Google Scholar 

  • Rancillac A, Crepel F. 2004. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J Physiol 554: 707–720.

    Article  CAS  PubMed  Google Scholar 

  • Rancz EA, Hausser M. 2006. Dendritic calcium spikes are tunable triggers of cannabinoid release and short-term synaptic plasticity in cerebellar Purkinje neurons. J Neurosci 26: 5428–5437.

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. 2002. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci USA 99: 8406–8411.

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti B, Scelfo B, Tempia F, Strata P. 2004. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 42: 973–982.

    Article  CAS  PubMed  Google Scholar 

  • Safo PK, Regehr WG. 2005. Endocannabinoids control the induction of cerebellar LTD. Neuron 48: 647–659.

    Article  CAS  PubMed  Google Scholar 

  • Salin PA, Malenka RC, Nicoll RA. 1996. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16: 797–803.

    Article  CAS  PubMed  Google Scholar 

  • Satake S, Saitow F, Yamada J, Konishi S. 2000. Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nat Neurosci 3: 551–558.

    Article  CAS  PubMed  Google Scholar 

  • Satake S, Song SY, Cao Q, Satoh H, Rusakov DA, et al. 2006. Characterization of AMPA receptors targeted by the climbing fiber transmitter mediating presynaptic inhibition of GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurosci 26: 2278–2289.

    Article  CAS  PubMed  Google Scholar 

  • Shibuki K. 1993. Cerebellar long-term depression enabled by nitric oxide, a diffusible intercellular messenger. Ann N Y Acad Sci 707: 521–523.

    Article  CAS  PubMed  Google Scholar 

  • Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, et al. 1996. Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16: 587–599.

    Article  CAS  PubMed  Google Scholar 

  • Shigemoto R, Abe T, Nomura S, Nakanishi S, Hirano T. 1994. Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12: 1245–1255.

    Article  CAS  PubMed  Google Scholar 

  • Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S. 2006. Memory trace of motor learning shifts trans-synaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139: 767–777.

    Article  CAS  PubMed  Google Scholar 

  • Soler-Llavina GJ, Sabatini BL. 2006. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9: 798–806.

    Article  CAS  PubMed  Google Scholar 

  • Steinberg JP, Huganir RL, Linden DJ. 2004. N-ethylmaleimide-sensitive factor is required for the synaptic incorporation and removal of AMPA receptors during cerebellar long-term depression. Proc Natl Acad Sci USA 101: 18212–18216.

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Araishi K, Hashimoto K, Hashimotodani Y, Van der Putten H, et al. 2004. Ca2+ activity at GABAB receptor constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc Natl Acad Sci USA 101: 16952–16957.

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Kano M. 2007. Cerebellar synaptic plasticity: Cerebellar long-term depression and the underlying signaling cascades (review article in Japanese). Brain Medical 19: 27–33.

    Google Scholar 

  • Tabata T, Kawakami D, Hashimoto K, Kassai H, Yoshida T, et al. 2007. G protein-independent neuromodulatory action of adenosine on metabotropic glutamate signalling in mouse cerebellar Purkinje cells. J Physiol 581: 693–708.

    Article  PubMed  Google Scholar 

  • Tatsukawa T, Chimura T, Miyakawa H, Yamaguchi K. 2006. Involvement of basal protein kinase C and extracellular signal-regulated kinase 1/2 activities in constitutive internalization of AMPA receptors in cerebellar Purkinje cells. J Neurosci 26: 4820–4825.

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Linden DJ. 2000. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25: 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ. 2000. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28: 499–510.

    Article  CAS  PubMed  Google Scholar 

  • Yawata S, Tsuchida H, Kengaku M, Hirano T. 2006. Membrane-proximal region of glutamate receptor delta2 subunit is critical for long-term depression and interaction with protein interacting with C kinase 1 in a cerebellar Purkinje neuron. J Neurosci 26: 3626–3633.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work cited in this chapter was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan (17,700,305; 18,019,022; and 19,045,019 to T.T., 17,023,021 and 17,100,004 to M.K.).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Tabata, T., Kano, M. (2009). Synaptic Plasticity in the Cerebellum. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_6

Download citation

Publish with us

Policies and ethics