Skip to main content

Proteins Involved in the Presynaptic Functions

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract

The proteins specific to the presynaptic terminal have been well-characterized, and a large number of the interactions among these proteins have been elucidated. The roles of some of these proteins in neurotransmitter release and synaptic vesicle recycling can be determined from their interactions, but electrophysiological data suggest that there remain additional steps whose molecular mechanisms are not yet known. In this review, we summarize the characteristics of each presynaptic protein, and we discuss some of the important interactions, including their regulation by Ca2+ and how they participate in the Ca2+-dependent steps of vesicular recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaMKII:

calmodulin kinase II

CSP:

cysteine string protein

NSF:

N-ethylmaleimide-sensitive factor

RRP:

rapidly releasable pool

SNAPs:

soluble NSF-associated proteins

t-SNARE:

target SNARE

V-ATPase:

vacuolar-ATPase

v-SNARE:

vesicular SNARE

VAMP-2:

vesicle-associated membrane protein-2

References

  • Bennett MK, Garcia-Arraras JE, Elferink LA, Peterson K, Fleming AM, et al. 1993. The syntaxin family of vesicular transport receptors. Cell 74: 863–873.

    Article  CAS  PubMed  Google Scholar 

  • Bonanno G, Giambelli R, Raiteri L, Tiraboschi E, Zappettini S, et al. 2005. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J Neurosci 25: 3270–3279.

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD, Clague MJ. 2003. Calcium and calmodulin in membrane fusion. Biochim Biophys Acta 1641: 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD, Morgan A. 2003. Secretory granule exocytosis. Physiol Rev 83: 581–632.

    CAS  PubMed  Google Scholar 

  • Calakos N, Schoch S, Sudhof TC, Malenka RC. 2004. Multiple roles for the active zone protein RIM1a in late stages of neurotransmitter release. Neuron 42: 889–896.

    Article  CAS  PubMed  Google Scholar 

  • Cameron LC, Carvalho RN, Araujo JR, Santos AC, Tauhata SB, et al. 1998. Calcium-induced quenching of intrinsic fluorescence in brain myosin V is linked to dissociation of calmodulin light chains. Arch Biochem Biophys 355: 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, 1998. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24: 307–323.

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Südhof TC. 2005. Alpha-synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123(3): 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Craig AM, Kang Y. 2007. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17: 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Custer KL, Austin NS, Sullivan JM, Bajjalieh SM. 2006. Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 26: 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  • Desnos C, Huet S, Fanget I, Chapuis C, Böttinger C, et al. 2007. Myosin Va mediates docking of secretory granules at the plasma membrane. J Neurosci 27: 10636–10645.

    Article  CAS  PubMed  Google Scholar 

  • Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, et al. 1999. A conformational switch in syntaxin during exocytosis: Role of munc18. EMBO J 18: 4372–4382.

    Article  CAS  PubMed  Google Scholar 

  • Duman JG, Forte JG. 2003. What is the role of SNARE proteins in membrane fusion? Am J Physiol Cell Physiol 285: C237–249.

    CAS  PubMed  Google Scholar 

  • Edelmann L, Hanson PI, Chapman ER, Jahn R. 1995. Synaptobrevin binding to synaptophysin: A potential mechanism for controlling the exocytotic fusion machine. EMBO J 14: 224–231.

    CAS  PubMed  Google Scholar 

  • Evans GJ, Morgan A, Burgoyne RD. 2003. Tying everything together: The multiple roles of cysteine string protein (CSP) in regulated exocytosis. Traffic 4: 653–659.

    Article  CAS  PubMed  Google Scholar 

  • Evans RM, Zamponi GW. 2006. Presynaptic Ca2+ channels-integration centers for neuronal signaling pathways. Trends Neurosci 29: 617–624.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Rapoport M. 2002. The synapsins: Beyond the regulation of neurotransmitter release. Cell Mol Life Sci 59: 589–595.

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, et al. 1998. Tomosyn: A syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20: 905–915.

    Article  CAS  PubMed  Google Scholar 

  • Garner CC, Kindler S, Gundelfinger ED. 2000. Molecular determinants of presynaptic active zones. Curr Opin Neurobiol 10: 321–327.

    Article  CAS  PubMed  Google Scholar 

  • Gillingham AK, Munro S. 2003. Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641: 71–85.

    Article  CAS  PubMed  Google Scholar 

  • Gurkan C, Lapp H, Alory C, Su AI, Hogenesch JB, et al. 2005. Large-scale profiling of Rab GTPase trafficking networks: The membrome. Mol Biol Cell 16: 3847–3864.

    Article  CAS  PubMed  Google Scholar 

  • Gulyás-Kovács A, de Wit H, Milosevic I, Kochubey O, Toonen R, et al. 2007. Munc18–1: Sequential interactions with the fusion machinery stimulate vesicle docking and priming. J Neurosci 27: 8676–8686.

    Article  PubMed  Google Scholar 

  • de Haro L, Ferracci G, Opi S, Iborra C, Quetglas S, et al. 2004. Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. Proc Natl Acad Sci USA 101: 1578–1583.

    Article  CAS  PubMed  Google Scholar 

  • Hasson T. 2003. Myosin VI: Two distinct roles in endocytosis. J Cell Sci 116: 3453–3461.

    Article  CAS  PubMed  Google Scholar 

  • Hata Y, Slaughter CA, Südhof TC. 1993. Synaptic vesicle fuision complex contains unc-18 homologue bound to syntaxin. Nature 366: 347–351.

    Article  CAS  PubMed  Google Scholar 

  • Hibino H, Pironkova R, Onwumere O, Vologodskaina M, Hudspeth AJ, et al. 2002. RIM binding protein (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34: 411–423.

    Article  CAS  PubMed  Google Scholar 

  • Hudmon A, Schulman H. 2002. Neuronal Ca2+/calmodulin-dependent protein kinase II: The role of structure and autoregulation in cellular function. Annu Rev Biochem 71: 473–510.

    Article  CAS  PubMed  Google Scholar 

  • Inoue E, Mochida S, Takagi H, Higa S, Deguchi-Tawarada M, et al. 2006. SAD: A presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 50: 261–275.

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Wang Y, Jefferies K, Qi J, Hinton A, et al. 2005. Structure and regulation of the V-ATPases. J Bioenerg Biomembr 37: 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Janz R, Goda Y, Geppert M, Missler M, Südhof TC. 1999. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron 24: 1003–1016.

    Article  CAS  PubMed  Google Scholar 

  • Junge HJ, Rhee JS, Jahn O, Varoqueaux F, Spiess J, et al. 2004. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118: 389–401.

    Article  CAS  PubMed  Google Scholar 

  • Jurado LA, Chuckalingam PS, Jarrett HW. 1999. Apocalmodulin. Physiol Rev 79: 661–682.

    CAS  PubMed  Google Scholar 

  • Lazzell DR, Belizaire R, Thakur P, Sherry DM, Janz R. 2004. SV2B regulates synaptotagmin 1 by direct interaction. J Biol Chem 279: 52124–52131.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chin LS. 2003. The molecular machinery of synaptic vesicle exocytosis. Cell Mol Life Sci 60: 942–960.

    CAS  PubMed  Google Scholar 

  • Libby RT, Lillo C, Kitamoto J, Williams DS, Steel KP. 2004. Myosin Va is required for normal photoreceptor synaptic activity. J Cell Sci 117: 4509–4515.

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Schulman H, Cline H. 2002. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3: 175–190.

    Article  CAS  PubMed  Google Scholar 

  • Lupashin V, Sztul E. 2005. Golgi tethering factors. Biochim Biophys Acta 1744: 325–339.

    Article  CAS  PubMed  Google Scholar 

  • Margittai M, Widengren J, Schweinberger E, Schroder GF, Felekyan S, et al. 2003. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc Natl Acad Sci USA 100: 15516–15521.

    Article  CAS  PubMed  Google Scholar 

  • McMahon HT, Bolshakov VY, Janz R, Hammer RE, Siegelbaum SA, et al. 1996. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc Natl Acad Sci USA 93: 4760–4764.

    Article  CAS  PubMed  Google Scholar 

  • Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, et al. 2003. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423: 939–948.

    Article  CAS  PubMed  Google Scholar 

  • Neuwald AF. 1999. The hexamerization domain of N-ethylmaleimide-sensitive factor: Structural clues to chaperone function. Structure 7: R19–R23.

    Article  CAS  PubMed  Google Scholar 

  • Nomura K, Ohyama A, Komiya Y, Igarashi M. 2003. Minimal residues in linker domain of syntaxin 1A required for binding affinity to Ca2+/calmodulin-dependent protein kinase II. J Neurosci Res 72: 198–202.

    Article  CAS  PubMed  Google Scholar 

  • Ohyama A, Hosaka K, Komiya Y, Akagawa K, Yamauchi E, et al. 2002. Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A. J Neurosci 22: 3342–3351.

    CAS  PubMed  Google Scholar 

  • Osten P, Srivastava S, Inman GJ, Vilim FS, Khatri L, et al. 1998. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21: 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Quetglas S, Iborra C, Sasakawa N, De Haro L, Kumakura K, et al. 2002. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J 21: 3970–3979.

    Article  CAS  PubMed  Google Scholar 

  • Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA. 2000. Class V myosins. Biochim Biophys Acta 1496: 36–51.

    Article  CAS  PubMed  Google Scholar 

  • Rettig J, Neher E. 2002. Emerging roles of presynaptic protein in Ca2+-triggered exocytosis. Science 298: 781–785.

    Article  CAS  PubMed  Google Scholar 

  • Richmond JE, Weimer RM, Jorgensen EM. 2001. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412: 338–341.

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, Sudhof TC. 2002. SNAREs and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3: 641–653.

    CAS  PubMed  Google Scholar 

  • Sakaba T, Neher E. 2001. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32: 1119–1131.

    Article  CAS  PubMed  Google Scholar 

  • Schnell E, Nicoll RA. 2001. Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J Neurophysiol 85: 1498–1501.

    CAS  PubMed  Google Scholar 

  • Schoch S, Gundelfinger ED. 2006. Molecular organization of the presynaptic active zone. Cell Tissue Res 326: 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Tareste DC, Paumet F, Rothman JE, Media. TJ2007. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128: 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Sieber JJ, Willig KI, Kutzner C, Gerding-Reimers C, Harke B, et al. 2007. Anatomy and dynamics of a suparmolecular membrane protein cluster. Science 317: 1072–1076.

    Article  CAS  PubMed  Google Scholar 

  • Stojilkovic SS. 2005. Ca2+-regulated exocytosis and SNARE function. Trends Endocrinol Metabol 16: 81–83.

    Article  CAS  Google Scholar 

  • Südhof TC. 2002. Synaptotagmins: Why so many? J Biol Chem 277: 7629–7632.

    Article  PubMed  Google Scholar 

  • Südhof TC. 2004. The synaptic vesicle cycle. Annu Rev Neurosci 27: 109–147.

    Article  Google Scholar 

  • Sun J, Bronk P, Liu X, Han W, Südhof TC. 2006. Synapsins regulate use-dependent synaptic plasticity in the calyx of Held by a Ca2+/calmodulin-dependent pathway. Proc Natl Acad Sci USA 103: 2880–2885.

    Article  CAS  PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, et al. 2006. Molecular anatomy of a trafficking organelle. Cell 127: 831–846.

    Article  CAS  PubMed  Google Scholar 

  • Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, et al. 2004. Physical and functional interaction of the active zone proteins, CAST, RIM1, and bassoon, in neurotransmitter release. J Cell Biol 164: 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Maximov A, Shin OH, Dai H, Rizo J, et al. 2006. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126: 1175–1187.

    Article  CAS  PubMed  Google Scholar 

  • Tilelli CQ, Martins AR, Larson RE, Garcia-Cairasco N. 2003. Immunohistochemical localization of myosin Va in the adult rat brain. Neuroscience 121: 573–586.

    Article  CAS  PubMed  Google Scholar 

  • Tokumaru H, Umayahara K, Pellegrini LL, Ishizuka T, Saisu H, et al. 2001. SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 104(3): 421–432.

    Article  CAS  PubMed  Google Scholar 

  • Toonen RF, Kochubey O, de Wit H, Gulyas-Kovacs A, Konijnenburg B, et al. 2006. Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J 25: 3725–3737.

    Article  CAS  PubMed  Google Scholar 

  • Trinchese F, Rao M, Peterhoff C, Kumar A, Liu S, et al. 2003. Myosin Va is required for neurotransmitter release during basal synaptic transmission and synaptic plasticity. Mol Biol Cell 14: 179a.

    Google Scholar 

  • Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T. 2002. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 295: 2276–2279.

    Article  CAS  PubMed  Google Scholar 

  • Ushkaryov YA, Volynski KE, Ashton AC. 2004. The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon 43: 527–542.

    Article  CAS  PubMed  Google Scholar 

  • Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112: 467–480.

    Article  CAS  PubMed  Google Scholar 

  • Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, et al. 2000. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287: 864–867.

    Article  CAS  PubMed  Google Scholar 

  • Wadel K, Neher E, Sakaba T. 2007. The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53: 563–575.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Okamoto M, Schmitz F, Hofmann K, Südhof TC. 1997. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388: 593–598.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Nomura K, Ohyama A, Ishikawa R, Komiya Y, et al. 2005. Myosin-Va regulates exocytosis through Ca2+-dependent binding of syntaxin-1A. Mol Biol Cell 16: 4519–4530.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Tanaka M, Mizoguchi A, Hirata Y, Ishizaki H, et al. 2002. A GDP/GTP exchange protein for the Rab3 small G protein family up-regulates a postdocking step of synaptic exocytosis in central synapses. Proc Natl Acad Sci USA 99: 14536–14541.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was in part supported by grants from the Ministry of Education, Culture, Science, Sports, and Technology of Japan (#16044216; #17023019) and by grants to M.I. from the Project Promoting Program and the Strategic Research Program of the Niigata University. This article is dedicated to the late Yoshiaki Komiya (Emeritus Professor, Gunma University) for his encouragement when M.I. started in this field of research.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Igarashi, M., Ohko, K. (2009). Proteins Involved in the Presynaptic Functions. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_5

Download citation

Publish with us

Policies and ethics