Skip to main content
  • 1465 Accesses

Abstract

Calcium ions (Ca2+) are ubiquitous second messengers that play an important role in many physiological events including secretion, development, fertilization, and gene expression. However, the proper spatio-temporal regulation of the intracellular Ca2+ concentration is necessary to fulfill the function, and disturbed Ca2+ signaling is known to cause cell death and pathological disease. Inositol 1, 4, 5-trisphosphate receptor (IP3R) is a Ca2+ channel localized on the endoplasmic reticulum (ER) in the many types of cells including neurons, and is a key player to generate the proper intracellular Ca2+ dynamics for cell function. Disruption of IP3Rs leads to various physiological defects including neural development and neural plasticity. Moreover, several lines of evidence indicate that the altered IP3R activity causes supranormal Ca2+ homeostasis leading to various pathological diseases. In this review, we describe how IP3R activity is properly regulated by myriads of associated proteins, and discuss the physiological role of IP3Rs especially in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTD:

C-terminal domain

HAP1A:

Htt-associated protein-1A

Htt:

Huntingtin

IP3R:

Inositol 1, 4, 5-trisphosphate receptor

LFS:

low-frequency stimulation

LTD:

long-term depression

LTP:

long-term potentiation

MSNs:

medium spiny neurons

NMDA:

N-methyl-d-aspartate

PTP:

permeability transient pore

References

  • Aiba A, Kano M, Chen C, Stanton ME, Fox GD, et al. 1994. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79: 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Alford S, Frenguelli BG, Schofield JG, Collingridge GL. 1993. Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol 469: 693–716.

    PubMed  CAS  Google Scholar 

  • Ando H, Mizutani A, Matsu-ura T, Mikoshiba K. 2003. IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem 278: 10602–10612.

    Article  PubMed  CAS  Google Scholar 

  • Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, et al. 2002. ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J 21: 835–844.

    Article  PubMed  CAS  Google Scholar 

  • Barbara JG. 2002. IP3-dependent calcium-induced calcium release mediates bidirectional calcium waves in neurones: Functional implications for synaptic plasticity. Biochim Biophys Acta 1600: 12–18.

    PubMed  CAS  Google Scholar 

  • Berridge MJ. 1993. Inositol trisphosphate and calcium signalling. Nature 361: 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev 4: 517–529.

    Article  CAS  Google Scholar 

  • Bezprozvanny I, Hayden MR. 2004. Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun 322: 1310–1317.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE. 1991. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, et al. 2003. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5: 1051–1061.

    Article  PubMed  Google Scholar 

  • Boehning D, van Rossum DB, Patterson RL, Snyder SH. 2005. A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci USA 102: 1466–1471.

    Article  PubMed  CAS  Google Scholar 

  • Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, et al. 1997. Homer: A protein that selectively binds metabotropic glutamate receptors. Nature 386: 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Cameron AM, Nucifora FC Jr, Fung ET, Livingston DJ, Aldape RA, et al. 1997. FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J Biol Chem 272: 27582–27588.

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Luo T, Wellington C, Metzler M, McCutcheon K, et al. 1999. Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 72: 1890–1898.

    Article  PubMed  CAS  Google Scholar 

  • Choe CU, Harrison KD, Grant W, Ehrlich BE. 2004. Functional coupling of chromogranin with the inositol 1,4,5-trisphosphate receptor shapes calcium signaling. J Biol Chem 279: 35551–35556.

    Article  PubMed  CAS  Google Scholar 

  • Csordas G, Thomas AP, Hajnoczky G. 1999. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18: 96–108.

    Article  PubMed  CAS  Google Scholar 

  • Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, et al. 1995. Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269: 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Finch EA, Augustine GJ. 1998. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396: 753–756.

    Article  PubMed  CAS  Google Scholar 

  • Finch EA, Turner TJ, Goldin SM. 1991. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252: 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO. 2007. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87: 593–658.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Matsumoto M, Igarashi K, Kato H, Mikoshiba K. 2000. Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. Learn Mem 7: 312–320.

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu K, Bannai H, Zhang S, Nakamura H, Inoue T, et al. 2004. Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites. J Biol Chem 279: 48976–48982.

    Article  PubMed  CAS  Google Scholar 

  • Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, et al. 1989. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342: 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, et al. 2005. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 309: 2232–2234.

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Belan PV, Petersen OH. 1996. Inositol trisphosphate and cyclic ADP-ribosemediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84: 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann J, Blum R, Kovalchuk Y, Adelsberger H, Kuner R, et al. 2004. Distinct roles of Galpha(q) and Galpha11 for Purkinje cell signaling and motor behavior. J Neurosci 24: 5119–5130.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi MK, Ames HM, Hayashi Y. 2006. Tetrameric hub structure of postsynaptic scaffolding protein homer. J Neurosci 26: 8492–8501.

    Article  PubMed  CAS  Google Scholar 

  • Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, et al. 2005. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120: 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Hisatsune C, Kuroda Y, Akagi T, Torashima T, Hirai H, et al. 2006. Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production. J Neurosci 26: 10916–10924.

    Article  PubMed  CAS  Google Scholar 

  • Iino M. 1990. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95: 1103–1122.

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kato K, Kohda K, Mikoshiba K. 1998. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18: 5366–5373.

    PubMed  CAS  Google Scholar 

  • Iwai M, Tateishi Y, Hattori M, Mizutani A, Nakamura T, et al. 2005. Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J Biol Chem 280: 10305–10317.

    Article  PubMed  CAS  Google Scholar 

  • Jacob SN, Choe CU, Uhlen P, DeGray B, Yeckel MF, et al. 2005. Signaling microdomains regulate inositol 1,4,5-trisphosphate-mediated intracellular calcium transients in cultured neurons. J Neurosci 25: 2853–2864.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe DB, Brown TH 1994. Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J Neurophysiol 72: 471–474.

    PubMed  CAS  Google Scholar 

  • Kato A, Ozawa F, Saitoh Y, Hirai K, Inokuchi K. 1997. vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 412: 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Kleppisch T, Voigt V, Allmann R, Offermanns S. 2001. G(alpha)q-deficient mice lack metabotropic glutamate receptor-dependent long-term depression but show normal long-term potentiation in the hippocampal CA1 region. J Neurosci 21: 4943–4948.

    PubMed  CAS  Google Scholar 

  • Larkum ME, Watanabe S, Nakamura T, Lasser-Ross N, Ross WN. 2003. Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons. J Physiol 549: 471–488.

    Article  PubMed  CAS  Google Scholar 

  • Li SH, Li XJ. 2004. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20: 146–154.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzon P, Zacchetti D, Codazzi F, Fumagalli G, Meldolesi J, et al. 1995. Ca2+ waves in PC12 neurites: A bidirectional, receptor-oriented form of Ca2+ signaling. The Journal of cell biology 129: 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Maranto AR 1994. Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium. J Biol Chem 269: 1222–1230.

    PubMed  CAS  Google Scholar 

  • Marksteiner J, Lechner T, Kaufmann WA, Gurka P, Humpel C, et al. 2000. Distribution of chromogranin B-like immunoreactivity in the human hippocampus and its changes in Alzheimer’s disease. Acta Neuropathol 100: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Inooka G, Li YX, Miyashita Y, Kasai H. 1993. Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas. EMBO J 12: 3017–3022.

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Petersen OH. 1994. Delay in granular fusion evoked by repetitive cytosolic Ca2+ spikes in mouse pancreatic acinar cells. Cell calcium 16: 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, et al. 1996. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379: 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Maximov A, Tang TS, Bezprozvanny I. 2003. Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons. Mol Cell Neurosci 22: 271–283.

    Article  PubMed  CAS  Google Scholar 

  • Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA. 1991. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349: 709–713.

    Article  PubMed  CAS  Google Scholar 

  • Mignery GA, Newton CL, Archer BT III, Sudhof TC. 1990. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 265: 12679–12685.

    PubMed  CAS  Google Scholar 

  • Miller LD, Petrozzino JJ, Golarai G, Connor JA. 1996. Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. J Neurophysiol 76: 554–562.

    PubMed  CAS  Google Scholar 

  • Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, et al. 2000. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28: 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Morikawa H, Imani F, Khodakhah K, Williams JT. 2000. Inositol 1,4,5-triphosphate-evoked responses in midbrain dopamine neurons. J Neurosci 20: RC103.

    PubMed  CAS  Google Scholar 

  • Mundorf ML, Hochstetler SE, Wightman RM. 1999. Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J Neurochem 73: 2397–2405.

    Article  PubMed  CAS  Google Scholar 

  • Mundorf ML, Troyer KP, Hochstetler SE, Near JA, Wightman RM. 2000. Vesicular Ca(2+) participates in the catalysis of exocytosis. J Biol Chem 275: 9136–9142.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yuan J. 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150: 887–894.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, et al. 2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98–103.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Barbara JG, Nakamura K, Ross WN. 1999. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24: 727–737.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Nakamura K, Lasser-Ross N, Barbara J.-G, Sandler VM, et al. 2000. Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 20: 8365–8376.

    PubMed  CAS  Google Scholar 

  • Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, et al. 1995. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81: 811–823.

    Article  PubMed  CAS  Google Scholar 

  • Newton CL, Mignery GA, Sudhof TC. 1994. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269: 28613–28619.

    PubMed  CAS  Google Scholar 

  • Nguyen T, Chin WC, Verdugo P. 1998. Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature 395: 908–912.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Tomimoto H, Suenaga T, Nakamura S, Namba Y, et al. 1994. Synaptophysin and chromogranin A immunoreactivities of Lewy bodies in Parkinson’s disease brains. Brain Res 634: 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K. 2000. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408: 584–588.

    Article  PubMed  CAS  Google Scholar 

  • Okubo Y, Kakizawa S, Hirose K, Iino M. 2001. Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage-dependent Ca(2+) influx in Purkinje cells. Neuron 32: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Okubo Y, Kakizawa S, Hirose K, Iino M. 2004. Cross talk between metabotropic and ionotropic glutamate receptor-mediated signaling in parallel fiber-induced inositol 1,4,5-trisphosphate production in cerebellar Purkinje cells. J Neurosci 24: 9513–9520.

    Article  PubMed  CAS  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, et al. 2002. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5: 731–736.

    PubMed  CAS  Google Scholar 

  • Patterson RL, Boehning D, Snyder SH. 2004a. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73: 437–465.

    Article  PubMed  CAS  Google Scholar 

  • Patterson RL, van Rossum DB, Barrow RK, Snyder SH. 2004b. RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci USA 101: 2328–2332.

    Article  PubMed  CAS  Google Scholar 

  • Patterson RL, van Rossum DB, Kaplin AI, Barrow RK, Snyder SH. 2005. Inositol 1,4,5-trisphosphate receptor/GAPDH complex augments Ca2+ release via locally derived NADH. Proc Natl Acad Sci USA 102: 1357–1359.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, et al. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763–1766.

    Article  PubMed  CAS  Google Scholar 

  • Ross WN, Nakamura T, Watanabe S, Larkum M, Lasser-Ross N. 2005. Synaptically activated Ca2+ release from internal stores in CNS neurons. Cell Mol Neurobiol 25: 283–295.

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC. 2002. Lessons from animal models of Huntington’s disease. Trends Genet 18: 202–209.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini BL, Oertner TG, Svoboda K. 2002. The life cycle of Ca(2+) ions in dendritic spines. Neuron 33: 439–452.

    Article  PubMed  CAS  Google Scholar 

  • Seymour-Laurent KJ, Barish ME. 1995. Inositol 1,4,5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine- and caffeine-induced calcium release in cultured mouse hippocampal neurons. J Neurosci 15: 2592–2608.

    PubMed  CAS  Google Scholar 

  • Shirasaki T, Harata N, Akaike N. 1994. Metabotropic glutamate response in acutely dissociated hippocampal CA1 pyramidal neurones of the rat. J Physiol 475: 439–453.

    PubMed  CAS  Google Scholar 

  • Sienaert I, Nadif Kasri N, Vanlingen S, Parys JB, Callewaert G, et al. 2002. Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 365: 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Street VA, Bosma MM, Demas VP, Regan MR, Lin DD, et al. 1997. The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J Neurosci 17: 635–645.

    PubMed  CAS  Google Scholar 

  • Sudhof TC, Newton CL, Archer BT III, Ushkaryov YA, Mignery GA. 1991. Structure of a novel InsP3 receptor. EMBO J 10: 3199–3206.

    PubMed  CAS  Google Scholar 

  • Sugars KL, Rubinsztein DC. 2003. Transcriptional abnormalities in Huntington disease. Trends Genet 19: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Takechi H, Eilers J, Konnerth A. 1998. A new class of synaptic response involving calcium release in dendritic spines. Nature 396: 757–760.

    Article  PubMed  CAS  Google Scholar 

  • Tang T-S, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, et al. 2005. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. PNAS 102: 2602–2607.

    Article  PubMed  CAS  Google Scholar 

  • Tang TS, Tu H, Chan EY, Maximov A, Wang Z, et al. 2003a. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39: 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Tang TS, Tu H, Wang Z, Bezprozvanny I. 2003b. Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha. J Neurosci 23: 403–415.

    PubMed  CAS  Google Scholar 

  • Taylor CW, Genazzani AA, Morris SA. 1999. Expression of inositol trisphosphate receptors. Cell Calcium 26: 237–251.

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983.

    Google Scholar 

  • Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, et al. (2003). A functional interaction between chromogranin B and the inositol 1,4,5-trisphosphate receptor/Ca2+ channel. J Biol Chem 278: 49699–49706.

    Article  PubMed  CAS  Google Scholar 

  • Thrower EC, Park HY, So SH, Yoo SH, Ehrlich BE. 2002. Activation of the inositol 1,4,5-trisphosphate receptor by the calcium storage protein chromogranin A. J Biol Chem 277: 15801–15806.

    Article  PubMed  CAS  Google Scholar 

  • Tobin AJ, Signer ER. 2000. Huntington’s disease: The challenge for cell biologists. Trends Biol 10: 531–536.

    Article  CAS  Google Scholar 

  • Tu H, Tang TS, Wang Z, Bezprozvanny I. 2004. Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J Biol Chem 279: 19375–19382.

    Article  PubMed  CAS  Google Scholar 

  • Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, et al. 1998. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21: 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K. 2003. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278: 16551–16560.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel JP, DiFiglia M. 1998. Huntington disease. J Neuropathol Exp Neurol 57: 369–384.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, et al. 1985. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44: 559–577.

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Denk W, Hausser M. 2000. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3: 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, et al. (1998). Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21: 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Tu JC, Worley PF. 2000. Homer: A link between neural activity and glutamate receptor function. Curr Opin Neurobiol 10: 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, et al. 1995. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 308(Pt 1): 83–88.

    PubMed  CAS  Google Scholar 

  • Yasuhara O, Kawamata T, Aimi Y, McGeer EG, McGeer PL. 1994. Expression of chromogranin A in lesions in the central nervous system from patients with neurological diseases. Neurosci Lett 170: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH. 2000. Coupling of the IP3 receptor/Ca2+ channel with Ca2+ storage proteins chromogranins A and B in secretory granules. Trends Neurosci 23: 424–428.

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, Albanesi JP. 1990. Inositol 1,4,5-trisphosphate-triggered Ca2+ release from bovine adrenal medullary secretory vesicles. J Biol Chem 265: 13446–13448.

    PubMed  CAS  Google Scholar 

  • Yoo SH, Albanesi JP. 1991. High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J Biol Chem 266: 7740–7745.

    PubMed  CAS  Google Scholar 

  • Yoo SH, Lewis MS. 1998. Interaction between an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor and the near N-terminal peptide of chromogranin A. FEBS Lett 427: 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, Oh YS, Kang MK, Huh YH, So SH, et al. (2001). Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca(2+) channel in the secretory granules and coupling with the Ca(2+) storage proteins chromogranins A and B. J Biol Chem 276: 45806–45812.

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, So SH, Kweon HS, Lee JS, Kang MK, et al. 2000. Coupling of the inositol 1,4,5-trisphosphate receptor and chromogranins A and B in secretory granules. J Biol Chem 275: 12553–12559.

    Article  PubMed  CAS  Google Scholar 

  • Zeron MM, Chen N, Moshaver A, Lee AT, Wellington CL, et al. 2001. Mutant huntingtin enhances excitotoxic cell death. Mol Cell Neurosci 17: 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Malmersjo S, Li J, Ando H, Aizman O, et al. 2006. Distinct role of the N-terminal tail of the Na,K-ATPase catalytic subunit as a signal transducer. J Biol Chem 281: 21954–21962.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Mizutani A, Hisatsune C, Higo T, Bannai H, et al. 2003. Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells. J Biol Chem 278: 4048–4056.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Akihiro Mizutani and Dr. Yukiko Kuroda for fruitful comments on the manuscript. Supported by grants from the Ministry of Education, Science, and Culture of Japan (K. M. and Y. N.), Grant-in-Aid for Young Scientists (C. H.), and the Japan Science and Technology Agency.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Hisatsune, C., Mikoshiba, K. (2009). IP3 Receptor and Ca2+ Signaling. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_31

Download citation

Publish with us

Policies and ethics