Skip to main content

Signal Molecules and Calcium

  • Reference work entry
  • 1270 Accesses

Abstract

The 28 mammalian members of the superfamily of transient receptor potential (TRP) channels are cation channels, mostly permeable to both monovalent and divalent cations, and can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are widely expressed in a large number of different tissues and cell types and their biological roles appear to be equally diverse. In neurons of the peripheral and central nervous system, TRP channels may substantially contribute to neuronal excitation, neurotransmitter release, and calcium homeostasis. Some TRPs are involved in sensory functions such as temperature and pain perception and may help to regulate body temperature or to avoid tissue-damaging stimuli like noxious temperatures or irritating chemicals. Other TRPs appear to be intimately connected to G-protein-coupled receptors, thereby linking chemical signals such as hormones and neurotransmitters to membrane excitability. TRPs may even be involved in regulation of neurite length and growth cone morphology. In this chapter, we provide an overview of the impact of TRP channels on cellular calcium-dependent processes in mammalian neurons and identify several TRPs for which a causal pathogenic role might be anticipated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADPR:

ADP-ribose

AITC:

allyl isothiocyanate

DRG:

dorsal root ganglion

HEK:

human embryonic kidney

NCCa-ATP:

nonselective Ca2+-activated channel

NMDA-R:

NMDA receptors

OGD:

oxygen–glucose deprivation

OVLT:

organum vasculosum lamina terminalis

PAG:

periaqueductal gray

PIP2 :

phosphatidylinositol bisphosphate

PLC:

phospholipase C

PNS:

peripheral nervous system

ROCE:

receptor-operated calcium entry

TRP:

transient receptor potential

VACCs:

voltage-activated Ca2+ channels

References

  • Aarts M, Iihara K, Wei WL, Xiong, ZG, Arundine M, et al. 2003. A key role for TRPM7 channels in anoxic neuronal death. Cell 115: 863–877.

    Article  PubMed  CAS  Google Scholar 

  • Abe J, Hosokawa H, Okazawa M, Kandachi M, Sawada Y, et al. 2005. TRPM8 protein localization in trigeminal ganglion and taste papillae. Brain Res Mol Brain Res 136: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD. 2005. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118: 70–79.

    Article  PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, et al. 2003. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39: 497–511.

    Article  PubMed  CAS  Google Scholar 

  • Al-Hayani A, Wease KN, Ross RA, Pertwee RG, Davies SN. 2001. The endogenous cannabinoid anandamide activates vanilloid receptors in the rat hippocampal slice. Neuropharmacology 41: 1000–1005.

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer C. 1994. A novel voltage-dependent cation current in rat neocortical neurones. J Physiol 479 (Pt 2): 199–205.

    PubMed  CAS  Google Scholar 

  • Ambudkar IS, Ong HL. 2007. Organization and function of TRPC channelosomes. Pflugers Arch 455: 187–200.

    Article  PubMed  CAS  Google Scholar 

  • Andrade YN, Fernandes J, Vazquez E, Fernandez-Fernandez JM, Arniges M, et al. 2005. TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol 168: 869–874.

    Article  PubMed  CAS  Google Scholar 

  • Arniges M, Vazquez E, Fernandez-Fernandez JM, Valverde MA. 2004. Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 279: 54062–54068.

    Article  PubMed  CAS  Google Scholar 

  • Baccei ML, Bardoni R, Fitzgerald M. 2003. Development of nociceptive synaptic inputs to the neonatal rat dorsal horn: Glutamate release by capsaicin and menthol. J Physiol 549: 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Bach G. 2005. Mucolipin 1: Endocytosis and cation channel – a review. Pflugers Arch 451: 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, et al. 2004. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41: 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Jessell TM. 2000. The perception of Pain. Principles of Neural Science. Kandel ER, Schwartz JH, Jessell TM, editors. New York: McGraw-Hill; pp. 472–491.

    Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, et al. 2006. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124: 1269–1282.

    Article  PubMed  CAS  Google Scholar 

  • Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, et al. 2005. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA 102: 12248–12252.

    Article  PubMed  CAS  Google Scholar 

  • Beck B, Zholos A, Sydorenko V, Roudbaraki M, Lehen’kyi V, et al. 2006. TRPC7 is a receptor-operated DAG-activated channel in human keratinocytes. J Invest Dermatol 126: 1982–1993.

    Article  PubMed  CAS  Google Scholar 

  • Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. 2004. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141: 737–745.

    Article  PubMed  CAS  Google Scholar 

  • Bengtson CP, Tozzi A, Bernardi G, Mercuri NB. 2004. Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones. J Physiol 555: 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M. 2005. TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells. J Biol Chem 280: 2132–2140.

    Article  PubMed  CAS  Google Scholar 

  • Brauchi S, Orio P, Latorre R. 2004. Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101: 15494–15499.

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, et al. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313.

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. 1999. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398: 436–441.

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, et al. 1997. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389: 816–824.

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Simard JM. 2001. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci 21: 6512–6521.

    PubMed  CAS  Google Scholar 

  • Chuang HH, Neuhausser WM, Julius D. 2004. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43: 859–869.

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Caterina MJ. 2003. Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278: 32037–32046.

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. 2004. 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24: 5177–5182.

    Article  PubMed  CAS  Google Scholar 

  • Chung YH, Sun Ahn H, Kim D, Hoon Shin D, Su Kim S, et al. 2006. Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res 1085: 132–137.

    Article  PubMed  CAS  Google Scholar 

  • Ciura S, Bourque CW. 2006. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J Neurosci 26: 9069–9075.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE. 2003. TRP channels as cellular sensors. Nature 426: 517–524.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, et al. 2004. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Cosens DJ, Manning A. 1969. Abnormal electroretinogram from a Drosophila mutant. Nature 224: 285–287.

    Article  PubMed  CAS  Google Scholar 

  • Craig AM, Wyborski RJ, Banker G. 1995. Preferential addition of newly synthesized membrane protein at axonal growth cones. Nature 375: 592–594.

    Article  PubMed  CAS  Google Scholar 

  • Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, et al. 2006. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139: 1405–1415.

    Article  PubMed  CAS  Google Scholar 

  • Davenport RW, Kater SB. 1992. Local increases in intracellular calcium elicit local filopodial responses in Helisoma neuronal growth cones. Neuron 9: 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, et al. 2000. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405: 183–187.

    Article  PubMed  CAS  Google Scholar 

  • De la Pena E, Malkia A, Cabedo H, Belmonte C, Viana F. 2005. The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol 567 (Pt 2): 415–426.

    Article  PubMed  CAS  Google Scholar 

  • Delany NS, Hurle M, Facer P, Alnadaf T, Plumpton C, et al. 2001. Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics 4: 165–174.

    PubMed  CAS  Google Scholar 

  • Dent EW, Gertler FB. 2003. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40: 209–227.

    Article  PubMed  CAS  Google Scholar 

  • Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, et al. 2007. TRPM8 Is Required for Cold Sensation in Mice. Neuron 54: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Doerner JF, Gisselmann G, Hatt H, Wetzel CH. 2007. Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282: 13180–13189.

    Article  PubMed  CAS  Google Scholar 

  • Elg S, Marmigere F, Mattsson JP, Ernfors P. 2007. Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol 503: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Fernandez JM, Nobles M, Currid A, Vazquez E, Valverde MA. 2002. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am J Physiol Cell Physiol 283: C1705–C1714.

    PubMed  CAS  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, et al. 2006. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Wu L, O’Neil RG. 2003. Temperature-modulated diversity of TRPV4 channel gating: Activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278: 27129–27137.

    Article  PubMed  CAS  Google Scholar 

  • Gee CE, Benquet P, Gerber U. 2003. Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus. J Physiol 546: 655–664.

    Article  PubMed  CAS  Google Scholar 

  • Goel M, Sinkins WG, Schilling WP. 2002. Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277: 48303–48310.

    Article  PubMed  CAS  Google Scholar 

  • Gomez TM, Robles E, Poo M, Spitzer NC. 2001. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291: 1983–1987.

    Article  PubMed  CAS  Google Scholar 

  • Gomez TM, Spitzer NC. 1999. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397: 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Gomez TM, Spitzer NC. 2000. Regulation of growth cone behavior by calcium: New dynamics to earlier perspectives. J Neurobiol 44: 174–183.

    Article  PubMed  CAS  Google Scholar 

  • Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, et al. 2007. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578: 715–733.

    Article  PubMed  CAS  Google Scholar 

  • Greka A, Navarro B, Oancea E, Duggan A, Clapham DE. 2003. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6: 837–845.

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. 2003. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278: 21493–21501.

    Article  PubMed  CAS  Google Scholar 

  • Guatteo E, Chung KK, Bowala TK, Bernardi G, Mercuri NB, et al. 2005. Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: Involvement of transient receptor potential channels. J Neurophysiol 94: 3069–3080.

    Article  PubMed  CAS  Google Scholar 

  • Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, et al. 2002. Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22: 6408–6414.

    PubMed  CAS  Google Scholar 

  • Haj-Dahmane S, Andrade R. 1996. Muscarinic activation of a voltage-dependent cation nonselective current in rat association cortex. J Neurosci 16: 3848–3861.

    PubMed  CAS  Google Scholar 

  • Haj-Dahmane S, Andrade R. 1999. Muscarinic receptors regulate two different calcium-dependent non-selective cation currents in rat prefrontal cortex. Eur J Neurosci 11: 1973–1980.

    Article  PubMed  CAS  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, et al. 2002. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9: 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Henley J, Poo MM. 2004. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14: 320–330.

    Article  PubMed  CAS  Google Scholar 

  • Hinman A, Chuang HH, Bautista DM, Julius D. 2006. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 103: 19564–19568.

    Article  PubMed  CAS  Google Scholar 

  • Hoenderop JG, Vennekens R, Muller D, Prenen J, Droogmans G, et al. 2001. Function and expression of the epithelial Ca2+ channel family: Comparison of mammalian ECaC1 and 2. J Physiol 537: 747–761.

    Article  PubMed  CAS  Google Scholar 

  • Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, et al. 2003. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22: 776–785.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Chubanov V, Gudermann T, Montell C. 2003. TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr Biol 13: 1153–1158.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, et al. 1999. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397: 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T. 2002. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99: 7461–7466.

    Article  PubMed  CAS  Google Scholar 

  • Hong K, Nishiyama M, Henley J, Tessier-Lavigne M, Poo M. 2000. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403: 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, et al. 2004. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279: 35741–35748.

    Article  PubMed  CAS  Google Scholar 

  • Hu HZ, Xiao R, Wang C, Gao N, Colton CK, et al. 2006. Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 208: 201–212.

    Article  PubMed  CAS  Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, et al. 2006. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8: 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, et al. 2002. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99: 8400–8405.

    Article  PubMed  CAS  Google Scholar 

  • Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, et al. 2007. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104: 6436–6441.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Sugimoto T. 2000. Vanilloid receptor 1-like receptor-immunoreactive primary sensory neurons in the rat trigeminal nervous system. Neuroscience 101: 719–725.

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Moriyama T, Kobata K, Morita A, Murayama N, et al. 2003. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology 44: 958–967.

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Newell EW, Schlichter LC. 2003. Regulation of a TRPM7-like current in rat brain microglia. J Biol Chem 278: 42867–42876.

    Article  PubMed  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, et al. 2004. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427: 260–265.

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Basbaum AI. 2001. Molecular mechanisms of nociception. Nature 413: 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Muhle A, Schaefer M, Strotmann R, Schultz G, et al. 2003. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278: 3562–3571.

    Article  PubMed  CAS  Google Scholar 

  • Karashima Y, Damann N, Prenen J, Talavera K, Segal A, et al. 2007. Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27: 9874–9884.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Cavanaugh EJ. 2007. Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: Role of inorganic polyphosphates. J Neurosci 27: 6500–6509.

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, et al. 2003. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426: 285–291.

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov K, Chen J, Rbaibi Y, Oberdick D, Tjon-Kon-Sang S, et al. 2005. TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J Biol Chem 280: 43218–43223.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, et al. 2005. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493: 596–606.

    Article  PubMed  CAS  Google Scholar 

  • Kofalvi A, Oliveira CR, Cunha RA. 2006. Lack of evidence for functional TRPV1 vanilloid receptors in rat hippocampal nerve terminals. Neurosci Lett 403: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Kosugi M, Nakatsuka T, Fujita T, Kuroda Y, Kumamoto E. 2007. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J Neurosci 27: 4443–4451.

    Article  PubMed  CAS  Google Scholar 

  • Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, et al. 2004. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286: C129–C137.

    Article  PubMed  CAS  Google Scholar 

  • Kraft R, Harteneck C. 2005. The mammalian melastatin-related transient receptor potential cation channels: An overview. Pflugers Arch 451: 204–211.

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. 2006. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52: 485–496.

    Article  PubMed  CAS  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, et al. 2006. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50: 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, et al. 2002. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Chen J, Sun L, Wu S, Gray KR, et al. 2003. Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278: 20890–20897.

    Article  PubMed  CAS  Google Scholar 

  • Lessard CB, Lussier MP, Cayouette S, Bourque G, Boulay G. 2005. The overexpression of presenilin2 and Alzheimer’s-disease-linked presenilin2 variants influences TRPC6-enhanced Ca2+ entry into HEK293 cells. Cell Signal 17: 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Levine JD, Alessandri-Haber N. 2007. TRP channels: Targets for the relief of pain. Biochim Biophys Acta 1772: 989–1003.

    PubMed  CAS  Google Scholar 

  • Lewinter RD, Skinner K, Julius D, Basbaum AI. 2004. Immunoreactive TRPV-2 (VRL-1), a capsaicin receptor homolog, in the spinal cord of the rat. J Comp Neurol 470: 400–408.

    Article  PubMed  CAS  Google Scholar 

  • Liapi A, Wood JN. 2005. Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 22: 825–834.

    Article  PubMed  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, et al. 2000. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Liedtke W, Friedman JM. 2003. Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci USA 100: 13698–13703.

    Article  PubMed  CAS  Google Scholar 

  • Liman ER, Corey DP, Dulac C. 1999. TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96: 5791–5796.

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, et al. 2005. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15: 1235–1241.

    Article  PubMed  CAS  Google Scholar 

  • Lipscombe D, Madison DV, Poenie M, Reuter H, Tsien RY, et al. 1988. Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc Natl Acad Sci USA 85: 2398–2402.

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Qin F. 2005. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25: 1674–1681.

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Liman ER. 2003. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100: 15160–15165.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Jia YC, Cui K, Li N, Zheng ZY, et al. 2005. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434: 894–898.

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309: 897–903.

    Article  PubMed  CAS  Google Scholar 

  • Lopez JJ, Salido GM, Pariente JA, Rosado JA. 2006. Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281: 28254–28264.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JF, Xiong ZG, Jackson MF. 2006. Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci 29: 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, et al. 2005. The pungency of garlic: Activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15: 929–934.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, et al. 2006. More than cool: Promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32: 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Mahieu F, Owsianik G, Verbert L, Janssens A, De Smedt H, et al. 2007. TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and golgi. J Biol Chem 282: 3325–3336.

    Article  PubMed  CAS  Google Scholar 

  • Marinelli S, Vaughan CW, Christie MJ, Connor M. 2002. Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. J Physiol 543: 531–540.

    Article  PubMed  CAS  Google Scholar 

  • Marsch R, Foeller E, Rammes G, Bunck M, Kossl M, et al. 2007. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci 27: 832–839.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, et al. 2005. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 280: 20793–20803.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Kater SB. 1987. Calcium regulation of neurite elongation and growth cone motility. J Neurosci 7: 4034–4043.

    PubMed  CAS  Google Scholar 

  • Ma QP. 2001. Vanilloid receptor homologue, VRL1, is expressed by both A- and C-fiber sensory neurons. Neuroreport 12: 3693–3695.

    Article  PubMed  CAS  Google Scholar 

  • McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. 2003. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278: 11002–11006.

    Article  PubMed  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D. 2002. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416: 52–58.

    Article  PubMed  CAS  Google Scholar 

  • Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, et al. 2006. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281: 24979–24990.

    Article  PubMed  CAS  Google Scholar 

  • Ming G, Henley J, Tessier-Lavigne M, Song H, Poo M. 2001. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29: 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, et al. 2003. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121: 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, et al. 2002. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9: 229–231.

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Rubin GM. 1989. Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron 2: 1313–1323.

    Article  PubMed  CAS  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, et al. 2005. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307: 1468–1472.

    Article  PubMed  CAS  Google Scholar 

  • Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, et al. 2001. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411: 590–595.

    Article  PubMed  CAS  Google Scholar 

  • Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, et al. 1998. Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54: 124–131.

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Duggan A, Kumar G, Garcia-Anoveros J. 2005. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25: 4052–4061.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka T, Furue H, Yoshimura M, Gu JG. 2002. Activation of central terminal vanilloid receptor-1 receptors and alpha beta-methylene-ATP-sensitive P2X receptors reveals a converged synaptic activity onto the deep dorsal horn neurons of the spinal cord. J Neurosci 22: 1228–1237.

    PubMed  CAS  Google Scholar 

  • Nakatsuka T, Gu JG. 2001. ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci 21: 6522–6531.

    PubMed  CAS  Google Scholar 

  • Nealen ML, Gold MS, Thut PD, Caterina MJ. 2003. TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat. J Neurophysiol 90: 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Newson P, Lynch-Frame A, Roach R, Bennett S, Carr V, et al. 2005. Intrinsic sensory deprivation induced by neonatal capsaicin treatment induces changes in rat brain and behaviour of possible relevance to schizophrenia. Br J Pharmacol 146: 408–418.

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, et al. 2003. Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278: 30813–30820.

    Article  PubMed  CAS  Google Scholar 

  • Nilius B. 2007. TRP channels in disease. Biochim Biophys Acta 1772: 805–812.

    PubMed  CAS  Google Scholar 

  • Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, et al. 2006. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25: 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA. 2007. Transient receptor potential cation channels in disease. Physiol Rev 87: 165–217.

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, et al. 2005. Gating of TRP channels: A voltage connection? J Physiol 567: 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Voets T. 2005. TRP channels: A TR(I)P through a world of multifunctional cation channels. Pflugers Arch 451: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, et al. 2003. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423: 990–995.

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, et al. 1999. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+ -permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem274: 27359–27370.

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, et al. 1998. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273: 10279–10287.

    Article  PubMed  CAS  Google Scholar 

  • Okazawa M, Terauchi T, Shiraki T, Matsumura K, Kobayashi S. 2000. l-Menthol-induced [Ca2+]i increase and impulses in cultured sensory neurons. Neuroreport 11: 2151–2155.

    Article  PubMed  CAS  Google Scholar 

  • Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, et al. 2007. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282: 9105–9116.

    Article  PubMed  CAS  Google Scholar 

  • Owsianik G, D’Hoedt D, Voets T, Nilius B. 2006. Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 156: 61–90.

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB. 2006a. On the activation mechanism of store-operated calcium channels. Pflugers Arch 453: 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB. 2006b. Cell biology: Cracking the calcium entry code. Nature 441: 163–165.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen SF, Owsianik G, Nilius B. 2005. TRP channels: An overview. Cell Calcium 38: 233–252.

    Article  PubMed  CAS  Google Scholar 

  • Pegorini S, Braida D, Verzoni C, Guerini-Rocco C, Consalez GG, et al. 2005. Capsaicin exhibits neuroprotective effects in a model of transient global cerebral ischemia in Mongolian gerbils. Br J Pharmacol 144: 727–735.

    Article  PubMed  CAS  Google Scholar 

  • Pegorini S, Zani A, Braida D, Guerini-Rocco C, Sala M. 2006. Vanilloid VR1 receptor is involved in rimonabant-induced neuroprotection. Br J Pharmacol 147: 552–559.

    Article  PubMed  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, et al. 2002a. A TRP channel that senses cold stimuli and menthol. Cell 108: 705–715.

    Article  PubMed  CAS  Google Scholar 

  • Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, et al. 2002b. A heat-sensitive TRP channel expressed in keratinocytes. Science 296: 2046–2049.

    Article  PubMed  CAS  Google Scholar 

  • Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, et al. 2006. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8: 771–773.

    Article  PubMed  CAS  Google Scholar 

  • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, et al. 1998. A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17: 4274–4282.

    Article  PubMed  CAS  Google Scholar 

  • Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, et al. 2003. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100: 15166–15171.

    Article  PubMed  CAS  Google Scholar 

  • Putney JW. 2005. Physiological mechanisms of TRPC activation. Pflugers Arch 451: 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Raychowdhury MK, Gonzalez-Perrett S, Montalbetti N, Timpanaro GA, Chasan B, et al. 2004. Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cation channel. Hum Mol Genet 13: 617–627.

    Article  PubMed  CAS  Google Scholar 

  • Reid G, Babes A, Pluteanu F. 2002. A cold- and menthol-activated current in rat dorsal root ganglion neurones: Properties and role in cold transduction. J Physiol 545: 595–614.

    Article  PubMed  CAS  Google Scholar 

  • Rohacs T, Lopes CM, Michailidis I, Logothetis DE. 2005. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8: 626–634.

    Article  PubMed  CAS  Google Scholar 

  • Rohacs T, Nilius B. 2007. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455: 157–168.

    Article  PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, et al. 2005. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169: 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE. 2004. Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123: 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Runnels LW, Yue L, Clapham DE. 2001. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291: 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Runnels LW, Yue L, Clapham DE. 2002. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4: 329–336.

    PubMed  CAS  Google Scholar 

  • Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG. 2004. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279: 3708–3716.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JF, Krause JE, Cortright DN. 2001. The distribution and regulation of vanilloid receptor VR1 and VR1 5′ splice variant RNA expression in rat. Neuroscience 107: 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, et al. 2001. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293: 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  • Sasamura T, Kuraishi Y. 1999. Peripheral and central actions of capsaicin and VR1 receptor. Jpn J Pharmacol 80: 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Sasamura T, Sasaki M, Tohda C, Kuraishi Y. 1998. Existence of capsaicin-sensitive glutamatergic terminals in rat hypothalamus. Neuroreport 9: 2045–2048.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, et al. 2000. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275: 17517–17526.

    Article  PubMed  CAS  Google Scholar 

  • Schiller Y. 2004. Activation of a calcium-activated cation current during epileptiform discharges and its possible role in sustaining seizure-like events in neocortical slices. J Neurophysiol 92: 862–872.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, et al. 2003. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114: 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki K, Suzuki M, Mizuno A, Tominaga M. 2007. Effects of body temperature on neural activity in the hippocampus: Regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27: 1566–1575.

    Article  PubMed  CAS  Google Scholar 

  • Silver RA, Lamb AG, Bolsover SR. 1990. Calcium hotspots caused by L-channel clustering promote morphological changes in neuronal growth cones. Nature 343: 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Simard JM, Chen M. 2004. Regulation by sulfanylurea receptor type 1 of a non-selective cation channel involved in cytotoxic edema of reactive astrocytes. J Neurosurg Anesthesiol 16: 98–99.

    Article  PubMed  Google Scholar 

  • Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, et al. 2002. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418: 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Herson PS, Lee K, Pinnock RD, Ashford ML. 2003. Hydrogen-peroxide-induced toxicity of rat striatal neurones involves activation of a non-selective cation channel. J Physiol 547: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE. 2006. Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J Biol Chem 281: 29897–29904.

    Article  PubMed  CAS  Google Scholar 

  • Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, et al. 2006. STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ Entry. Curr Biol 16: 1465–1470.

    Article  PubMed  CAS  Google Scholar 

  • Song HJ, Poo MM. 1999. Signal transduction underlying growth cone guidance by diffusible factors. Curr Opin Neurobiol 9: 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, et al. 2006. TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281: 7294–7301.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer NC, Lautermilch NJ, Smith RD, Gomez TM. 2000. Coding of neuronal differentiation by calcium transients. Bioessays 22: 811–817.

    Article  PubMed  CAS  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, et al. 2003. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819–829.

    Article  PubMed  CAS  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G. 2002. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295: 1493–1500.

    Article  PubMed  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. 2000. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2: 695–702.

    Article  PubMed  CAS  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. 2001. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29: 645–655.

    Article  PubMed  CAS  Google Scholar 

  • Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. 2003. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278: 39014–39019.

    Article  PubMed  Google Scholar 

  • Sudhof TC. 2004. The synaptic vesicle cycle. Annu Rev Neurosci 27: 509–547.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M. 2003. Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278: 22664–22668.

    Article  PubMed  CAS  Google Scholar 

  • Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, et al. 2005. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438: 1022–1025.

    Article  PubMed  CAS  Google Scholar 

  • Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A, et al. 2005. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem 280: 39423–39435.

    Article  PubMed  CAS  Google Scholar 

  • Thut PD, Wrigley D, Gold MS. 2003. Cold transduction in rat trigeminal ganglia neurons in vitro. Neuroscience 119: 1071–1083.

    Article  PubMed  CAS  Google Scholar 

  • Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki, M. 2004. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279: 35133–35138.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, et al. 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Tominaga T. 2005. Structure and function of TRPV1. Pflugers Arch 451: 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Toth A, Boczan J, Kedei N, Lizanecz E, Bagi Z, et al. 2005. Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135: 162–168.

    Article  PubMed  CAS  Google Scholar 

  • Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, et al. 2003. Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 18: 2133–2145.

    Article  PubMed  Google Scholar 

  • Tsavaler L, Shapero MH, Morkowski S, Laus R. 2001. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61: 3760–3769.

    PubMed  CAS  Google Scholar 

  • Tsuzuki K, Xing H, Ling J, Gu JG. 2004. Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission. J Neurosci 24: 762–771.

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Kudoh J, Noda S, Kanba S, Shimizu N. 2005. Characterization of human and mouse TRPM2 genes: Identification of a novel N-terminal truncated protein specifically expressed in human striatum. Biochem Biophys Res Commun 328: 1232–1243.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, et al. 2005. Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37: 267–278.

    Article  PubMed  CAS  Google Scholar 

  • Vannier B, Peyton M, Boulay G, Brown D, Qin N, et al. 1999. Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci USA 96: 2060–2064.

    Article  PubMed  CAS  Google Scholar 

  • Veldhuis WB, Stelt M, van der Wadman MW, Zadelhoff G, van Maccarrone M, et al. 2003. Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: Role of vanilloid receptors and lipoxygenases. J Neurosci 23: 4127–4133.

    PubMed  CAS  Google Scholar 

  • Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, et al. 2000. Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem 275: 3963–3969.

    Article  PubMed  CAS  Google Scholar 

  • Vig M, Beck A, Billingsley JM, Lis A, Parvez S, et al. 2006. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16: 2073–2079.

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, et al. 2004a. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430: 748–754.

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Janssens A, Droogmans G, Nilius B. 2004b. Outer pore architecture of a Ca2+-selective TRP channel. J Biol Chem 279: 15223–15230.

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Nilius B, Hoefs S, Kemp AW, van der Droogmans G, et al. 2004c. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279: 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Voets T, Talavera K, Owsianik G, Nilius B. 2005. Sensing with TRP channels. Nat Chem Biol 1: 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Vogt-Eisele AK, Weber K, Sherkheli MA, Vielhaber G, Panten J, et al. 2007. Monoterpenoid agonists of TRPV3. Br J Pharmacol 151: 530–540.

    Article  PubMed  CAS  Google Scholar 

  • Vriens J, Owsianik G, Voets T, Droogmans G, Nilius B. 2004a. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch 449: 213–226.

    PubMed  CAS  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, et al. 2004b. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101: 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright A, Rutter AR, Seabrook GR, Reilly K, Oliver KR. 2004. Discrete expression of TRPV2 within the hypothalamo-neurohypophysial system: Implications for regulatory activity within the hypothalamic-pituitary-adrenal axis. J Comp Neurol 474: 24–42.

    Article  PubMed  Google Scholar 

  • Wang T, Montell C. 2007. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 454: 821–847.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, et al. 2002a. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277: 13569–13577.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, et al. 2003. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424: 434–438.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, et al. 2002b. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277: 47044–47051.

    Article  PubMed  CAS  Google Scholar 

  • Wissenbach U, Bodding M, Freichel M, Flockerzi V. 2000. Trp12, a novel Trp related protein from kidney. FEBS Lett 485: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Wood JN, Winter J, James IF, Rang HP, Yeats J, et al. 1988. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8: 3208–3220.

    PubMed  CAS  Google Scholar 

  • Wu ZZ, Chen SR, Pan HL. 2006. Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons. Neuroscience 141: 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Xing J, Li J. 2007. TRPV1 receptor mediates glutamatergic synaptic input to dorsolateral periaqueductal gray (dl-PAG) neurons. J Neurophysiol 97: 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Delling M, Jun JC, Clapham DE. 2006. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9: 628–635.

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, et al. 2002. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418: 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Kumamoto E, Furue H, Yoshimura M. 1998. Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 255: 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, et al. 2006. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2: 596–607.

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. 2007. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9: 636–645.

    Article  PubMed  CAS  Google Scholar 

  • Yue L, Peng JB, Hediger MA, Clapham DE. 2001. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410: 705–709.

    Article  PubMed  CAS  Google Scholar 

  • Yu FH, Catterall WA. 2004. The VGL-chanome: A protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 253: Re15.

    Google Scholar 

  • Zeilhofer HU, Kress M, Swandulla D. 1997. Fractional Ca2+ currents through capsaicin- and proton-activated ion channels in rat dorsal root ganglion neurones. J Physiol 503 (Pt 1): 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Barritt GJ. 2004. Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res 64: 8365–8373.

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, et al. 2006. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci USA 103: 9357–9362.

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, et al. 2005. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437: 902–905.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, et al. 2003. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 112: 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhao, Z, Margolskee R, Liman E. 2007. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 27: 5777–5786.

    Article  PubMed  CAS  Google Scholar 

  • Zufall F, Ukhanov K, Lucas P, Leinders-Zufall T. 2005. Neurobiology of TRPC2: From gene to behavior. Pflugers Arch 451: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. 2007. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10: 277–279.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Voets for helpful comments on the manuscript and all members of the lab for helpful suggestions and criticisms. This work was supported by grants from the Human Frontiers Science Program (HFSP Research Grant Ref. RGP 32/2004, DD, BN), Novartis (ND), the Belgian Federal Government, the Flemish Government, the Onderzoeksraad KU Leuven (GOA 2004/07, F.W.O G.0172.03, Interuniversity Poles of Attraction Program, Prime Ministers Office IUAP Nr.3P4/23), Excellentiefinanciering EF/95/010), and the German Academic Exchange Service (DAAD to N.D.).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Damann, N., D’hoedt, D., Nilius, B. (2009). Signal Molecules and Calcium. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_26

Download citation

Publish with us

Policies and ethics