Skip to main content

Inhibitory Glycine Receptors

  • Reference work entry

Abstract

The glycine receptor (GlyR) is a major inhibitory ligand-gated ion channel in the vertebrate central nervous system (CNS) that controls both motor and sensory pathways. This pentameric membrane protein is composed of α and β subunits that span the postsynaptic membrane and form a central anion-selective channel. Molecular cloning has identified four genes coding for α subunits and one gene coding for the β subunit whose differential expression generates distinct GlyR subtypes in the mammalian CNS. Alternative splicing and RNA editing extend the heterogeneity of GlyR subunits and significantly complicate GlyR pharmacology. Recent structural insights from the X-ray structures of homologous receptor proteins complemented by modeling studies have allowed to interprete available mutational and pharmacological data and provided important clues to ligand binding and ion permeation mechanisms. GlyR mutations cause neuromotor diseases, and specific GlyR subtypes have been implicated in the regulation of pain perception. Hence, the rational design of GlyR active compounds might produce drugs with subtype-selective properties and therapeutic potential. This review summarizes recent data on the molecular organisation, ligand binding sites, ion channel region, expression and functions of GlyRs as well as on human disorders associated with defects in GlyR function and glycine neurotransmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

GABA:

γ-aminobutyric acid

NMDA:

N-methyl-d-aspartate

GABAA :

gamma-aminobutyric acid type-A

nAChR:

nicotinic acetylcholine receptor

ECD:

extracellular domain

AChBP:

acetylcholine-binding protein

SCAM:

substituted cysteine accessibility method

sIPSCs:

spontaneous inhibitory postsynaptic currents

PGE2 :

prostaglandin E2; 5HT; receptor, serotonin type 3 receptor

References

  • Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer HU. 2002. PGE(2) Selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat Neurosci 5: 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Aprison MH, Werman R. 1965. The distribution of glycine in cat spinal cord and roots. Life Sci 4: 2075–2083.

    Article  CAS  PubMed  Google Scholar 

  • Becker CM, Hermans-Borgmeyer I, Schmitt B, Betz H. 1986. The glycine receptor deficiency of the mutant mouse spastic: Evidence for normal glycine receptor structure and localization. J Neurosci 6: 1358–1364.

    CAS  PubMed  Google Scholar 

  • Becker CM, Hoch W, Betz H. 1988. Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J 7: 3717–3726.

    CAS  PubMed  Google Scholar 

  • Becker CM, Schmieden V, Tarroni P, Strasser U, Betz H. 1992. Isoform-selective deficit of glycine receptors in the mouse mutant spastic. Neuron 8: 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Becker L, von Wegerer J, Schenkel J, Zeilhofer HU, Swandulla D, et al. 2002. Disease-specific human glycine receptor α1 subunit causes hyperekplexia phenotype and impaired glycine- and GABA(A)-receptor transmission in transgenic mice. J Neurosci 22: 2505–2512.

    CAS  PubMed  Google Scholar 

  • Betz H, Laube B. 2006. Glycine receptors: Recent insights into their structural organization and functional diversity. J Neurochem 97: 1600–1610.

    Article  CAS  PubMed  Google Scholar 

  • Bormann J, Hamill OP, Sakmann B. 1987. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurons. J Physiol 385: 243–286.

    CAS  PubMed  Google Scholar 

  • Bormann F, Rundstrom N, Bete H, Lang osch O 1993, Residues within transvreubrane segment M2 determine chloride conductance at glycolie receptor homo - and heteo - Oligouners, EMBO F. 12: 3729--3737

    CAS  Google Scholar 

  • Breitinger HG, Villmann C, Becker K, Becker CM. 2001. Opposing effects of molecular volume and charge at the hyperekplexia site α 1(P250) govern glycine receptor activation and desensitization. J Biol Chem 276: 29657–29663.

    Article  CAS  PubMed  Google Scholar 

  • Breitinger U, Breitinger HG, Bauer F, Fahmy K, Glockenhammer D, et al. 2004. Conserved high affinity ligand binding and membrane association in the native and refolded extracellular domain of the human glycine receptor α1-subunit. J Biol Chem 279: 1627–1636.

    Article  CAS  PubMed  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, et al. 2001. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411: 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Brune W, Weber RG, Saul B, von Knebel Doeberitz M, Grond-Ginsbach C, et al. 1996. A GLRA1 null mutation in recessive hyperekplexia challenges the functional role of glycine receptors. Am J Hum Genet 58: 989–997.

    CAS  PubMed  Google Scholar 

  • Buckwalter MS, Cook SA, Davisson MT, White WF, Camper SA. 1994. A frameshift mutation in the mouse α 1 glycine receptor gene (Glra1) results in progressive neurological symptoms and juvenile death. Hum Mol Genet 3: 2025–2030.

    Article  CAS  PubMed  Google Scholar 

  • Cascio M. 2006. Modulating inhibitory ligand-gated ion channels. AAPS J 8: E353–361.

    PubMed  Google Scholar 

  • Castaldo P, Stefanoni P, Miceli F, Coppola G, Del Giudice EM, et al. 2004. A novel hyperekplexia-causing mutation in the pre-transmembrane segment 1 of the human glycine receptor α1 subunit reduces membrane expression and impairs gating by agonists. J Biol Chem 279: 25598–25604.

    Article  CAS  PubMed  Google Scholar 

  • Charnet P, Labarca C, Leonard RJ, Vogelaar NJ, Czyzyk L, et al. 1990. An open-channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Neuron 4: 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP. 2000. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40: 431–458.

    Article  CAS  PubMed  Google Scholar 

  • Coto E, Armenta D, Espinosa R, Argente J, Castro MG, et al. 2005. Recessive hyperekplexia due to a new mutation (R100H) in the GLRA1 gene. Mov Disord 20: 1626–1629.

    Article  PubMed  Google Scholar 

  • Danglot L, Rostaing P, Triller A, Bessis A. 2004. Morphologically identified glycinergic synapses in the hippocampus. Mol Cell Neurosci 27: 394–403.

    Article  CAS  PubMed  Google Scholar 

  • del Giudice EM, Coppola G, Bellini G, Cirillo G, Scuccimarra G, et al. 2001. A mutation (V260M) in the middle of the M2 pore-lining domain of the glycine receptor causes hereditary hyperekplexia. Eur J Hum Genet 9: 873–876.

    Article  CAS  PubMed  Google Scholar 

  • Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L. 2007. Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 A resolution. Nat Neurosci 10: 953–962.

    Article  CAS  PubMed  Google Scholar 

  • Dibas MI, Gonzales EB, Das P, Bell-Horner CL, Dillon GH. 2002. Identification of a novel residue within the second transmembrane domain that confers use-facilitated block by picrotoxin in glycine α1 receptors. J Biol Chem 277: 9112–9117.

    Article  CAS  PubMed  Google Scholar 

  • Elmslie FV, Hutchings SM, Spencer V, Curtis A, Covanis T, et al. 1996. Analysis of GLRA1 in hereditary and sporadic hyperekplexia: A novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis. J Med Genet 33: 435–436.

    Article  CAS  PubMed  Google Scholar 

  • Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, et al. 2006. Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun 348: 400–405.

    Article  CAS  PubMed  Google Scholar 

  • Fatima-Shad K, Barry P.H. 1993. Anion permeation in GABA- and glycine-gated channels of mammalian cultured hippocampal neurons. Proc Biol Sci 253: 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, et al. 1998. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282: 1321–1324.

    Article  CAS  PubMed  Google Scholar 

  • Flint AC, Liu X, Kriegstein AR. 1998. Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20: 43–53.

    Article  CAS  PubMed  Google Scholar 

  • Forsyth RJ, Gika AD, Ginjaar I, Tijssen MA. 2007. A novel GLRA1 mutation in a recessive hyperekplexia pedigree. Mov Disord 22: 1643–1645.

    Article  PubMed  Google Scholar 

  • Gelman BB, Soukup VM, Schuenke KW, Keherly MJ, Holzer C, et al. 2004. Acquired neuronal channelopathies in HIV-associated dementia. J Neuroimmunol 157: 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SL, Ozdag F, Ulas UH, Dobyns WB, Lahn BT. 2004. Hereditary hyperekplexia caused by novel mutations of GLRA1 in Turkish families. Mol Diagn 8: 151–155.

    Article  PubMed  Google Scholar 

  • Graham D, Pfeiffer F, Betz H. 1983. Photoaffinity-labelling of the glycine receptor of rat spinal cord. Eur J Biochem 131: 519–525.

    Article  CAS  PubMed  Google Scholar 

  • Grenningloh G, Pribilla I, Prior P, Multhaup G, Beyreuther K, et al. 1990a. Cloning and expression of the 58 kd β subunit of the inhibitory glycine receptor. Neuron 4: 963–970.

    Article  CAS  PubMed  Google Scholar 

  • Grenningloh G, Rienitz A, Schmitt B, Methfessel C, et al. 1987. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328: 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Grenningloh G, Schmieden V, Schofield PR, Seeburg PH, Siddique T, et al. 1990b. A subunit variants of the human glycine receptor: Primary structures, functional expression and chromosomal localization of the corresponding genes. EMBO J 9: 771–776.

    CAS  PubMed  Google Scholar 

  • Griffon N, Buttner C, Nicke A, Kuhse J, Schmalzing G, et al. 1999. Molecular determinants of glycine receptor subunit assembly. EMBO J 18: 4711–4721.

    Article  CAS  PubMed  Google Scholar 

  • Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, et al. 2005. The β subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45: 727–739.

    Article  CAS  PubMed  Google Scholar 

  • Gunthorpe MJ, Lummis SC. 2001. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J Biol Chem 276: 10977–10983.

    Article  CAS  Google Scholar 

  • Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, et al. 2004. GlyR α3: An essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304: 884–887.

    Article  CAS  PubMed  Google Scholar 

  • Harvey RJ, Schmieden V, Von Holst A, Laube B, Rohrer H, et al. 2000. Glycine receptors containing the α4 subunit in the embryonic sympathetic nervous system, spinal cord and male genital ridge. Eur J Neurosci 12: 994–1001.

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Muller U, Harvey K, Harvey RJ, Betz H, et al. 2003. Diversity of glycine receptors in the mouse retina: Localization of the α3 subunit. J Comp Neurol 465: 524–539.

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Muller U, Zeilhofer HU, Harvey RJ, Wassle H. 2004. Diversity of glycine receptors in the mouse retina: Localization of the α2 subunit. J Comp Neurol 477: 399–411.

    Article  CAS  PubMed  Google Scholar 

  • Heinze L, Harvey RJ, Haverkamp S, Wassle H. 2007. Diversity of glycine receptors in the mouse retina: Localization of the α4 subunit. J Comp Neurol 500: 693–707.

    Article  CAS  PubMed  Google Scholar 

  • Hoch W, Betz H, Becker CM. 1989. Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron 3: 339–348.

    Article  CAS  PubMed  Google Scholar 

  • Humeny A, Bonk T, Becker K, Jafari-Boroujerdi M, Stephani U, et al. 2002. A novel recessive hyperekplexia allele GLRA1 (S231R): Genotyping by MALDI-TOF mass spectrometry and functional characterisation as a determinant of cellular glycine receptor trafficking. Eur J Hum Genet 10: 188–196.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov I, Cheng X, Sine SM, McCammon JA. 2007. Barriers to ion translocation in cationic and anionic receptors from the Cys-loop family. J Am Chem Soc 129: 8217–8224.

    Article  CAS  PubMed  Google Scholar 

  • Jungbluth H, Rees MI, Manzur AY, Mercuri E, Sewry CA, et al. 2000. An unusual case of hyperekplexia. Eur J Paediatr Neurol 4: 77–80.

    Article  CAS  PubMed  Google Scholar 

  • Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH. 2002. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. J Gen Physiol 119: 393–410.

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Schrader N, Smolinsky B, Bedet C, Vannier C, et al. 2006. Deciphering the structural framework of glycine receptor anchoring by gephyrin. EMBO J 25: 1385–1395.

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Taketani T, Horie A, Isumi H, Sejima H, et al. 2006. Two Japanese families with hyperekplexia who have a Arg271Gln mutation in the glycine receptor α1 subunit gene. Brain Dev 28: 228–231.

    Article  PubMed  Google Scholar 

  • Kingsmore SF, Giros B, Suh D, Caron MG, Seldin MF. 1994. Glycine receptor beta-submit give nutation in spastic house associated with LINE-1 element instrection. Nat. Genet. 7: 136–141.

    Article  CAS  PubMed  Google Scholar 

  • Kirsch J, Betz H. 1998. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392: 717–720.

    Article  CAS  PubMed  Google Scholar 

  • Kneussel M, Betz H. 2000. Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: The membrane activation model. Trends Neurosci 23: 429–435.

    Article  CAS  PubMed  Google Scholar 

  • Kneussel M, Hermann A, Kirsch J, Betz H. 1999. Hydrophobic interactions mediate binding of the glycine receptor β-subunit to gephyrin. J Neurochem 72: 1323–1326.

    Article  CAS  PubMed  Google Scholar 

  • Kuhse J, Betz H, Kirsch J. 1995. The inhibitory glycine receptor: Architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr Opin Neurobiol 5: 318–323.

    Article  CAS  PubMed  Google Scholar 

  • Kuhse J, Laube B, Magalei D, Betz H. 1993. Assembly of the inhibitory glycine receptor: Identification of amino acid sequence motifs governing subunit stoichiometry. Neuron 11: 1049–1056.

    Article  CAS  PubMed  Google Scholar 

  • Kuhse J, Schmieden V, Betz H. 1990a. A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit. Neuron 5: 867–873.

    Article  CAS  PubMed  Google Scholar 

  • Kuhse J, Schmieden V, Betz H. 1990b. Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. J Biol Chem 265: 22317–22320.

    CAS  PubMed  Google Scholar 

  • Kwok JB, Raskin S, Morgan G, Antoniuk SA, Bruk I, et al. 2001. Mutations in the glycine receptor α1 subunit (GLRA1) gene in hereditary hyperekplexia pedigrees: Evidence for non-penetrance of mutation Y279C. J Med Genet 38: E17.

    Article  CAS  PubMed  Google Scholar 

  • Langosch D, Laube B, Rundstrom N, Schmieden V, Bormann J, et al. 1994. Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. EMBO J 13: 4223–4228.

    CAS  PubMed  Google Scholar 

  • Langosch D, Thomas L, Betz H. 1988. Conserved quaternary structure of ligand-gated ion channels: The postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci USA 85: 7394–7398.

    Article  CAS  PubMed  Google Scholar 

  • Lapunzina P, Sanchez JM, Cabrera M, Moreno A, Delicado A, et al. 2003. Hyperekplexia (startle disease): A novel mutation (S270T) in the M2 domain of the GLRA1 gene and a molecular review of the disorder. Mol Diagn 7: 125–128.

    Article  PubMed  Google Scholar 

  • Laube B, Maksay G, Schemm R, Betz H. 2002. Modulation of glycine receptor function: A novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci 23: 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. 2003. The contribution of proline 250 (P-2′) to pore diameter and ion selectivity in the human glycine receptor channel. Neurosci Lett 351: 196–200.

    Article  CAS  PubMed  Google Scholar 

  • Lewis TM, Sivilotti LG, Colquhoun D, Gardiner RM, Schoepfer R, et al. 1998. Properties of human glycine receptors containing the hyperekplexia mutation α1(K276E), expressed in Xenopus oocytes. J Physiol 507: 25–40.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo LE, Barbe A, Portalier P, Fritschy JM, Bras H. 2006. Differential expression of GABAA and glycine receptors in ALS-resistant vs. ALS-vulnerable motoneurons: Possible implications for selective vulnerability of motoneurons. Eur J Neurosci 23: 3161–3170.

    Article  PubMed  Google Scholar 

  • Lu H, Xu TL. 2002. The general anesthetic pentobarbital slows desensitization and deactivation of the glycine receptor in the rat spinal dorsal horn neurons. J Biol Chem 277: 41369–41378.

    Article  PubMed  CAS  Google Scholar 

  • Lynch JW. 2004. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84: 1051–1095.

    Article  CAS  PubMed  Google Scholar 

  • Lynch JW, Han NL, Haddrill J, Pierce KD, Schofield PR. 2001. The surface accessibility of the glycine receptor M2-M3 loop is increased in the channel open state. J Neurosci 21: 2589–2599.

    CAS  PubMed  Google Scholar 

  • Lynch JW, Rajendra S, Barry PH, Schofield PR. 1995. Mutations affecting the glycine receptor agonist transduction mechanism convert the competitive antagonist, picrotoxin, into an allosteric potentiator. J Biol Chem 270: 13799–13806.

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Heinze L, Haverkamp S, Ivanova E, Wassle H. 2007. Glycine receptors of A-type ganglion cells of the mouse retina. Vis Neurosci 24: 471–487.

    Article  PubMed  Google Scholar 

  • Malosio ML, Marqueze-Pouey B, Kuhse J, Betz H. 1991. Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 10: 2401–2409.

    CAS  PubMed  Google Scholar 

  • Matzenbach B, Maulet Y, Sefton L, Courtier B, Avner P, et al. 1994. Structural analysis of mouse glycine receptor subunit genes. Identification and chromosomal localization of a novel variant. J Biol Chem 269: 2607–2612.

    CAS  PubMed  Google Scholar 

  • Meier JC, Henneberger C, Melnick I, Racca C, Harvey RJ, et al. 2005. RNA editing produces glycine receptor α3(P185L), resulting in high agonist potency. Nat Neurosci 8: 736–744.

    Article  CAS  PubMed  Google Scholar 

  • Meyer G, Kirsch J, Betz H, Langosch D. 1995. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15: 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Milani N, Dalpra L, del Prete A, Zanini R, Larizza L. 1996. A novel mutation (Gln266– > His) in the α 1 subunit of the inhibitory glycine-receptor gene (GLRA1) in hereditary hyperekplexia. Am J Hum Genet 58: 420–422.

    CAS  PubMed  Google Scholar 

  • Miller C. 1989. Genetic manipulation of ion channels: a new approach to structure and mechanism. Neuron 2: 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N. 1999. Nicotinic acetylcholine receptor at 4.6 A resolution: Transverse tunnels in the channel wall. J Mol Biol 288: 765–786.

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N. 2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423: 949–955.

    Article  CAS  PubMed  Google Scholar 

  • Moorhouse AJ, Jacques P, Barry PH, Schofield PR. 1999. The startle disease mutation Q266H, in the second transmembrane domain of the human glycine receptor, impairs channel gating. Mol Pharmacol 55: 386–395.

    CAS  PubMed  Google Scholar 

  • Miihlhardt C, Fischer M, Gass P, Simpu-Charotles D, Gienet JL. Kuhse J. Ber H. Bedkev CM. 1994. The spastic wouse : aberrant spliaing of beta-submit in RNA caused by intronic insertion of L1 element. Neuron13: 1003–1015.

    Article  Google Scholar 

  • Nevin ST, Cromer BA, Haddrill JL, Morton CJ, Parker MW, et al. 2003. Insights into the structural basis for zinc inhibition of the glycine receptor. J Biol Chem 278: 28985–28992.

    Article  CAS  PubMed  Google Scholar 

  • O’Shea SM, Becker L, Weiher H, Betz H, Laube B. 2004. Propofol restores the function of “hyperekplexic” mutant glycine receptors in Xenopus oocytes and mice. J Neurosci 24: 2322–2327.

    Article  PubMed  CAS  Google Scholar 

  • Oertel J, Villmann C, Kettenmann H, Kirchhoff F, Becker CM. 2007. A novel glycine receptor β subunit splice variant predicts an unorthodox transmembrane topology. Assembly into heteromeric receptor complexes. J Biol Chem 282: 2798–2807.

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos T, Korte M, Eulenburg V, Kubota H, Retiounskaia M, et al. 2007. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J 26: 3888–3899.

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer F, Graham D, Betz H. 1982. Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem 257: 9389–9393.

    CAS  PubMed  Google Scholar 

  • Poon WT, Au KM, Chan YW, Chan KY, Chow CB, et al. 2006. Novel missense mutation (Y279S) in the GLRA1 gene causing hyperekplexia. Clin Chim Acta 364: 361–362.

    Article  CAS  PubMed  Google Scholar 

  • Prior P, Schmitt B, Grenningloh G, Pribilla I, Multhaup G, et al. 1992. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8: 1161–1170.

    Article  CAS  PubMed  Google Scholar 

  • Pribilla I, Takagi T, Langosch D, Bormann F, Betz H. 1992. The a typical M2 segment of the beta subunit Confers picrotoxin resistance toinhibitory glycive receptor channels. EMBOF11: 4305–4311.

    CAS  Google Scholar 

  • Rajendra S, Lynch JW, Pierce KD, French CR, Barry PH, et al. 1995a. Mutation of an arginine residue in the human glycine receptor transforms β-alanine and taurine from agonists into competitive antagonists. Neuron 14: 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Rajendra S, Vandenberg RJ, Pierce KD, Cunningham AM, French PW, et al. 1995b. The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element. Embo J 14: 2987–2998.

    CAS  PubMed  Google Scholar 

  • Ramanathan S, Woodroffe A, Flodman PL, Mays LZ, Hanouni M, et al. 2004. A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide receptors NPY1R, NPY5R. BMC Med Genet 5: 10.

    Article  PubMed  Google Scholar 

  • Rea R, Tijssen MA, Herd C, Frants RR, Kullmann DM. 2002. Functional characterization of compound heterozygosity for GlyRα1 mutations in the startle disease hyperekplexia. Eur J Neurosci 16: 186–196.

    Article  PubMed  Google Scholar 

  • Rees MI, Andrew M, Jawad S, Owen MJ. 1994. Evidence for recessive as well as dominant forms of startle disease (hyperekplexia) caused by mutations in the α 1 subunit of the inhibitory glycine receptor. Hum Mol Genet 3: 2175–2179.

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, et al. 2006. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 38: 801–806.

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Harvey K, Ward H, White JH, Evans L, et al. 2003. Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem 278: 24688–24696.

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Lewis TM, Kwok JB, Mortier GR, Govaert P, et al. 2002. Hyperekplexia associated with compound heterozygote mutations in the β-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet 11: 853–860.

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Lewis TM, Vafa B, Ferrie C, Corry P, et al. 2001. Compound heterozygosity and nonsense mutations in the α(1)-subunit of the inhibitory glycine receptor in hyperekplexia. Hum Genet 109: 267–270.

    Article  CAS  PubMed  Google Scholar 

  • Reichling DB, Kyrozis A, Wang J, MacDermott AB. 1994. Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J Physiol 476: 411–421.

    CAS  PubMed  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, et al. 1999. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397: 251–255.

    Article  CAS  PubMed  Google Scholar 

  • Ryan SG, Buckwalter MS, Lynch JW, Handford CA, Segura L, et al. 1994. A missense mutation in the gene encoding the α 1 subunit of the inhibitory glycine receptor in the spasmodic mouse. Nat Genet 7: 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Kiyama H, Tohyama M. 1992. Regional distribution of cells expressing glycine receptor α 2 subunit mRNA in the rat brain. Brain Res 590: 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Saul B, Kuner T, Sobetzko D, Brune W, Hanefeld F, et al. 1999. Novel GLRA1 missense mutation (P250T) in dominant hyperekplexia defines an intracellular determinant of glycine receptor channel gating. J Neurosci 19: 869–877.

    CAS  PubMed  Google Scholar 

  • Saul B, Schmieden V, Kling C, Mulhardt C, Gass P, et al. 1994. Point mutation of glycine receptor α 1 subunit in the spasmodic mouse affects agonist responses. FEBS Lett 350: 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Schmieden V, Kuhse J, Betz H. 1993. Mutation of glycine receptor subunit creates β-alanine receptor responsive to GABA. Science 262: 256–258.

    Article  CAS  PubMed  Google Scholar 

  • Schmieden V, Kuhse J, Betz H. 1999. A novel domain of the inhibitory glycine receptor determining antagonist efficacies: Further evidence for partial agonism resulting from self-inhibition. Mol Pharmacol 56: 464–472.

    CAS  PubMed  Google Scholar 

  • Seri M, Bolino A, Galietta LJ, Lerone M, Silengo M, et al. 1997. Startle disease in an Italian family by mutation (K276E): The α-subunit of the inhibiting glycine receptor. Hum Mutat 9: 185–187.

    Article  CAS  PubMed  Google Scholar 

  • Shiang R, Ryan SG, Zhu YZ, Fielder TJ, Allen RJ, et al. 1995. Mutational analysis of familial and sporadic hyperekplexia. Ann Neurol 38: 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Shiang R, Ryan SG, Zhu YZ, Hahn AF, O’Connell P, et al. 1993. Mutations in the α 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5: 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Singer JH, Talley EM, Bayliss DA, Berger AJ. 1998. Development of glycinergic synaptic transmission to rat brain stem motoneurons. J Neurophysiol 80: 2608–2620.

    CAS  PubMed  Google Scholar 

  • Sobetzko D, Sander T, Becker CM. 2001. Genetic variation of the human glycine receptor subunit genes GLRA3 and GLRB and susceptibility to idiopathic generalized epilepsies. Am J Med Genet 105: 534–538.

    Article  CAS  PubMed  Google Scholar 

  • Sola M, Bavro VN, Timmins J, Franz T, Ricard-Blum S, et al. 2004. Structural basis of dynamic glycine receptor clustering by gephyrin. Embo J 23: 2510–2519.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T. 2005. Postsynaptic receptor mechanisms underlying developmental speeding of synaptic transmission. Neurosci Res 53: 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Momiyama A, Hirai K, Hishinuma F, Akagi H. 1992. Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9: 1155–1161.

    Article  CAS  PubMed  Google Scholar 

  • Tsai CH, Chang FC, Su YC, Tsai FJ, Lu MK, et al. 2004. Two novel mutations of the glycine receptor gene in a Taiwanese hyperekplexia family. Neurology 63: 893–896.

    CAS  PubMed  Google Scholar 

  • Unwin N. 1993. Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol 229: 1101–1124.

    Article  CAS  PubMed  Google Scholar 

  • Unwin N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346: 967–989.

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg RJ, French CR, Barry PH, Shine J, Schofield PR. 1992a. Antagonism of ligand-gated ion channel receptors: Two domains of the glycine receptor α subunit form the strychnine-binding site. Proc Natl Acad Sci USA 89: 1765–1769.

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg RJ, Handford CA, Schofield PR. 1992b. Distinct agonist- and antagonist-binding sites on the glycine receptor. Neuron 9: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Vergouwe MN, Tijssen MA, Peters AC, Wielaard R, Frants RR. 1999. Hyperekplexia phenotype due to compound heterozygosity for GLRA1 gene mutations. Ann Neurol 46: 634–638.

    Article  CAS  PubMed  Google Scholar 

  • Weiss J, O’Sullivan G A, Heinze L, Chen HX, Betz H, et al. 2008. Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice. Mol Cell Neurosci 37: 40–55.

    Article  CAS  PubMed  Google Scholar 

  • Werman R, Davidoff RA, Aprison MH. 1967. Inhibition of motoneurons by iontophoresis of glycine. Nature 214: 681–683.

    Article  CAS  PubMed  Google Scholar 

  • White WF, Heller AH. 1982. Glycine receptor alteration in the mutant mouse spastic. Nature 298: 655–657.

    Article  CAS  PubMed  Google Scholar 

  • Wilson GG, Karlin A. 1998. The location of the gate in the acetylcholine receptor channel. Neuron 20: 1269–1281.

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Akabas MH. 1996. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA(A) receptor α1 subunit. J Gen Physiol 107: 195–205.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Cromer BA, Harvey RJ, Parker MW, Lynch JW. 2007. A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. J Neurochem 103: 580–589.

    Article  CAS  PubMed  Google Scholar 

  • Young TL, Cepko CL. 2004. A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41: 867–879.

    Article  CAS  PubMed  Google Scholar 

  • Young-Pearse TL, Ivic L, Kriegstein AR, Cepko CL. 2006. Characterization of mice with targeted deletion of glycine receptor α 2. Mol Cell Biol 26: 5728–5734.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Dutertre, S., Kuzmin, D., Laube, B., Betz, H. (2009). Inhibitory Glycine Receptors. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_20

Download citation

Publish with us

Policies and ethics