Skip to main content

P2 Purinergic Receptor

  • Reference work entry
  • 1304 Accesses

Abstract

Accumulating findings indicate that interactions between extracellular nucleotides and P2 purinergic receptors play important roles in cell-to-cell communication in the central nervous system (CNS), even though ATP is recognized primarily to be a source of free energy and nucleotides are key molecules in cells. P2 purinoceptors are divided into two families, ionotropic receptors (P2X family) and metabotropic receptors (P2Y family). P2X receptors (seven types; P2X1–P2X7) contain intrinsic pores that open by binding with ATP. P2Y receptors (eight types; P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) are activated by nucleotides and couple to intracellular second-messenger systems through heteromeric G-proteins. Nucleotides are released or leaked from nonexcitable cells as well as neurons in physiological and pathophysiological conditions. Glia is the interesting nonexcitable cell and is classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of P2 purinoceptors and release the “gliotransmitter” ATP to communicate with neurons, microglia, and the vascular walls of capillaries. Microglia also express many types of P2 purinoceptors and are known as resident macrophages in the CNS. ATP and other nucleotides work as “warning molecules,” especially through activating microglia in pathophysiological conditions. Microglia play a key role in neuropathic pain and show phagocytosis through nucleotide-evoked activation of P2X4 and P2Y6 receptors, respectively. Molecular-, cellular-, and system-level evidences for extracellular nucleotide signaling place P2 purinergic receptors in the central stage in the function of CNS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

αβmeATP:

α,β-methylene ATP

2-MeSADP:

2-methylthio-ADP

adBDNF:

BDNF-transducing recombinant adenovirus

anti-TrkB:

antibody against the TrkB receptor

BDNF siRNA:

short interfering RNA directed against BDNF

CNS:

central nervous system

ERK:

extracellular signal regulated protein kinase

IP3 :

inositol trisphosphate

KA:

kainic acid

LI:

lamina I

MAP:

mitogen-activated protein

NMDA:

N-methyl-d-aspartate

PI3K:

phosphatidylinositol 3-kinase

PS:

phosphatidylserine

PTX:

pertussis toxin

TNP-ATP:

2′,3′-O-(2,4,6-trinitrophenyl)-ATP

TrkB–Fc:

BDNF-sequestering fusion protein

UTP:

uridine 5′-triphosphate

References

  • Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, et al. 2006. International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58: 281–341.

    Article  PubMed  CAS  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, et al. 2000. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6: 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB. 1997. ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17: 5297–5304.

    PubMed  CAS  Google Scholar 

  • Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, et al. 2003. Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol 64: 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  • Boitano S, Dirksen ER, Sanderson MJ. 1992. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258: 292–295.

    Article  PubMed  CAS  Google Scholar 

  • Bolego C, Ceruti S, Brambilla R, Puglisi L, Cattabeni F, et al. 1997. Characterization of the signalling pathways involved in ATP and basic fibroblast growth factor-induced astrogliosis. Br J Pharmacol 121: 1692–1699.

    Article  PubMed  CAS  Google Scholar 

  • Buell G, Lewis C, Collo G, North RA, Surprenant A. 1996. An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15: 55–62.

    PubMed  CAS  Google Scholar 

  • Burnstock G. 1972. Purinergic nerves. Pharmacol Rev 24: 509–581.

    PubMed  CAS  Google Scholar 

  • Burnstock G, Knight GE. 2004. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240: 31–304.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. 1990. Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 247: 470–473.

    Article  PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M. 2000. ATP-mediated glia signaling. J Neurosci 20: 2835–2844.

    PubMed  CAS  Google Scholar 

  • Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, et al. 2005. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438: 1017–1021.

    Article  PubMed  CAS  Google Scholar 

  • Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, et al. 2003. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424: 938–942.

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Ribeiro JA. 2000. ATP as a presynaptic modulator. Life Sci 68: 119–137.

    Article  PubMed  CAS  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ. 1992. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440.

    Article  PubMed  CAS  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8: 752–758.

    Article  PubMed  CAS  Google Scholar 

  • Dunn PM, Zhong Y, Burnstock G. 2001. P2X receptors in peripheral neurons. Prog Neurobiol 65: 107–134.

    Article  PubMed  CAS  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D. 1992. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359: 144–147.

    Article  PubMed  CAS  Google Scholar 

  • Enkvist MO, Holopainen I, Akerman KE. 1989. Glutamate receptor-linked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes. Glia 2: 397–402.

    Article  PubMed  CAS  Google Scholar 

  • Fam SR, Gallagher CJ, Salter MW. 2000. P2Y(1) purinoceptor-mediated Ca(2+) signaling and Ca(2+) wave propagation in dorsal spinal cord astrocytes. J Neurosci 20: 2800–2808.

    PubMed  CAS  Google Scholar 

  • Gravel C, Gotz R, Lorrain A, Sendtner M. 1997. Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat Med 3: 765–770.

    Article  PubMed  CAS  Google Scholar 

  • Gu JG, MacDermott AB. 1997. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389: 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Guo LH, Guo KT, Wendel HP, Schluesener HJ. 2006. Combinations of TLR and NOD2 ligands stimulate rat microglial P2X4R expression. Biochem Biophys Res Commun 349: 1156–1162.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, et al. 1999. ATP released from astrocytes mediates glial calcium waves. J Neurosci 19: 520–528.

    PubMed  CAS  Google Scholar 

  • Haydon PG. 2001. GLIA: Listening and talking to the synapse. Nat Rev Neurosci 2: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, et al. 2006. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9: 1512–1519.

    Article  PubMed  CAS  Google Scholar 

  • Heppenstall PA, Lewin GR. 2001. BDNF but not NT-4 is required for normal flexion reflex plasticity and function. Proc Natl Acad Sci USA 98: 8107–8112.

    Article  PubMed  CAS  Google Scholar 

  • Honda S, Sasaki Y, Ohsawa K, Jmai Y, Nakamura Y, et al. 2001. Extracellular ATP or ADP induce chemotaxis of cultured microglla through G1/0-coupled P2Y receptors. J Neurosci 21: 1975–1982.

    PubMed  CAS  Google Scholar 

  • Hugel S, Schlichter R. 2000. Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci 20: 2121–2130.

    PubMed  CAS  Google Scholar 

  • Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, et al. 2002. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 99: 17179–17184.

    Article  PubMed  CAS  Google Scholar 

  • Jiang LH, Kim M, Spelta V, Bo X, Surprenant A, et al. 2003. Subunit arrangement in P2X receptors. J Neurosci 23: 8903–8910.

    PubMed  CAS  Google Scholar 

  • Kato F, Shigetomi E. 2001. Distinct modulation of evoked and spontaneous EPSCs by purinoceptors in the nucleus tractus solitarii of the rat. J Physiol 530: 469–486.

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS, Burnstock G, Kennedy C, King BF, North RA, et al. 2001. International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53: 107–118.

    PubMed  CAS  Google Scholar 

  • King BF, Liu M, Pintor J, Gualix J, Miras-Portugal MT, et al. 1999. Diinosine pentaphosphate (IP5I) is a potent antagonist at recombinant rat P2X1 receptors. Br J Pharmacol 128: 981–988.

    Article  PubMed  CAS  Google Scholar 

  • King BF, Townsend-Nicholson A, Wildman SS, Thomas T, Spyer KM, et al. 2000. Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes. J Neurosci 20: 4871–4877.

    PubMed  CAS  Google Scholar 

  • Koizumi S, Fujishita K, Tsuda M, Shigemoto-Mogami Y, Inoue K. 2003. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci USA 100: 11023–11028.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi S, Inoue K. 1997. Inhibition by ATP of calcium oscillations in rat cultured hippocampal neurones. Br J Pharmacol 122: 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, et al. 2007. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446: 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW. 1996. Microglia: A sensor for pathological events in the CNS. Trends Neurosci 19: 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, et al. 2003. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113: 717–730.

    Article  PubMed  CAS  Google Scholar 

  • Le KT, Babinski K, Seguela P. 1998. Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18: 7152–7159.

    PubMed  CAS  Google Scholar 

  • Lewis C, Neidhart S, Holy C, North RA, Buell G, et al. 1995. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377: 432–435.

    Article  PubMed  CAS  Google Scholar 

  • Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, et al. 1999. Neurotrophins: Peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci USA 96: 9385–9390.

    Article  PubMed  CAS  Google Scholar 

  • Marteau F, Le Poul E, Communi D, Communi D, Labouret C, et al. 2003. Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64: 104–112.

    Article  PubMed  CAS  Google Scholar 

  • Murthy KS, Makhlouf GM. 1998. Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-beta1 via Galphaq/11 and to PLC-beta3 via Gbetagammai3. J Biol Chem 273: 4695–4704.

    Article  PubMed  CAS  Google Scholar 

  • Nasu-Tada K, Koizumi S, Inoue K. 2005. Involvement of beta1 integrin in microglial chemotaxis and proliferation on fibronectin: Different regulations by ADP through PKA. Glia 52: 98–107.

    Article  PubMed  Google Scholar 

  • Nasu-Tada K, Koizumi S, Tsuda M, Kunifusa E, Inoue K. 2006. Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X(4), a key molecule for mechanical allodynia. Glia 53: 769–775.

    Article  PubMed  Google Scholar 

  • Newman EA, 2001. Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci 21: 2215–2223.

    PubMed  CAS  Google Scholar 

  • Newman EA, 2003. Glial cell inhibition of neurons by release of ATP. J Neurosci 23: 1659–1666.

    PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318.

    Article  PubMed  CAS  Google Scholar 

  • North RA, 2002. Molecular physiology of P2X receptors. Physiol Rev 82: 1013–1067.

    PubMed  CAS  Google Scholar 

  • Ogura A, Iijima T, Amano T, Kudo Y. 1987. Optical monitoring of excitatory synaptic activity between cultured hippocampal neurons by a multi-site Ca2+ fluorometry. Neurosci Lett 78: 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, et al. 2007. Involvement of P2X(4) and P2Y(12) receptors in ATP-induced microglial chemotaxis. Glia 55: 604–616.

    Article  PubMed  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, et al. 2005. Astrocytic purinergic signaling coordinates synaptic networks. Science 310: 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Radford KM, Virginio C, Surprenant A, North RA, Kawashima E. 1997. Baculovirus expression provides direct evidence for heteromeric assembly of P2X2 and P2X3 receptors. J Neurosci 17: 6529–6533.

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G. 1998. Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492.

    PubMed  CAS  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, et al. 2002. BDNF-induced TrkB activation down-regulates the K+-Cl-cotransporter KCC2 and impairs neuronal Cl-extrusion. J Cell Biol 159: 747–752.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, et al. 2003. Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44: 242–250.

    Article  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, et al. 1999. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Scholz J, Woolf CJ. 2002. Can we conquer pain? Nat Neurosci 5(Suppl): 1062–1067.

    Article  PubMed  CAS  Google Scholar 

  • Shigetomi E, Kato F. 2004. Action potential-independent release of glutamate by Ca2+ entry through presynaptic P2X receptors elicits postsynaptic firing in the brainstem autonomic network. J Neurosci 24: 3125–3135.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki Y, Koizumi S, Ishida S, Sawada J, Ohno Y, et al. 2004. Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y(1) receptors. Glia 49: 288–300.

    Article  Google Scholar 

  • Sneyd J, Charles AC, Sanderson MJ. 1994. A model for the propagation of intercellular calcium waves. Am J Physiol 266: C293–C302.

    PubMed  CAS  Google Scholar 

  • Sneyd J, Wetton BT, Charles AC, Sanderson MJ. 1995. Intercellular calcium waves mediated by diffusion of inositol trisphosphate: A two-dimensional model. Am J Physiol 268: C1537–C1545.

    PubMed  CAS  Google Scholar 

  • Soulet C, Sauzeau V, Plantavid M, Herbert JM, Pacaud P, et al. 2004. Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor. J Thromb Haemost 2: 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Stoll G, Jander S. 1999. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58: 233–247.

    Article  PubMed  CAS  Google Scholar 

  • Thompson SW, Bennett DL, Kerr BJ, Bradbury EJ, McMahon SB. 1999. Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci USA 96: 7714–7718.

    Article  PubMed  CAS  Google Scholar 

  • Tjelle TE, Lovdal T, Berg T. 2000. Phagosome dynamics and function. Bioessays 22: 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Egan TM, Voigt MM. 1999. Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274: 6653–6659.

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Haines WR, Egan TM, Voigt MM. 1998. Co-expression of P2X1 and P2X5 receptor subunits reveals a novel ATP-gated ion channel. Mol Pharmacol 54: 989–993.

    PubMed  CAS  Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, et al. 2003. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424: 778–783.

    Article  PubMed  CAS  Google Scholar 

  • Virginio C, Robertson G, Surprenant A, North RA. 1998. Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53: 969–973.

    PubMed  CAS  Google Scholar 

  • Waldo GL, Harden TK. 2004. Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 65: 426–436.

    Article  PubMed  CAS  Google Scholar 

  • Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, et al. 1993. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Webb TE, Boarder MR. 2003. Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: Evidence for agonist-specific signaling. Mol Pharmacol 63: 1356–1363.

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Mannion RJ. 1999. Neuropathic pain: Aetiology, symptoms, mechanisms, and management. Lancet 353: 1959–1964.

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Salter MW. 2000. Neuronal plasticity: Increasing the gain in pain. Science 288: 1765–1769.

    Article  PubMed  CAS  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, et al. 2003. ATP released by astrocytes mediates glutamatergic activity-dependentheterosynaptic suppression. Neuron 40: 971–982.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Inoue, K. (2009). P2 Purinergic Receptor. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_19

Download citation

Publish with us

Policies and ethics