Skip to main content

Calcium Signaling and Cell Fate Determination During Neural Induction in Amphibian Embryos

  • Reference work entry

Abstract

Experiments performed with isolated ectoderm explants from Xenopus laevis embryos suggest that neural determination is a “by default” mechanism, which occurs when bone morphogenetic proteins (BMPs) are antagonized by extracellular antagonists. BMPs are responsible for the determination of epidermis. However, Ca2+ imaging of intact Xenopus embryos reveals patterns of Ca2+ transients that are generated via the activation of dihydropyridine (DHP)-sensitive Ca2+ channels in the dorsal ectoderm but not in the ventral ectoderm. These increases in the concentration of intracellular Ca2+ ([Ca2+]i) appear to be necessary and sufficient to direct the ectodermal cells toward a neural fate as increasing the [Ca2+]i artificially results in neuralization of the ectoderm. The construction of a subtractive cDNA library between untreated and caffeine-treated (i.e., to increase [Ca2+]i) ectoderms led to the identification of early Ca2+-sensitive target genes expressed in the neural territories. One of these genes, which encodes an arginine methyl transferase, was found to control the expression of the early proneural gene, Zic3. Here, we discuss the possibility of an alternative model to the current “by default” mechanism, where Ca2+ plays a central regulatory role, and epidermal determination only occurs when the Ca2+-dependent signaling pathways are inactive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BCNE:

Blastula Chordin and Noggin-expressing center

BMP:

bone morphogenetic proteins

DHP:

dihydropyridine

DRE:

Downstream Regulatory Element

DREAM:

DRE antagonist modulator

FGF:

fibroblast growth factors

TRPs:

transient receptor potential channels

References

  • Antoniotti S, Fiorio Pla A, Pregnolato S, Mottola A, Lovisolo D, et al. 2003. Control of endothelial cell proliferation by calcium influx and arachidonic acid metabolism: A pharmacological approach. J Cell Physiol 197: 370–378.

    Article  CAS  PubMed  Google Scholar 

  • Barth LG, Barth LJ. 1964. Sequential induction of the presumptive epidermis of the Rana pipiens gastrula. Biol Bull 127: 413–427.

    Article  Google Scholar 

  • Batut J, Neant I, Leclerc C, Moreau M. 2003. xMLP is an early response calcium target gene in neural determination in Xenopus laevis. J Soc Biol 197: 283–289.

    CAS  PubMed  Google Scholar 

  • Batut J, Vandel L, Leclerc C, Daguzan C, Moreau M, et al. 2005. The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo. Proc Natl Acad Sci USA 102: 15128–15133.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P. 2003. Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115: 615–627.

    Article  CAS  PubMed  Google Scholar 

  • Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR. 1999. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398: 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Delaune E, Lemaire P, Kodjabachian L. 2005. Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132: 299–310.

    Article  CAS  PubMed  Google Scholar 

  • Distasi C, Munaron L, Laezza F, Lovisolo D. 1995. Basic fibroblast growth factor opens calcium-permeable channels in quail mesencephalic neural crest neurons. Eur J Neurosci 7: 516–520.

    Article  CAS  PubMed  Google Scholar 

  • Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME. 2001. Signaling to the nucleus by an L-type calcium channel calmodulin complex through the MAP kinase pathway. Science 294: 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Doniach T. 1992. Induction of anteroposterior neural pattern in Xenopus by planar signals. Development Suppl: 183–193.

    Google Scholar 

  • Faure S, Lee MA, Keller T, ten Dijke P, Whitman M. 2000. Endogenous patterns of TGFβ superfamily signaling during early Xenopus development. Development 127: 2917–2931.

    CAS  PubMed  Google Scholar 

  • Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch R. 2006. The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127: 591–606.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg DA, Carpenter CL, Messing RO. 1987. Lectin-induced enhancement of voltage-dependent calcium flux and calcium channel antagonist binding. J Neurochem 48: 888–894.

    Article  CAS  PubMed  Google Scholar 

  • Grunz H, Tacke L. 1989. Neural differentiation of Xenopus laevis. ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev 28: 211–217.

    Article  CAS  PubMed  Google Scholar 

  • Gualandris L, Rouge P, Duprat AM. 1983. Membrane changes in neural target cells studied with fluorescent lectin probes. J Embryol Exp Morphol 77: 183–200.

    CAS  PubMed  Google Scholar 

  • Gualandris L, Rouge P, Duprat AM. 1985. Target cell surface glycoconjugates and neural induction in an amphibian. J Embryol Exp Morphol 86: 39–51.

    CAS  PubMed  Google Scholar 

  • Keller R, Danilchik M. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103: 193–209.

    CAS  PubMed  Google Scholar 

  • Kornhauser JM, Cowan CW, Shaywitz AJ, Dolmetsch RE, Griffith EC, et al. 2002. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34: 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Kuroda H, Wessely O, De Robertis EM. 2004. Neural induction in Xenopus: Requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol 2: E92.

    Article  PubMed  Google Scholar 

  • Launay C, Fromentoux V, Shi DL, Boucaut JC. 1996. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122: 869–880.

    CAS  PubMed  Google Scholar 

  • Leclerc C, Daguzan C, Nicolas MT, Chabret C, Duprat AM, et al. 1997. L-type calcium channel activation controls the in vivo transduction of the neuralizing signal in the amphibian embryos. Mech Dev 64: 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Leclerc C, Duprat AM, Moreau M. 1999. Noggin upregulates Fos expression by a calcium-mediated pathway in amphibian embryos. Dev Growth Differ 41: 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Leclerc C, Lee M, Webb SE, Moreau M, Miller AL. 2003. Calcium transients triggered by planar signals induce the expression of ZIC3 gene during neural induction in Xenopus. Dev Biol 261: 381–390.

    Article  CAS  PubMed  Google Scholar 

  • Leclerc C, Moreau M, Gualandris-Parisot L, Drean G, Canaux S, et al. 1995. An elevation of internal calcium occurring via L-type channels mediate neural induction in the amphibian embryo. Organisation of the Early Vertebrate. Zagris N, Duprat AM, Durston J, editors. New York: Plenum Press; pp 209–226.

    Google Scholar 

  • Leclerc C, Rizzo C, Daguzan C, Neant I, Batut J, et al. 2001. Neural determination in Xenopus laevis. embryos: Control of early neural gene expression by calcium. J Soc Biol 195: 327–337.

    CAS  PubMed  Google Scholar 

  • Leclerc C, Webb SE, Daguzan C, Moreau M, Miller AL. 2000. Imaging patterns of calcium transients during neural induction in Xenopus laevis. embryos. J Cell Sci 113 Pt 19: 3519–3529.

    CAS  Google Scholar 

  • Mellstrom B, Naranjo JR. 2001. Ca2+-dependent transcriptional repression and derepression: DREAM, a direct effector. Semin Cell Dev Biol 12: 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Leclerc C, Gualandris-Parisot L, Duprat AM. 1994. Increased internal Ca2+ mediates neural induction in the amphibian embryo. Proc Natl Acad Sci USA 91: 12639–12643.

    Article  CAS  PubMed  Google Scholar 

  • Nakata K, Nagai T, Aruga J, Mikoshiba K. 1997. Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc Natl Acad Sci USA 94: 11980–11985.

    Article  CAS  PubMed  Google Scholar 

  • Nishinakamura R, Matsumoto Y, Uochi T, Asashima M, Yokota T. 1997. Xenopus FK 506-binding protein homolog induces a secondary axis in frog embryos, which is inhibited by coexisting BMP 4 signaling. Biochem Biophys Res Commun 239: 585–591.

    Article  CAS  PubMed  Google Scholar 

  • Okabayashi K, Asashima M. 2003. Tissue generation from amphibian animal caps. Curr Opin Genet Dev 13: 502–507.

    Article  CAS  PubMed  Google Scholar 

  • Saint-Jeannet JP, Foulquier F, Goridis C, Duprat AM. 1989. Expression of N-CAM precedes neural induction in Pleurodeles waltl. (urodele, amphibian). Development 106: 675–683.

    CAS  PubMed  Google Scholar 

  • Saint-Jeannet JP, Huang S, Duprat AM. 1990. Modulation of neural commitment by changes in target cell contacts in Pleurodeles waltl. Dev Biol 141: 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Saint-Jeannet JP, Pituello F, Huang S, Foulquier F, Duprat AM. 1993. Experimentally provoked neural induction results in an incomplete expression of neuronal traits. Exp Cell Res 207: 383–387.

    Article  CAS  PubMed  Google Scholar 

  • Saneyoshi T, Kume S, Natsume T, Mikoshiba K. 2000. Molecular cloning and expression profile of Xenopus calcineurin. A subunit(1). Biochim Biophys Acta 1499: 164–170.

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, De Robertis EM. 1997. Ectodermal patterning in vertebrate embryos. Dev Biol 182: 5–20.

    Article  CAS  PubMed  Google Scholar 

  • Spotts JM, Dolmetsch RE, Greenberg ME. 2002. Time-lapse imaging of a dynamic phosphorylation-dependent protein–protein interaction in mammalian cells. Proc Natl Acad Sci USA 99: 15142–15147.

    Article  CAS  PubMed  Google Scholar 

  • Stern CD. 2005. Neural induction: Old problem, new findings, yet more questions. Development 132: 2007–2021.

    Article  CAS  PubMed  Google Scholar 

  • Takata K, Yamamoto K, Ozawa R. 1981. Use of lectins as probes for analyzing embryonic induction. Roux’s Arch Dev Biol 190: 92–96.

    CAS  Google Scholar 

  • Webb SE, Lee KW, Karplus E, Miller AL. 1997. Localized calcium transients accompany furrow positioning, propagation, and deepening during the early cleavage period of zebrafish embryos. Dev Biol 192: 78–92.

    Article  CAS  PubMed  Google Scholar 

  • West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, et al. 2001. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA 98: 11024–11031.

    Article  CAS  PubMed  Google Scholar 

  • Witta SE, Agarwal VR, Sato SM. 1995. XIPOU 2, a noggin-inducible gene, has direct neuralizing activity. Development 121: 721–730.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Centre National de la Recherche Scientifique (CNRS); a joint PICS grant funded by the CNRS; the PROCORE France/Hong Kong Joint Research Scheme (F-HK23/06T) sponsored by the Research Grants Council (RGC) of Hong Kong and the Consulate General of France in Hong Kong; Association pour la Recherche sur le Cancer (ARC); and the following Hong Kong RGC grants: HKUST6214/02M, HKUST6279/03M, HKUST6241/04M, and HKUST6416/06M. This chapter was prepared while A.L.M. was the recipient of a Croucher Foundation Senior Research Fellowship. We also thank Dr Osamu Shimomura for his generous supply of aequorins over the years.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Moreau, M., Webb, S.E., Néant, I., Miller, A.L., Leclerc, C. (2009). Calcium Signaling and Cell Fate Determination During Neural Induction in Amphibian Embryos. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_1

Download citation

Publish with us

Policies and ethics