Skip to main content

Magnetic Properties of Electronic Materials

  • Reference work entry
Book cover Springer Handbook of Electronic and Photonic Materials

Part of the book series: Springer Handbooks ((SHB))

Abstract

This work reviews basic concepts from both traditional macroscopic magnetism and unconventional magnetism, in order to understand current and future developments of submicronic spin-based electronics, where the interplay of electronic and magnetic properties is crucial. Traditional magnetism is based on macroscopic observation and physical quantities are deduced from classical electromagnetism. Physical interpretations are usually made with reference to atomic magnetism, where localized magnetic moments and atomic physics prevail, despite the fact that standard ferromagnetic materials such as Fe, Co and Ni are not localized-type magnets (they have extended s and localised d electronic states). While this picture might be enough to understand some aspects of traditional storage and electromechanics, it is not sufficient when describing condensed matter systems with smaller length scales (progressing toward the nanometer range). In this case, the precise nature of the magnetism (localized, free or itinerant as in Fe, Co and Ni transition metals) should be accounted for, along with the simultaneous presence of charge and spin on carriers. In addition, when we deal with the thin films or multilayers found in conventional electronics, or with objects of reduced dimensionality (such as wires, pillars, dots or grains), the magnetic properties are expected to be different from conventional three-dimensional bulk systems.

This chapter is organized as follows. We begin (in the Introduction) by highlighting the new era of submicronic spin-based electronics, and we present a table of papers on the topics we cover in the chapter, for the reader who wishes to learn more. The traditional elements of magnetism, such as the hysteresis loop, conventional types of magnetism and magnetic materials, are then presented (in Sect. 4.1). We then briefly describe (in Sect. 4.2) unconventional magnetism, which can be used to understand new high-tech materials that will be used in future devices based on spintronics and quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DVD:

digital versatile disk

GMR:

giant magnetoresistance

References

  1. R. Boll, H. Warlimont: IEEE Trans. Magn. 17, 3053 (1981)

    Article  Google Scholar 

  2. E. C. Stoner, E. P. Wohlfarth: Phil. Trans. R. Soc. London A 240, 599 (1948)

    Article  Google Scholar 

  3. C. L. Platt, M. R. Mc Cartney, F. T. Parker, A. E. Berkowitz: Phys. Rev. B 61, 9633 (2000)

    Article  CAS  Google Scholar 

  4. J. C. Slonczewski: Phys. Rev. B 39, 6995 (1989)

    Article  Google Scholar 

  5. N. C. Koon: Phys. Rev. Lett. 78, 4865 (1997)

    Article  CAS  Google Scholar 

  6. C. Tannous, J. Gieraltowski: J. Mater. Sci. Mater. El. 15, 125 (2004)

    Article  CAS  Google Scholar 

  7. R. White: IEEE Trans. Magn. 28, 2482 (1992)

    Article  CAS  Google Scholar 

  8. F. Schatz, M. Hirscher, M. Schnell, G. Flik, H. Kronmueller: J. Appl. Phys. 76, 5380 (1994)

    Article  CAS  Google Scholar 

  9. M. J. Dapino, R. C. Smith, F. T. Calkins, A. B. Flatau: J. Intel. Mat. Syst. Str. 13, 737 (2002)

    Article  Google Scholar 

  10. F. J. Himpsel, J. E. Ortega, G. J. Mankey, R. F. Willis: Adv. Phys. 47, 511 (1998)

    Article  CAS  Google Scholar 

  11. H. F. Jansen: Physics Today (Special Issue on Magnetoelectronics) April, 50 (1995)

    Google Scholar 

  12. J. B. Goodenough: IEEE Trans. Magn. 38, 3398 (2002)

    Article  CAS  Google Scholar 

  13. H. J. Richter: J. Phys. D 32, 147 (1999)

    Article  Google Scholar 

  14. P. Farber, M. Hörmann, M. Bischoff, H. Kronmueller: J. Appl. Phys. 85, 7828 (1999)

    Article  CAS  Google Scholar 

  15. P. Coeure: J. Phys. (Paris) Coll. C-6 46, 61 (1985)

    Google Scholar 

  16. P. E. Wigen: Thin Solid Films 114, 135 (1984)

    Article  CAS  Google Scholar 

  17. O. Gutfleisch: J. Phys. D 33, 157 (2000)

    Article  Google Scholar 

  18. G. Burkard, D. Loss: Europhys. News Sept-Oct, 166 (2002)

    Article  Google Scholar 

  19. H. Hauser, L. Kraus, P. Ripka: IEEE Instru. Meas. Mag. June, 28 (2001)

    Article  Google Scholar 

  20. G. A. Prinz: Science 282, 1660 (1998)

    Article  CAS  Google Scholar 

  21. I. Zutic, J. Fabian, S. Das Sarma: Rev. Mod. Phys. 76, 323 (2004)

    Article  CAS  Google Scholar 

  22. H. Kronmueller: J. Magn. Magn. Mater. 140-144, 25 (1995)

    Article  CAS  Google Scholar 

  23. J. L. Simonds: Physics Today (Special Issue on Magnetoelectronics) April, 26 (1995)

    Google Scholar 

  24. C. M. Hurd: Contemp. Phys. 23, 469 (1982)

    Article  CAS  Google Scholar 

  25. M. A. Nielsen, I. L. Chuang: Quantum Computation and Quantum Information (Cambridge Univ. Press, New York 2000)

    Google Scholar 

  26. S. Chikazumi: Physics of Ferromagnetism, Int. Ser. Monogr. Phys., 2nd edn. (Oxford Univ. Press, Clarendon 1997)

    Google Scholar 

  27. C. Kittel: Introduction to Solid State Physics, 6th edn. (Wiley, New York 1986)

    Google Scholar 

  28. M. R. Fitzsimmons, S. D. Bader, J. A. Borchers, G. P. Felcher, J. K. Furdyna, A. Hoffmann, J. B. Kortright, I. K. Schuller, T. C. Schulthess, S. K. Sinha, M. F. Toney, D. Weller, S. Wolf: J. Magn. Magn. Mater. 271, 103 (2004)

    Article  CAS  Google Scholar 

  29. S. O. Kasap: Principles of Electronic Materials and Devices, 3rd edn. (McGraw-Hill, New York 2001)

    Google Scholar 

  30. L. O. Chua: Introduction to Non-Linear Network Theory (McGraw-Hill, New York 1969)

    Google Scholar 

  31. B. K. Chakrabarti, M. Acharyya: Rev. Mod. Phys. 71, 847 (1999)

    Article  CAS  Google Scholar 

  32. A. Hubert, R. Schäfer: Magnetic Domains (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  33. A. P. Malozemoff, J. C. Slonczewski: Magnetic Domains in Bubble-Like Materials (Academic, New York 1979)

    Google Scholar 

  34. D. Buntinx: . Ph.D. Thesis (Université Catholique de Louvain, Louvain 2003)

    Google Scholar 

  35. D. Jiles: Introduction to Magnetism and Magnetic Materials, 2nd edn. (Chapman and Hall, New York 1991)

    Google Scholar 

  36. W. A. Harrison: Electronic Structure and the Properties of Solids (Freeman, New York 1980)

    Google Scholar 

  37. P. Bruno: Phys. Rev. B 52, 411 (1995)

    Article  CAS  Google Scholar 

  38. T. C. Schulthess, W. H. Butler: J. Appl. Phys. 87, 5759 (2000)

    Article  CAS  Google Scholar 

  39. A. I. Lichtenstein, M. I. Katsnelson, G. Kotliar: Phys. Rev. Lett. 87, 067205 (2001)

    Article  CAS  Google Scholar 

  40. A. Barthelemy: GDR Pommes Proceedings CNRS publication (June, Aspet, France, 2001)

    Google Scholar 

  41. R. Meservey, P. M. Tedrow: Phys. Rep. 238, 173 (1994)

    Article  Google Scholar 

  42. J. Moodera, G. Mathon: J. Magn. Magn. Mater. 200, 248 (1999)

    Article  CAS  Google Scholar 

  43. D. J. Monsma, S. S. P. Parkin: Appl. Phys. Lett. 77, 720 (2000)

    Article  CAS  Google Scholar 

  44. K. N. Altmann, N. Gilman, J. Hayoz, R. F. Willis, F. J. Himpsel: Phys. Rev. Lett. 87, 137201 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charbel Tannous Prof. or Jacek Gieraltowski D. Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Tannous, C., Gieraltowski, J. (2006). Magnetic Properties of Electronic Materials. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_4

Download citation

Publish with us

Policies and ethics